e. gc chool of

31
,HMSC E. GC 856 .0735 'no. 58-7 ..cop. 2 CHOOL OF SGOENCE' EGON STATE COLLEGE- - HEAT BUDGET TERMS FOR MIDDLE SNAKE RIVER RESERVOIRS Wayne V. Burt Final Report U. S. Fish and Wildlife Contract Water Temperature Studies on the Snake River

Upload: others

Post on 29-Jul-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: E. GC CHOOL OF

,HMSCE. GC

856.0735

'no. 58-7..cop. 2 CHOOL OF SGOENCE'

EGON STATE COLLEGE- -

HEAT BUDGET TERMS FOR

MIDDLE SNAKE RIVER RESERVOIRS

Wayne V. Burt

Final ReportU. S. Fish and Wildlife

ContractWater Temperature Studies

on the Snake River

Page 2: E. GC CHOOL OF

sh and WUdii` t

III

6

ac

Page 3: E. GC CHOOL OF

The tint step in foretasting the thermal structure in a

reservoir is to detereine the beat budget of the reservoir

as a function of ties, In order to do this, each of the methods

of best transfer must be considered Sm itidually and then the

ecabined effects considered together.

the heat bSgst for a body of water is usually eicpresesd as

eons fore of the following equation 1952; Svardrup st

at 1946)s

(I) Q5Qr%s%Q4QvC

is the short wave solar radiation striking the nter

surfac,is the asount of short wave solar radIation that is

relented back toward the sun end sky from the water surface,

% is the net gain of heat this to solar red! ation),

is the net beck radiation lost to the aim sphere free the

water surface as a result of the exchange of long wave ndiation

between the water surface and the atmosphere.

% iø the lost through eanduotton of heat from the

water at face to the air.

Page 4: E. GC CHOOL OF

1oer

'Dies

Vr

r .. h 1 nlivi `?_= -e r>for aE

`, . ` r v ,

Page 5: E. GC CHOOL OF

1,12 ,era8 vas

T: CUO

ns u_ '. :i '%ta"tffi b

lye to rvi which :x,n ; or Wetroro1opluaI conditions. Artunf,

t be c; t K:1 r i throm

tatio a in :ti.._

C

10 -q-,O 0- for 011h notommic VO

n"G i t '"t?! rr : ?mar=

b.-- istan 1zT.4:, ..":Fi e::J obtaic, :'''(7

t e W Ky,c C. r.

C- " 71 400i . use

tar

Page 6: E. GC CHOOL OF

ud io er it tf'r

Weather aroau rem

tr iR'+ aco,r

back radlaticcn de

effect s

ul uc 00e s Pt ..t.. tor in the

F-ekreds.t.;cn. `ep-nTn

in avy4 ..F ab,i1 a f.`roe f'.

but It is not

~i th c1rur, el p,. at ' or such th} t rrcan

:,rcFn ed by m ddle ?cud

awls will }:e ccn i Pr,; ;s T-Iddle

t al I2ud

o neat,-! ns. 7-or this

"'d b !°

tuwe'" ccnvid,re'kdor

tar fight. `!°e of cover

r

our

date

Page 7: E. GC CHOOL OF

5

The teaperaturs of the air s a factor in the computation of

conduction of baa to and from the Air taperatur. isalso of the nanameters red to comrnte the water vapor pressure

in the air and tius is a. factor in the computatIon of back radiation

and enporatlenc 'ecords show a difference in air

temperature between Lewiston and Oxbow, thus, nan

temperatures were needed at both locations,

The Weather thirty year mean month Ly air temperature

date for Lewiston were used (u.s,i,s,, 1957*) for the Lewiflon area,

In the case of the Oxbow area, the problem of obtaining

represeatattve air temperatures was more difficult, the VISIt and

Wildlife Service 1195?) recorded air temperatures at Oxbow from

1955 throuSs July 1956, inclusive, in order to use these

data,, some correction must be applied to take into account dew.-

inSane from long term averages. The monthly air temperatures

for 1955 and 1956 for each of fin stations near Oxbow were compared

to the long term monthly nan temperature for each station, This

indicated tibet the individual monthly means for the individual

stations for 1955 and 1936 were high or low and by how much. In

average correction factor was computed for each of the 18

and applied to the Oxbow For example, daring February, 1955,

Veiny, }falfway, Nyssa, Runtington, and Idra±n ILZLWJ,

reported mean teaperetares that were 10,0, 12.9, 104, 5.4, and

4,5°?, respectively below their long term February mean temperature,

This gave a mean long term five station deviation of 4.4°?, The

reported wean temperatur. for Oxbow for February 1035 was

Taking into account the -S,6°? deviation for surrounding stations,

Page 8: E. GC CHOOL OF

6(.3

0

"1,.2

40

51.4 50.x.

