ece 497 js lecture - 11 modeling devices for sijsa.ece.illinois.edu/ece497js/lect_11.pdf · title:...

32
1 Copyright © by Jose E. Schutt-Aine , All Rights Reserved ECE 497-JS, Spring 2004 ECE 497 JS Lecture - 11 Modeling Devices for SI Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois [email protected]

Upload: others

Post on 24-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ECE 497 JS Lecture - 11 Modeling Devices for SIjsa.ece.illinois.edu/ece497js/Lect_11.pdf · Title: Microsoft PowerPoint - Lect_11.ppt Author: Jose Schutt-Aine Created Date: 2/24/2004

1Copyright © by Jose E. Schutt-Aine , All Rights ReservedECE 497-JS, Spring 2004

ECE 497 JS Lecture - 11Modeling Devices for SI

Spring 2004

Jose E. Schutt-AineElectrical & Computer Engineering

University of [email protected]

Page 2: ECE 497 JS Lecture - 11 Modeling Devices for SIjsa.ece.illinois.edu/ece497js/Lect_11.pdf · Title: Microsoft PowerPoint - Lect_11.ppt Author: Jose Schutt-Aine Created Date: 2/24/2004

2Copyright © by Jose E. Schutt-Aine , All Rights ReservedECE 497-JS, Spring 2004

Tuesday March 2nd Speaker:

Carl Werner

Rambus Inc., Los Altos, CA

Thursday Feb 26th

NO CLASS

Announcements

Page 3: ECE 497 JS Lecture - 11 Modeling Devices for SIjsa.ece.illinois.edu/ece497js/Lect_11.pdf · Title: Microsoft PowerPoint - Lect_11.ppt Author: Jose Schutt-Aine Created Date: 2/24/2004

3Copyright © by Jose E. Schutt-Aine , All Rights ReservedECE 497-JS, Spring 2004

Zo

ZoC

- Loads are nonlinear- Need to model reactive elements in the time domain- Generalize to nonlinear reactive elements

Motivations

Page 4: ECE 497 JS Lecture - 11 Modeling Devices for SIjsa.ece.illinois.edu/ece497js/Lect_11.pdf · Title: Microsoft PowerPoint - Lect_11.ppt Author: Jose Schutt-Aine Created Date: 2/24/2004

4Copyright © by Jose E. Schutt-Aine , All Rights ReservedECE 497-JS, Spring 2004

dvi Cdt

=

Time-Domain Model for Linear Capacitor

For linear capacitor C with voltage v and current i which must satisfy

Using the backward Euler scheme, we discretize time and voltage variables and obtain at time t = nh

'1 1n n nv v hv+ += +

Page 5: ECE 497 JS Lecture - 11 Modeling Devices for SIjsa.ece.illinois.edu/ece497js/Lect_11.pdf · Title: Microsoft PowerPoint - Lect_11.ppt Author: Jose Schutt-Aine Created Date: 2/24/2004

5Copyright © by Jose E. Schutt-Aine , All Rights ReservedECE 497-JS, Spring 2004

11' n

nivC+

+ =

11

nn n

iv v hC+

+ = +

1 1 - n n nC Ci v vh h+ +=

After substitution, we obtain

so that

The solution for the current at tn+1 is, therefore,

Time-Domain Model for Linear Capacitor

Page 6: ECE 497 JS Lecture - 11 Modeling Devices for SIjsa.ece.illinois.edu/ece497js/Lect_11.pdf · Title: Microsoft PowerPoint - Lect_11.ppt Author: Jose Schutt-Aine Created Date: 2/24/2004

6Copyright © by Jose E. Schutt-Aine , All Rights ReservedECE 497-JS, Spring 2004

i

v C

Backward Euler companion model at t=nh Trapezoidal companion model at t=nh

Time-Domain Model for Linear Capacitor

vnC/hvn+1

+

-

R=h/C

in+1

vn2C/h+invn+1

+

-

R=h/(2C)

in+1

Page 7: ECE 497 JS Lecture - 11 Modeling Devices for SIjsa.ece.illinois.edu/ece497js/Lect_11.pdf · Title: Microsoft PowerPoint - Lect_11.ppt Author: Jose Schutt-Aine Created Date: 2/24/2004

7Copyright © by Jose E. Schutt-Aine , All Rights ReservedECE 497-JS, Spring 2004

Step response comparisons

0 10 20 30 40 50 600.0

0.1

0.2

0.3

0.4

ExactBackward EulerTrapezoidal

Time (ns)

Vo

(vol

ts)

Page 8: ECE 497 JS Lecture - 11 Modeling Devices for SIjsa.ece.illinois.edu/ece497js/Lect_11.pdf · Title: Microsoft PowerPoint - Lect_11.ppt Author: Jose Schutt-Aine Created Date: 2/24/2004

8Copyright © by Jose E. Schutt-Aine , All Rights ReservedECE 497-JS, Spring 2004

div Ldt

=

1 1: n n nBackward Euler i i hi+ +′= +

11

nn

viL+

+′ =

1 1n n nL Lv i ih h+ += −

i

V+

-⇒

R=

Vn+1+

-

in+1

L

Lh

-

+Lh

i n

Time-Domain Model for Linear Inductor

Page 9: ECE 497 JS Lecture - 11 Modeling Devices for SIjsa.ece.illinois.edu/ece497js/Lect_11.pdf · Title: Microsoft PowerPoint - Lect_11.ppt Author: Jose Schutt-Aine Created Date: 2/24/2004

