dressed state amplification by a superconducting qubit e. il‘ichev, outline introduction:...

35
Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier Lasing (charge qubit) Dressed state lasing (flux qubit) Conclusion

Upload: ginger-tucker

Post on 24-Dec-2015

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier

Dressed state amplification by a superconducting qubit

E. Il‘ichev,

Outline

Introduction: Qubit-resonator system

Parametric amplification

Quantum amplifier

Lasing (charge qubit)

Dressed state lasing (flux qubit)

Conclusion

Page 2: Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier

• Superconducting Ring + one or more Josephson junctions

• Contact sizes + process parameters

• Operation: external magnetic flux near half flux quantum Persistent current Ip Energy of external field

)2/(2 0 xIpE

20

Flux qubit

Page 3: Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier

Qubits energy- Eigenbasis

• Tunnel-coupling produces splitting -> D – energy gap

xz hhH 22

• Eigenstates of the qubit |g> and |e>Splitting adjustable via the external field

• Hamiltonian in eigenbasis

22,2

qzq

q hHBias

Ene

rgy

Page 4: Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier

• coplanar waveguide resonator 50 ohm characteristic impedance– Length determines the resonance

frequencyl / 2 fundamental mode 2.5 GHzHigh Q ~ 106

Thermal population at 20 mK

• Hamiltonian

• Relaxation with rate k

0025.0

1

10

kT

hth

e

n

2

10 aahH R

Superconductor

CcCc

Resonator

Page 5: Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier

• In flux basis (g= M Ip Ir)

• Or in eigenbasis of Qubits

zaahgH int

xq

zq

aahgH

int

Simulation:

Due to tapering M is 4 times lager

Coupling between resonator and qubit

Page 6: Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier

Parametric amplification

M. Rehak, Appl. Phys. Lett., 104, 162604, (2014).

Page 7: Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier

f f

pump

signal

pump

signalidler

IN OUT

Page 8: Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier

Superconducting coplanar waveguide resonator with a pair of flux qubits

Resonator design with its nonlinear element –

pair of flux qubits

Page 9: Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier

Gain

Page 10: Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier

Quantum amplifier

O. Astafiev, et. al., Phys. Rev. Lett 104, 183603 (2010).

Page 11: Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier

11

Spontaneous emission

Noise level of the 4K amplifier is 10-22 W/Hz!

3

2

1

32

21

13

-100 -50 0 50 100-5

0

5

10

15

/2 = 40 MHz

31/2 (MHz)

31/2 = 24 MHz

31/2 (MHz)

S (10

-25 W

/Hz)S

(10

-25 W

/Hz)

/2

(MH

z)

22

21

2121

2)(

fS

Noise spectral density (weak driving limit)

31

Page 12: Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier

12

0.9

1.0

1.1

-200 -100 0 100 200

-0.1

0.0

0.1

0.2

21

/2

(MH

z)

21/2

(MH

z)

31/2 (MHz)

|t|A

rg t

Amplification

Stimulated emission

f13

21/2 (MHz)

|t|A

rg t

Amplification

Page 13: Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier

13

2132231

1122

/11

t

Transmission at resonance without pure dephasing Maximum transmission

2132231 3

8

11max t

4

322

4

111 32

21

3

2

1

31

32 >> 21

21/2 = 11 MHz

32/2 = 35 MHz

1 10 100

1.00

1.04

1.08

Tra

nsm

issi

on

am

plitu

de

Probing amplitude 21/2 (MHz)

Linear amplificationregime

Quantum amplifier gain

Page 14: Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier

14

Single qubit lasing

O. Astafiev, et. al., Nature 449, 588-590 (2007)

Page 15: Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier

3

2

1

nD

G32

Geff

Lasing principle

Page 16: Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier

16Josephson quasiparticle current

0

2

2 0

2e

e+e

Far away from degeneracy, 0 state is decoupled from 2

11

JQP cycle: 2 1 0

2

0

1

IJQP

Population inversion

2

E

EI JJQP

Vb >2e

Page 17: Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier

17

CC

C

rg

V b

J E J

g a te

res o n ato r

p ro b e

g ro u n d

is lan d

N + 1 g02

0

1

The three level atom in the resonator

island

Josephson junctionsgate

probeelectrode

to resonator

Page 18: Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier

18

-2 -1 00

1

S (

10-2

1 W

/Hz)

amplifiernoise

Emission spectrum

f (MHz)

Nphoton >2P p

= 30

Page 19: Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier

19

0.0

0.5

1.0

Nor

mal

ised

tran

smis

sion

ampl

itude

9.895 9.900 9.905-4-3-2-10123

f (GHz)

Ph

ase

Laser is OFF

Laser is ON

Amplification

0.5

1.0

1.5

Page 20: Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier

20

Dress-state lasing

Page 21: Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier

21

2

1Geff

 

Coupling

Φi

VLT

L

CT

Ib

M

Page 22: Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier

Tank-qubit arrangement

TeffCL

10

Φi

VLT

L

CT

Ib

M

M2=k2LLT;

22

;1

,1;

)(1

2

222

2

22

.