Page 9: E. GC CHOOL OF

stations the .. v .. 7 E i i -PAN, 1' 51 th'' uol;

local r6w rs 1n«z _' C'nK

business .t ? i.32g° t `uc

of open areas In thn vicinity.

ximt re

r dt h7 l water ter,

=01+ut :t1on of e''`d`e: titre

the mon . c

8.5

n

.6

for

Page 10: E. GC CHOOL OF

741

5

Page 11: E. GC CHOOL OF

9

out,ide cC the 20° nnge, Vichy would be brought

the tongs vety

ware ret carried c-ut below 320C, the freezirg

point of fresh water a The retn of brat are radi or Ily

altered to very low veluse by the of lee

The relative humtdity of the air is a factor to the f3ODpe

utation of a& effectIve back radlatiot, Relative

humidity data were avenged by months far flattens located at

Idehop Pendlston, Orcgonj Spokane, Washingtonj and Levi atos,

Idaho. Data for the tint three stations were for the sevensyns

per$od 1951 through 1951 (V,LVJ, 1951—1957), Part of the 1951

1957 data for Iawletor, Idaho, were available, The Weather

(TS,LW,3,, 1957a) long term mean or normal relatIve huwtdity

was used for that station in the avenging The

relative buiri dity was markedly lower during July than during

June at all statIons,

January It? July 40.5

Pabnmz7 73,7 August 41.l

March 63.8 September 45.7

April 54.8 October g,ç57.1 rovaber 74.4

June 53.0 December 79.2

Page 12: E. GC CHOOL OF

I0

1 3 I n r- r t, on 'nor

cter Surf⩔. T= r--.

clout virf4 t1 't

u r 5 tea c, ore : uq,re

urit Is f: * the l n-ngley

f co

a suitable unit 'cr

rr: i t: of the -,- , r ,, r t I

t in this ttu y .

The -? rt riled o , direct nt

= u^ r r z-" -7*r Alo'er: _.t.fticn in the hrd

c tis ,, in n roan of ec::.4utd try:

e- and c .i r:;., statinnn. Twin

a r t: n w.At x c I r r t i cr tf a 0 r:; rte r: r t the best i.r or- t i or

L&r radiat.i°c.r the ;-it amen

ec

r

t

:;ado. date

together

by and -7.

t It

1'«

Page 13: E. GC CHOOL OF

a °a C !t 't `i,. ire ?l

.te tk of turns foot, I

MOW 30 feet (See ,y r'

Ran t ow

)US to d1 str .ht t below `.

pas

p+.'_ t.

Aur mrTnip "Yon the sun

the nurjnv or tre

the W1 n

below

-, -'rip

Page 14: E. GC CHOOL OF

Ux `. near ^_i o Cc

On .; st r usC c:

AN's of tip -,Or

put

nts over

c. _.s . ootu,

06707 4I VIM

s " ' I . t br ug `. r ' : e?".

QxrUMd? ara . .,-ate', {.0 r [..., , :: s ..

>dd e ouch t' } _ u `.'v r t y b-e n

over

1;;5

rtes i : A Nor f.

fit

¢4

t that

Page 15: E. GC CHOOL OF

ft

24 376 5

17

4

404

I r

216

Ill7

Page 16: E. GC CHOOL OF

14

te*tperattwe of the water surface according to the ecpationi

=

is the nuaber of calories eaStted net square centimeter

per day (ly) is the Sefen—Eoitzms.s constant (1.176 x

eel, dar' and is the absolute ttapersture of tAt

water surface. The factor 0.9? indicates that water radiates at

the rats of of the rate of a theoretical Black (Andersen,

1952),

At the same time the water surfac. is radiating long

wets radiation upward toward the atmosphere, it is elso receiving

dialler long wave radiatien casing downward from the atmosphere,

This term, Q5, is always less than The difference between the

two tern % %, or %, the effective or net back radiation, is

always negative, indierting a net transfer of bent tram the

water surface to the atmosphere, A reservoir always loses long

wave redS tion enerc upward to the atmosphere.

