e xploring the n anolandscape scanning probe microscopy

69
1 EXPLORING THE NANOLANDSCAPE Scanning Probe Microscopy

Upload: bridie

Post on 22-Jan-2016

21 views

Category:

Documents


0 download

DESCRIPTION

E XPLORING THE N ANOLANDSCAPE Scanning Probe Microscopy. I MAGE G ALLERY. The Nanoscale. Atomic diameter ~ 0.3 nm = 3 Å Microelectronics interconnect ~ 0.25 µm http://www.intel.com/technology//itj/q31998/articles/art_1.htm Red blood cell (5µm). Proximal Probes. History. Topografiner - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

1

EXPLORING THE NANOLANDSCAPEScanning Probe Microscopy

Page 2: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

2

IMAGE GALLERY

QuickTime™ and aGIF decompressor

are needed to see this picture.

Page 3: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

3

The Nanoscale

• Atomic diameter ~ 0.3 nm = 3 Å

• Microelectronics interconnect ~ 0.25 µm– http://www.intel.com/technology//itj/q31998/articles/art_1.htm

• Red blood cell (5µm)

Page 4: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

4

Proximal Probes

Page 5: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

5

History

• Topografiner

• Tunneling through a controllable vacuum gap

• Scanning Tunneling Microscope

• Atomic Force Microscope (Scanning Force Microscope)

Page 6: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

6

Operation of a Scanning Probe Microscope

• Scanning with sub-Angstrom precision• Probe detection (e.g., current, force, position, …)• Electronics processing• Computer control• Image processing• Vibration isolation• Environmental control (e.g., vacuum, atmosphere,

fluid; temperature)

Page 7: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

7

Scanning Tunneling Microscope

Omicron

Page 8: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

8

Scanning Force Microscope

Page 9: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

9

Tunneling

• One-dimensional tunneling

• Density of electronic statesof sample and tip

2m1/ 2

2

I So 2

To 2

e 2d

So

= sample wavefunction

To

= tip wavefunction

= workfunction

Page 10: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

10

Forces

non-contact Distance

tip to sample separation

repulsive force

attractive force

contact

Force

Trace

Retrace

F k x

Typical:

k 0.3N / m

x = 10nm

F = 3nN

Contact vs. non-contact modes ...Forces to atto-newton (10-18 N) range ...

Page 11: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

11

Themes

• IMAGING

• INTERROGATING

• MANIPULATING

atoms and nanoscale objects

Page 12: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

12

IMAGING

ATOMS AND NANOSCALE OBJECTSATOMS AND NANOSCALE OBJECTS

Page 13: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

13

Large-scale Atomic-scale

Graphite4.2 nm 4.2 nm

STM

Gold Grating30 µm 30 µm

STMDiNardo

Page 14: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

14

Semiconductor Surfaces - Si(100)

Tilted dimer

SymmetricDimer

Unreconstructed

L) OccupiedR) Unoccupied

Hamers, 1986

Page 15: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

15

Temperature-dependent Reconstructions

• Low-temperature Si(100)-c(42) vs. (2 1)– Domain boundaries, p(2 2) regions

Wolkow, 1992

Page 16: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

16

Homoepitaxial Growth - Si(100)

Mo, 1988

Page 17: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

17

Fractional Images

• Probing atomic orbitals– Frequency-modulated

Atomic Force Microscopy

– Si tip / Si(111)-77

Si atom

Giessibl, 2000

Page 18: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

18

Metal Surfaces

Wahlström, 1998

Page 19: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

19

0.4 ML Ag/Cu(110)

c(102) model

a, b) 230230 nm2

c) 5.45.4 nm2

d) 3.83.8 nm2Sprunger, 1996

Page 20: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

20

Interfaces - Cross-sectional Imaging

Ohmori, 1999

Page 21: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

21

Molecular Adsorption - CO/Pt(111)

Pederson, 1996

Page 22: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

22

Coatings - Colloidal Latex Particles

VacancyRecoveryFaulted LayerInterstitial DefectLine DefectOrientation ChangeBrennan, 2000

Page 23: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

23

Coatings - Latexes

Page 24: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

24

Carbon Nanotubes

Odom, 1998

Page 25: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

25

Overlapping Nanotubes

Avouris, 1999

Page 26: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

26

Nanotube Shapes and Forces

Avouris, 1999

Page 27: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

27

Biological Macromolecules - Collagen

Brennan, 2000

Page 28: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

28

Biological Macromolecules - Fibronectin

Brennan, 1999

Page 29: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

29

INTERROGATING

ATOMS AND NANOSCALE OBJECTSATOMS AND NANOSCALE OBJECTS

Page 30: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

30

Visualizing the Tunnel JunctionSTM-TEM

Naitoh, 1996

Page 31: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

31

Scanning

Ohnishi, 1998

Page 32: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

32

Bias-dependent imaging ~ Graphite

DiNardo

Page 33: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

33

Bias-dependent imaging ~ GaAs(110)