.....

d

EdLk

d

dILk

d

dILk

QVd

dI

d

dII

tIC

IMVVQ

V

Tq

T

Tq

TTq

qqq

b

T

qTTT

> kT > h

Phenomenological approach

We found quantum-mechanical correction, but at low temperature kT<< it is negligible:

Ya. S. Greenberg and E. Il’ichev PRB 77, 094513 (2008)

Ya. S. Greenberg et al., PRB 66, 214525, 2002

M. Grajcar et al., PRB 69, 060501, 2004

Page 23: Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier

-10 -8 -6 -4 -2 0 2 4 6 8 10-10

-8

-6

-4

-2

0

2

4

6

8

10

E (

GH

z)

(fx) (GHz)

Tank cooling

M. Grajcar et al., Nature Phys., 4, 612, (2008)

Page 24: Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier

Spectroscopy with oscillator as a detector

Page 25: Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier

Rabi resonances

Page 26: Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier

• Atom + photon field• Energy states split on

Allowed transitions by dipoles matrix elementfluorescence triplet

C. Coen-Tannoudji, J. Dupont-Rock, and G. Grynberg, Atom-Photon Interactions. Basic Principles and Applications (JohnWiley, New York, 1998)

Dressed systems in quantum optics

Page 27: Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier

• Population depends on detuning

• Use additional signal with a tunable frequency-> Gain or attenuation

• Dressed state laser

C. Coen-Tannoudji, J. Dupont-Rock, and G. Grynberg, Atom-Photon Interactions. Basic Principles and Applications (JohnWiley, New York, 1998)

F. Y. Wu , S. Ezekiel,M. Ducloy, and B. R. Mollow, Phys. Rev. Lett. 38 1077, (1977)

Dressed systems in quantum optics

Page 28: Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier

• Splitting of the levels in the resonance point is proportional to

• Hamiltonian

• Neglecting constant offset the energy is proportional to N

• For small g and large N a variable:

Ng

aahvh

H zR

D 02

|20>

|10>

.constR

2

2 2

qR

gN

g0

g1

g2e1

e0

Ng~

Ene

rgy

detuning

Dressed levels

Page 29: Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier

• Reasonable N=105 and g=1MHz

• Therefore effective two-level system: quasi equilibrium levels |1> and |2>

kHzNR

NR 5.1)0()1()( 0

)1(

)(

NR

NR

N+1

N

N-1

|2>

|1>

Detuning changes the role of relaxation

Effective inversion of population

GG

G

G

Dressed levels

Page 30: Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier

1122221111 ,12

11

2

1LLL

RRRR

|2>

|1>

d0

1122

1111

L

L

2222

2211

L

L

Inversion population

)(],[0 LHih

Page 31: Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier

RxRzR gaahgaahhH )()

2

1(

2 0

• System resonator – qubit • Qubit: = 3.6 GHz, Ip = 12 nA, g~0.8

MHz• + Gold resistance• Fundamental mode below the qubit gap:

resonant interaction is absent• Additional microwave field generates an

effective two-level system• Good qubit-resonator coupling • High photon numbers in the resonator

possible

Rq

HR

q

HHqHR

Ngg

Ng

22222

2,

2

|21>

|20>

|10>

Lasing

Damping

Lasing: experimental realization

Page 32: Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier

• Input signal 2.5 GHz

Lasing: experimental realization

Page 33: Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier

• Fitting parameter /2G p = 60 MHz and G /2f p = 20MHz

)(],[0 LHih

Lasing: fitting

Page 34: Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier

Emmision

G.Oelsner et. al. Phys. Rev. Lett. 110, 053602 (2013) • P. Neilingeret. al. Phys. Rev. B 91, 104516 (2015).

Page 35: Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier

Conclusion

• Level inversion of a driven qubits is used to produce lasing at the Rabi frequency

• The qubit is adjusted for stable resonance conditions and rapid relaxation.

• Harmonics of the resonator determine the driving field for good coupling and high photon number

• The experimental results are described by a full quantum theory - on the base of the dressed states.