The rate that the eo.rc is radiated downward from the

atmosrhers to the water surface, js en unknown function of

type, height, thf ottesa, and amount of cloud cover as well as the

amounts and distribution of water vapor and dust in the atmosphere,

Anderson (1c52) reviewed a number of amplrical relationships

between water vapor, and cloud cover in addItion to reporting

on a large number of direct measure,ents of that were carried

out over Lake Better, In the past, clouds have not been differs

eatitted by type or height in empirical retail designed for

Page 17: E. GC CHOOL OF

At-mos"s,--+c---R-c1iolisr, Adapter! --Fr pm- - Awde san---(-tt52 )

10 II It 13 14 II 16 IT I 19 20 21 It 23 24 asVapor Pr.ssur in Millibsrs

Page 18: E. GC CHOOL OF

15

computation of

Anderson's data are presented in nine scatter with

best fit least square lines for each the data are asp—

anted cording to height of clouds (low, riddle, end high) and

arcunt (scattered, broken, and overcast) at the time at

The decimal percentage effectiveness at the atmosphere (inclu9 op

clouds) compared to the effectiveness of a theoretical Black body

radiatirg at the temperature of the sir / is plotted

against the vapor pressure of the air measured in mi.llibars, the

air temperature, Tea, and the vapor pressure *lcb is a function

of air tempereture and relative humidity were measured at a height

of two meters. Anderson also prezented a least squares relationship

for data observatons on clear

In order to use Anderson 'a data for computing thc mean monthly

atmospheric (as a step in computtrg effective back red—

icti on) as a runction of mean monthly cloud cover, mean monthly

air a composite

diaen was constructed based on Anderson's tour lent square lines

tar days with eidd3e clouds and days with clear skye (flgure 1),

tinear interpolation was used to draw liner for each tenth nan

cloud cover between Arderson's lines for overcast, broken, scattered,

and clear skys,

Long wave radIatIon striking a water surfane is approximately

97% absorbed and 3% reflected (Anderson 1952). This long wave

albedo aarrw,tion was mode to the radiatIon from the staos4tere,

fleet lost through evaporation, is the largest term in the

Page 19: E. GC CHOOL OF

con - "10-IM -0- '

an W

sled i s pros

C+ s T e O

determine the

OT, nuthors

theory involved in W

Y in an 7 wa ti o i, s

16

o6

(3)

Page 20: E. GC CHOOL OF

17

Parbeek and ntd ilsrbeek (1c52) have us& this

technique for studying tion Lake The

ef water which evaporated each 24 bunts fle. tint calculated

directly trot the water budget of the lake for a period at ISO

This provided anpiricat data far computing the nine at their

findings shaved that the lake surface as rough

at all times with no evidence of a critical dud where K

changed values. Far weather data tram utarby Oklahoma

Municiple Airport, K has a calculated eonstnat value of 0,00450.