• GaAs(110) (cleaved) surface

Feenstra, 1987

Page 34: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

34

Spectroscopy ~ on the Nanoscale

• Beam techniques average over surface species• SPM techniques measure density of states related

to the atom (or molecule) under the tip– electronic spectrum - measure dI/dV [or (dI/dV)/(I/V)]

Hamers, 1986

Page 35: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

35

Electronic SpectroscopyAtom by Atom

• Reconstructed Si(100)-21 surface– Dimers– Occupied electronic states of dimers (between atoms)

– Unoccupied electronic states of dimers (away from atoms)

Hamers, 1986

Page 36: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

36

Defects

• Atomic-sized defects– Al/Si(111)-√3√3 structure

– different electronic states

Hamers, 1988

Page 37: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

37

Chemical Reactivity

NH3 reacted with the Si(111)-77 surface

Wolkow, 1988

Page 38: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

38

Vibrational SpectroscopyMolecule by Molecule

Lauhon, 2000

Page 39: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

39

Chemical Reactions

Lauhon, 2000

Electron-induced dissociation product -pyridine on Cu(100) at 8K

Page 40: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

40

Surface DiffusionChasing Atoms with the Atom Tracker

Swartzentruber, 1996

Page 41: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

41

H-enhanced diffusion of Pt atoms

QuickTime™ and aGIF decompressor

are needed to see this picture.QuickTime™ and aGIF decompressor

are needed to see this picture.

QuickTime™ and aGIF decompressor

are needed to see this picture.

Horch, 1999

an STM movie ...

Page 42: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

42

Electrostatic Force Microscopy (EFM)

• Application– Topography of integrated circuit

– Monitoring an active integrated circuit

Digital Instruments, www.di.com

Page 43: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

43

Scanning Capacitance Microscopy

Nakakura, 1999

Page 44: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

44

Magnetic Force Microscopy (MFM)

• Magnetic tip interaction with surface• Application: Disk drive

– Morphology

– Magnetic structure

Digital Instruments, www.di.com

Page 45: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

45

Scanning Chemical Microscopy

• Measure chemical interaction between the tip and sample

• Functionalize the tip with hydrophobic or hydrophilic species

• Scan over surface and measure adhesion force or friction force

Page 46: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

46

Carbon Nanotube Tips- Functionalization -

Wong, 1998

Page 47: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

47

Scanning Chemical Microscopy

Frisbee, 1994 / Wong, 1998

Page 48: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

48

Adhesion Forces

Wong, 1998

Page 49: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

49

Friction Force Microscopy

• Macroscopic friction forces

• Microscopic friction forces

Ffr N

Page 50: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

50

Polymer Thin Films

Nie, 1999

Polypropylene film(a) AFM + (b) FFM, (c) non-contact AFM

Page 51: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

51

nN Bond ForcesStrength of a Covalent Bond

Grandbois, 1999

Page 52: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

52

Ballistic Electron Emission Microscopy - BEEM

• Three-terminal setup• Probe potential barrier at interface between metal

and semiconductor• Electrons are forward-focused without scattering

(ballistic)

Page 53: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

53

BEEM

Bell, 2000

Page 54: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

54

MANIPULATING

ATOMS AND NANOSCALE OBJECTSATOMS AND NANOSCALE OBJECTS

Page 55: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

55

Moving Atoms

• Xe– Physisorbed noble gas - (low temperature)

• Fe– Quantum “Corrals”

Eigler, 1991 / Crommie, 1993

Page 56: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

56

Confined Electrons

• Reflections of free electron (waves) at boundaries

• Standing waves solutions

• One-dimensional free electron solution (infinite barrier)

Page 57: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

57

Quantum Corral

Crommie, 1993

Page 58: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

58

Forming Nanowires

Ohnishi, 1998

Page 59: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

59

Nanowire modeling

Okamoto, 1999

Page 60: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

60

Measuring Currents through One- and Two-atomic-row Nanowires

Ohnishi, 1998

Page 61: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

61

Nanoelectronics

• Nanoscale channels

• Nanoscale objects

• Currents - description based on quantum-mechanical transport

Page 62: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

62

Nanoscale patterning

• Desorption– H-terminated Si(100)

• Deposition– Fe(CO)5

Adams, 1996

Page 63: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

63

Nanotube Circuits

Avouris, 1999

Page 64: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

64

Nanotube FET

Martel, 1998 / Avouris, 1999

Page 65: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

65

Diamond-like Carbon Films

STM AFM

Mercer, 1996

Page 66: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

66

Protein-folding Forces

Rief, 1999

Page 67: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

67

Comparison of Force Curves

Rief, 1999

Page 68: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

68

Related Techniques

• Scanning Near-field Optical Microscopy

• Scanning Thermal Microscopy

Page 69: E XPLORING THE  N ANOLANDSCAPE Scanning Probe Microscopy

69

Some Acronyms ...

• STM• STS• AFM• TM-AFM• FFM, LFM• CFM