These weather data are taken under siSter conditions to the mean

data used in the present study, Jeatber data measured at a height

of eight metars directly over the lake gave a calculated constant

value of d which was

Sverdrgp is his latest (iS57) caper considering evaporation

from the sea surt-ea euggnts the use at (3) with vapor

pressure and wind measured at en elevaUon of 10 meters, ife

rocosasends using a K value between .0057 and

Jacobs used the following values of K tsr calculetSon

of evaporation from the oceans as a Lunctien of averaged attest—

clogicat conditions. For a secoth surface with wine a less than

J meters per SS000dr IC .0032. For a rough surface with winds

aver cetera per second, F TI. calculated a main mid—

latitmie value tar £ of .0069,

Assuming a distribution of wInds about the mean similar to

that found by Diukelacker (1948) one can calculate a teen value

of K on the basis of the percentage of tin the wind is above and

below the cr1 ii cat velocity of 6.5 meters per second and then apply

the K values used by Jacobs to anita at a mean K to use for say

Page 21: E. GC CHOOL OF

18

teaa This was carried out tar the mean menthly winds far

Sntzks flnr area re8arvajn. The sean annual value of K was O.OOU

in good agreeeent with the espirtal finding at Recheck (1952) and

Recheck and Vitredani (1952),

r tar consideration of the then, it was decided to use

Rarbeck's ttnn arcoal of K a as applicable to the use

of elbatolo€icel data to eoo9ute eteperetion in the present stndy,

The heat lass due to evaporation, %, was computed from the

amount of water eve orated pet square per day times the

heat of ff, of the water at the of the

lake. U was corrected fOr temperature.

fist is continually being transferred between any water

and the conduction. This beat flux $ rnnrnrd whenever

the water surface is vaxnr than the air end downward when the air

is warmer than the water.

The Rewet ratio, N, is usiafly used to derive a working

eqwiion for the computation of conduction,

a P —SIa

P is the ann air pressure, P is a constant, and and aare the water surface tamperateis and air temperatures, respectively.

Varions authors suggest values for D in the range of 0.57 to 0.Sinclusive, while 'Raven took 0.61 as the most probable value

Page 22: E. GC CHOOL OF

I'

Page 23: E. GC CHOOL OF

20

teh heat is passing the surface of a reservocr in

calories pe square centimeter per day (lenglays), This sun, celled the

storage rete 1957) is posItive %tansver the reservoir is

gaining heat through its surfers or negative when heat is being lost to

the The p+orsge rots, !, 5st n a Artion of tiesand relative tenpenture the water on flruresj and Ltorthe area and en aid 6 tar the area.

Th order to Cind the storsgs rate *em the tiares it is first

necessary to detereine the r4ative tesperstnre. Ta do this, enter

flpre 2 with the estinated or water surface teeneraters

and the date ton which? is desired, reed 'ist the reletive

teeperature as the niaber at degrees that the entering surface

tennerature is above or below the base Linear intfls

polation should be need when the surface ± espertttn tells between

any two lines of the five lines drown on the graph 2).

the reinS yr tenoerflune end the date enter the appropriate Figure

(3 toó) and read oft fi in Linear interpolation should

be used between the five relative teanerature curves.

The total rate of hnt!ng or cooling for the tie reservoir,

C, is found by nultinty'ng the area in acres by the rusher at square

centimeters an acre (L.0i I tines F. The result is in gras

calories pete day for the whole reservoir surface.

It requires 1 ,51 I calories to raIse the teepctreture of a

cubic foot of water one degree !, 0 divided by 1.57 1 is the

nusber at cubic feet of water that could ban a tcrrerature absinge

at one degree (degree—feet) due to th, beat exchange across the

surface,

Page 24: E. GC CHOOL OF

It be seen on flqures 4 to 6 that colder then avenge

surface tonpereture (minus relative tearteratures) bring abemt

hIgher then enrage rntes of heatIng while varrer than rmnge

surface water tey b5 rapIdly cooled4

21

Page 25: E. GC CHOOL OF

i

a

82

SO

78

76

74

72

TO

68

66

6462

60

58

56

w 54

52

50

0 48S.b

3 46

44

42

40

38

36

34

WE I Yl AR NY DAYS X 250 DIVNS. 359-142KEUFFEL& ESSER CO. o[n u. s. s.

CALENDAR YEAR

JANUARY FEBRUARY MARCH APRIL MAY JUNE JULY15 20 25 510152025 510/52025 510152025 510152025 510152025 51015

A ST SEPTEMBER OCTOBER NOVEMBER DECEMBER5 SIO to 25 510152025 51015202..5 510152025 510152025

.

;: - :. ':.: ' '- ' . : . .. - ..is _

1.: 1. A I

jjo. il+

1-1 7

A J';0 10

:4 4

-row f-A:, i i :if

Til

7 INri=

-LO

OF L

71

°s:: .L l1. s r510151025 510152025 51019 20 t5 1520259#0 510152025 510152025 5 101520 5JANUARY FEBRUARY MARCH APRIL MAY JUNE JULY

2 510152025 510152025AUGUST' SEPTEMBER

51015=025 5 10 152025 10152025OCTOBER NOVEMBER DECEMBER

I

..:

+,'

5

Page 26: E. GC CHOOL OF

a-

OPP

Jan. Fe be

OxbowMar. Apr. .GV June

.f , i.. 1-. 1

1..1'1. -

iM !

{. tt t

Ti Ai-T

t ..

h:

1YNNMy P' '1 111 ., }.1

wIYNt I it{:a '1 s 1tIIr I.i 1 1 1 r 1 )

IAN T.1 '.r .1

- -I IN/NIIIII,NI\II.f N/NN/r /II N\\\NNNINN [[\NI 1 .. HLU1:lliilluuN1[ .1 \rN/1 1 INiiNUluu11NNIN \N/I\ I::i' :'i'i " ! ::::!!:Fla.1 1 /IUN ll::111 I \I 11\1511.15....... .[we 1515.1515\1515111\I\iN1..i.N.1 ...INII ,/I II N.N1N ININ11 ...1\. [1115IIIINIIN: " .... l lI N.I.I....I 1....1.11511. II [.111551\1.I.I.N.1..1. HI ....NNiN II11 NNN 1..15..151 .111 111\ ...I11 ..

-lI.

II1yYII.I1II.INNIN:

115.1II /1N115 I..I.IN.IN. .N; 1 . ....1.II.1 1. \1.111 IN III....NIII /15151 Y II..I.INN I 1115.11 . IINNININ IuiN

y ..N.N..NU N. I U.1/1

\N/1 INI .11.15\.' . ..31115 u.N. .\1515 IN1, 1111.1.1. ...u NN.3:1E.1.1 ....II..I. NI. .....15.N N .IMUIi Ni1i1M Y..i N_ _I_I__N_.__ _I_._.._.__II i3_.1.\- . .".iYI1 N.IN .1...N,,.N ......I m.. ................NN. NNUN lu15

u.. 1 NNN. IN ,1:111:.1 :i 0.r iii ..1 i i:ii u mN i iiiiiii{M 11111-' 15...11 ......15... t51. 1 \ .us NuN NN

IINn u15 w N.i :. u em N 1 mlp'I'!r. 1N.NNII.Iµy N.uu 1 n mun uN 1 mu N N Nw 115 . NI.N m .

115:»I.1l :'i.1='3l.1i1::u'i'.':1011'i'iu:1./115.1...iN.N31..`IINL.. i.,:3...N.... 15151:::.15:iI:..Y.0151 1iNOI'y/15.::333N1.3...N1.NY........ .... y.:].........NN.......... .1. ..N . .. ... ..I . ... ............IM.... ,.YYI...... Y/I. .... N.... .... .............1 N1NNI Nf1111N11,N I. NI,\1 N11I is::151.15111 N1111YNINIYIIY N ...II. Y1 NN

I I1N ' N.N.f 15111511N\.....I'

1IN11 I 111.1111151.1 lllll IIIIN 111i4111111 aim! 11 Y.N1lI1/111.:'11113....Na1..NN11 .15MM 11IN 15.1111I 11 1 . 1. 1. l l Il. . I INI Nl11.NN.N1l.N.IN.1 1: i1Nl..Il1N 10111115111.111\1111 :LNIIN... IINI 1515111.1 Nl.I Nl15N 11. I INYI111l ....N1N1 ' 111 N1t. N 11f/111N111i.I N11111. 11.151511515....1.I..IN..NN1.1N HIN 1 .15......lNl1NNfN 11 1515111..NN1151.. ... ...... ...NNN1 ,1515 .1 ... I ........ IYIN N....NII NIYfIINN. 141..................... 11.INIIIN111 111.N 15/11/5111115 1 ' I1

11.15151515. N 115.1.15 111511 1515..15151 s11YIl\1511 1511115111511 ..N.liii 00 ll N1,1\1M 111 \'IJIi1\ll it 11111.111. Il\M 1.1.11.11 1.1.. 1 11111.111.1lN 1511111 NIIIIN51NIIf1Il1 N111111N1.1411NN11 IiI 15"' N 311001 1:=.

\1.1515 ii! IY .U 15511 l I NlNIN1NNI 1151515 l: N NINl.I1M.1 151.15 NIIIIINININII 'f 151 N 11515115 Um /11515/1 I! 1 lE11:11:::331 :::3::: nl:H?3:M1i'.I'111:::::::1iiuii::'ii'i Iii :: i: ::::i:lwlNil'1 :3::: NN1ii_ i:: iil1:lN15.lI l::ii 11:11:i11g1=lN..I... 11151.11. N.. 115 1 I N

.I NI .I NN1151.1Nl1 /1511 NIN 151/1151: I I15\NY.NI15N.I11l...IP1.1 151111YIN .N115NII1111 111511111151 11 1 1l1 i IIIS/1.1 1f 1.115. 11_1.1 .151151111151'

1115 N.I 1.1115.1111511» I1.11.I.1.31.I111 III.11 ,111.11Y;

11pp...N i14 i ii1115NI.N.N,11N1.M \1fIIN111111. IIN.I 1 Nl 11 .......II.. \.111115 L.-.:1151./l 15111.5.1111 .III. 151 :YIf.............II......f...1..N15.1511115151NS111111l1.I.f/15.15151\I Il15 NINlIl1,5I 1. 0

j1N1.Y151.1111\ 11.11 .....115.1 ...... .I. JI151I11111511/N \1I .1N.1.f.NN I.ll$ 111. 11Y INNI .115 N IilIIN1IIN1.1/. NN IIM1 111fNININN111tt.p!...YY,_N..15ININYINNII YNN 115 N 11.....NN115YNININI 01" NNI .15151151 1115151515151 N15rlN 15151.1 M.1f1YI 11515.1....15..1.151151.11515111 \ ../1 .. .II 1 11111$ 1.111115.11515 NfI r.N51111INN 1111.15151515.1.11 115111111lull I NlYlll I 1l .15.IN1.1515111 NIN 151111 1N.fi..llNl1N 1l.151151111\N \1 lNflNN11I 151I y]. 1M !]1NIIIIII.NI .N IIlll.\115 .1 15 .1N

.N...5Y.....I .IY15 .NI N.I\Y,IN NIN 111511115 1::: 1.1.1.15 11151115111151 NNIIII1151N 5.Y IN11 YN ..1 .1 lI 1 15NNIINl1 NI N15liNY NI , SI........ .....\ ......31 .1 .... 3115151,.,151.1..my *....15N.Y..... .115.15 l.YI..........1515... IN1 -1\1511.115 r In. 11. .......me.N1Y11.1I15 ....N.15.IN1.. 1I.INNIIISNNSIIIIIllI.11N.. W.II.NN1N. 11511. weN.5...1.15.SN1115 ---o Ill. 11 .t .1. 11511511.1.\15111, ...........I .. ..1151511151111 HININNN I1N......NIN1. 1515....15.. ..: it::1 1 : iN15 NNN 11515.151515115 NIN 1511511115155 NI 1 15N IN115_11111151N.N5 1111.115151.1 . 1.11.111I1111..111N 151... IIY1 N.11115I5.1N NII1111...NIII.. 151.15.1.11. I1T 111111 II..tN115.11151 ... i.111I.f.MIN III 1.f IN11111.HER

11 !11/III.51N11I II1IM:N-N.......... .i 1151, Nl/III1IYIlN 111I1.11NNINSNIS Ill1..1II.11.I1I,15111.f1...I11.111N ft11N.. I.III .,1.15115.1 NIII..IIII\.IN../IN1N1............................. me......NIN..I..........we ..... 11N11\..Y 115151111.11111111.1 ...NUI. YY15N..

SHD.IH.I..I...YIK IINI,.:11515.N..lINYNYNNIN.NNINNN..N...I...I.......NIN 115151.11515111 \I I': IIN.NI..IIII\11..

15."11.1.11111111IIHf.11 JIll5 1NI .......Y .I . 15...

..1.1.1:......NIIIIYY3

N .N.N.YI.....::::::::1:::'nNIth33 ., IINNI.N1{ N1f1 ::M :..--me.... 15H.IH .............IH.III.f15111.1 I .H.N.15...1I..1 N.III,NI/..HII.NH NN1I41.11\I NI NIN IHI/II.N.l11I\ NN ..........14..1515. HIHI/IN. 11..[]]..I I.1511 IIINIIYNHIIN.I III11INII N11111 1IIYNI.Yf 111111 .1.151515Y.1..II.,./NIIYIIHNItl IININIINlINN1l.N1YIYI 111.II

IH_e H INI11115/.4YMNI. NIIHIIIIN FHINIH.HHIN.NNIIINYHINNN.N 15411115 INII f1.14.1NNN......NN.......N....HN NIIININII IIII1151511. 1.11

II.15111 INN ., 1.IINNI111

.111 .15..1151111 IIHIIN IIMN.ININ II II IIIf HI1.11IIIII IINI NII II/IIINN,IIIII INiIISI,1.1,.1..1.1...311NI IIIN..II1NHIIN.. I IIN,11IIII NrrrI NNI .INI.NIIII. 11/11/15 11/11/5.11 ...I..I...I 1. .... I.... I.NN...........1.1\YIIN N YIIN.III IINIDINI.IIN.1.115I1511.5151®1.1.{]11.IIIIINWIIIIINII.I.I.N.IIIII I.II NIIII,INI::: :,1.11111...N... ...... yN::: II... II1II11.......N.........I.IIIIII4NHII\115151115\11111.,.HINI NI11IYI1I, IIiN

YIIINI NIIII. .IINI151111.1ININf1 I ININIII .. 1515111II III..IIINIIII NIIII.I IIIIINYIIIIINNIINIIIII 'I IIN 1 INII.YIINNH411NtI..III II.NNIII.I NI.I .1 It.NIfI NI11INH.I III.N.NIIIIINIII... N. ..IN,IIL.1.I1.......INB.N..N..MY .....I.. H... II. 1.....I...i.1.. ::: , 11::11.........15. . ....N..N.L.4.... ,.N..... L... L..N......N......- ;:Y. TIYI N..IN.I IL.NIIIY 111!111II .11If I.l,IY I I....N....I ................. 1I II,.\I. 11.I1NIN.NII II.YYYN NHIN.. am IIII MII..I Il._ _ _ _ __ - \.-- .. ...-. n - .e1 IN -. .a 1l 10 115 20 16

y

300

0

100

goo

10 20 25 5 10 20 25 20 10 20 25

H

10 so 10 15 20

5

Page 27: E. GC CHOOL OF

k

i

an

N

_'AA v Q. 9p .a 10 I6 a an

6 t0 "SO, its K, to fill a' an to 10 1 c'10 ._ab a .1'J 19

M4'

Oxbow.A1S' Dec.

w11. .N!'1 v,.s1ii1 wda\\i.7;w wY ..!.rn:::!.nft1r\! ... . ......r1 w.Yr\..rY a

'S`\f13v1 i.' ...iL'.'=.r.y1.1\_NtCY\I.IIIp'

I

.y .-b .u. 4 _ aa

E

Oct. Nov.

Page 28: E. GC CHOOL OF

14

OtYvV4

,Jan.5 0 15 20 2¢

Fe b.-5 IQ I: ?t 25

LewislorlMar. A r.

5 I; 15 2, 25.a'1

w 10 w CO S"June

cpb

o---111

'-- , ,.- . ,. { _ ; ,... $ .- .--.E-:

-:-f - . `:. - ;-- {.::A,

Lp .i . !

.1. - y1. 'I 'E

V -Jl -7-1' 7 t. J M 1 - ' i

' t - . } iT !oo:;r

L .a;1- :a.

1

.a ::f;. .. ....i: :I . is

T .. . . . -

» 111111+-t-

. ::'. ;I i f....t _ .

1,..'.{ :

't

I '1. i'''_ 1' . . ..1 1: j am'

1_lit

00

1 , = ff-{ ,

00

-tl :1 I. 1.:: L.f

«,: ;.1

!' l.

" 'I'r:1 k; i-,: a: 'i :e :::1 :1. :

. 1. tit 'tl i: -

00

.

'2' L,I t :1. .t: .L'' 1I . : , .{. :' :.: .. « ..- ':' :I'. :i. t_ ;_

00r; 11 W

iiH

004

5 10 15 20 25 5 10 15 20 25 5 10 In 20 .'

15 1 - 2, 2l

- 10 I5 20 25 1 I<7 15 20 25

6

5- PCP *5 20 . 5

Page 29: E. GC CHOOL OF

July Aug.— S •n15

o

:.,.__.i.._t..

L \I.

300r Cff• ..j•• •

tT

r— — —

I .

- J::.t:.• 4.-.-- •

-:1

-. C.I IL

-

.,....1.

LewistonOct. Nov.sept.

-.

tmi

Dec.5 20

Trfr-

I:LbL14t -,

ID4

----4.-

:. -:--

:t. --

100't

0

200

'I0a.leSaSI'I

.0

a0-J

-4

-

-

300 .1--- -. -

S.0 •

•..+._.S • •- -

-

- •, .:-

-

5

Page 30: E. GC CHOOL OF

22

Anderson, t., Energy Eudget Studies, Water Loss

lnvestlgaticnsa Vol. 1 — Lola latter StudSee, Caologioel

225, pp.

tndergori, Andetna, and 2. 0., 1950, A

ettew of tion The3ry and I ntonatt at lnstnaantetioe,

Fepo t 159, • S. anl cr4 cc laboratory, at 21 egO,

71 ?P'

Deny, F. A. Jr., lollay, C., and Seen, ti., 1U5. Patdbook

of aourawlfSll, anw fork, loncon, ltYS pp.

Bunt, C yns V., 957a, .t Fntinlnary ictimate of Tcnparature

Canlifloine Sn Brownice Lasenoir and In the Sitar Selow

BrownIes Sc, TB 1, Set, Cater Teaparaturo Studies on

tim Snake r4asr, Oregon State College, 6 pp. (typed).

Burt, V., 2. Second fonanst Trperutwt CcrAitiOns

in the Erowolew Besenoir and In the 'Make River Scow Brownies

Sea, 71' 4, later Tenperature StudIes zr4 the Snake

River, State College, 10 pp. (processed),

Burt, atync 1,, 1557c, a of :rpcrritu.-s Corndtlons in the

Oxbow cad Low Hells Canyon ecenaira and in the Snake River

Polow delta nyon Stat, TB 5, Cot, 57e6, date-c Tei.poruture

on Ira liver, 'ngon ttate 7

çprocssasd).

Burt, SCyra

ThI.

Si'�elcaVew, C., leSS.

fur die floohrber,

'WI, P.

Over later, Jornal of

U, a. 4, 283—290.

is iertei lancrafunktion den Cindgsschwiedigkeit

latter V. flier, Scnloau/Wlrtt* Sara, 1,

Page 31: E. GC CHOOL OF

Fish and Clidlife Service, 195t A Ftejress Rej*rt on Air and

hater teap9ntt;re 7itddIs snake BAyer Drainage, 1954

1956, !'ortland, Pregon.

Fritz, fiçmtnd, and YrFon4d, P. P., Average Bsdiat!on

Lu the Ibtited Seating 46i 61.44.

tlntohinson, 0, ., 1957, a on ithcrrolotl, Vol. 1, John

and Sons, lark, 1015

Jacobs, hoodrow, C., 1951. The irhange Between the Sea

and Atmosphere nad Some of Its Con sequences, Bulletin of the

Scripps institution of Oceanography of the University of

Celifarde, Vol. 6, Se. 2, pp. 21a122.

keroSene, 3, 3,, end larbeok, 1;, Jr., 1950. Mass Innate

Studies, hater Less lnvestlptionez Vol. 1 — Lake Keflier

Osolofleel tInIer 229, pp. 46a70.

Sverdrup, B, h., 195?. tncyelepedia Physics, pp. oOB.459,

1045 pp.

Svercintp, U. U., Johnson, , Z, arc P1,, s946, The

Pbyaios, lisdetry, and Bioloc,

Prentioe—lfail, Sew York, lOS? pp.

C. w. B., 1958a, Letter :ron P. btotlcc at jails

Salle,

P • S. C. F,, 1957a. iaoai tiimatciogtcsl Cd;ta 4th SornpsMtin

rate for Idaho; Lte, aSebo; #afla,

and Fendleton, Oregon.

• 5, 5, B,, 1950—1991. Cilsatologieal rate, Idaho, &egon,

s Annual Seamer cc and Sonthly Data,