9Copyright © by Jose E. Schutt-Aine , All Rights ReservedECE 497-JS, Spring 2004

[ ]1 12n n n nhi i i i+ +′ ′= + +

1 12 2

n n nL Lv i vh h+ +

= − +

R=

Vn+1

+

-

in+1

-

+

2Lh

2Lh

in + Vn

i

V+

-L

If trapezoidal method is applied

Time-Domain Model for Linear Inductor

Page 10: ECE 497 JS Lecture - 11 Modeling Devices for SIjsa.ece.illinois.edu/ece497js/Lect_11.pdf · Title: Microsoft PowerPoint - Lect_11.ppt Author: Jose Schutt-Aine Created Date: 2/24/2004

10Copyright © by Jose E. Schutt-Aine , All Rights ReservedECE 497-JS, Spring 2004

Newton-Raphson MethodProblem: Wish to solve for f(x)=0

Use fixed point iteration method:

( ) ( ) ( )Define F x x K x f x= −

1: ( ) ( ) ( )k k k k kx F x x K x f x+ℑ = = −

With Newton Raphson:1

1( ) [ ( )] dfK x f xdx

−− ′= =

therefore, 11: [ ( )] ( )k k k kx x f x f x−+ ′ℑ = −

Page 11: ECE 497 JS Lecture - 11 Modeling Devices for SIjsa.ece.illinois.edu/ece497js/Lect_11.pdf · Title: Microsoft PowerPoint - Lect_11.ppt Author: Jose Schutt-Aine Created Date: 2/24/2004

11Copyright © by Jose E. Schutt-Aine , All Rights ReservedECE 497-JS, Spring 2004

NEWTON-RAPHSON ALGORITHM(graphical interpretation)

f(x)

f(xk+1)

f(xk)Pk+1

xk+1 xk xQ

slope

Pk

Page 12: ECE 497 JS Lecture - 11 Modeling Devices for SIjsa.ece.illinois.edu/ece497js/Lect_11.pdf · Title: Microsoft PowerPoint - Lect_11.ppt Author: Jose Schutt-Aine Created Date: 2/24/2004

12Copyright © by Jose E. Schutt-Aine , All Rights ReservedECE 497-JS, Spring 2004

( )11: k k k kN R x x A f x−+− = −

1 ( ) .k k k k k kA x A x f x S+ = − ≡

xk+1 is the solution of a linear system of equations. LU factk kA x S= ←

Forward and backward substitution.

Ak is the nodal matrix for Nk

Sk is the rhs source vector for Nk.

Newton-Raphson Algorithm

Page 13: ECE 497 JS Lecture - 11 Modeling Devices for SIjsa.ece.illinois.edu/ece497js/Lect_11.pdf · Title: Microsoft PowerPoint - Lect_11.ppt Author: Jose Schutt-Aine Created Date: 2/24/2004

13Copyright © by Jose E. Schutt-Aine , All Rights ReservedECE 497-JS, Spring 2004

N-R Algorithm

} }

0 00. 0, ,voltage controlled current controlled

k gives V i→1. , mod .k kFind V i compute companion els

{, , ,c c

k k k kV C

G I R E123

2. , .k kObtain A S

3. .k k kSolve A x S=

14. kx Solution+ ←

15. .k kCheck for convergence x x ε+ − <, .If they converge then stop

6. 1 , 1.k k and go to step+ →

Page 14: ECE 497 JS Lecture - 11 Modeling Devices for SIjsa.ece.illinois.edu/ece497js/Lect_11.pdf · Title: Microsoft PowerPoint - Lect_11.ppt Author: Jose Schutt-Aine Created Date: 2/24/2004

14Copyright © by Jose E. Schutt-Aine , All Rights ReservedECE 497-JS, Spring 2004

Application to Diode Circuit

I

VV*

I*

diode

load line

/ ( ) ( -1)tV Vs

V Ef V I eR−

= +

E

R

I

V

+

-

Page 15: ECE 497 JS Lecture - 11 Modeling Devices for SIjsa.ece.illinois.edu/ece497js/Lect_11.pdf · Title: Microsoft PowerPoint - Lect_11.ppt Author: Jose Schutt-Aine Created Date: 2/24/2004

15Copyright © by Jose E. Schutt-Aine , All Rights ReservedECE 497-JS, Spring 2004

It is obvious from the circuit that the solution must satisfyf(V) = 0 We also have

/1'( ) tV Vs

t

If V eR V

= +

The Newton method relates the solution at the (k+1)th step to the solution at the kth step by

1( )- '( )

kk k

k

f VV Vf V+ = +

( )/ 1

1/

- 1

V Vk t

k t

k es

k kV Vs

t

V E IRV V I eR V

+

−+

=+

NR- Diode

Page 16: ECE 497 JS Lecture - 11 Modeling Devices for SIjsa.ece.illinois.edu/ece497js/Lect_11.pdf · Title: Microsoft PowerPoint - Lect_11.ppt Author: Jose Schutt-Aine Created Date: 2/24/2004

16Copyright © by Jose E. Schutt-Aine , All Rights ReservedECE 497-JS, Spring 2004

Newton-Raphson (cont’)

After manipulation we obtain

11 -k k k

Eg V JR R+

+ =

/ k tV Vsk

t

Ig eV

=

/ ( -1) -k tV Vk s k kJ I e V g=

Page 17: ECE 497 JS Lecture - 11 Modeling Devices for SIjsa.ece.illinois.edu/ece497js/Lect_11.pdf · Title: Microsoft PowerPoint - Lect_11.ppt Author: Jose Schutt-Aine Created Date: 2/24/2004

17Copyright © by Jose E. Schutt-Aine , All Rights ReservedECE 497-JS, Spring 2004

Newton-Raphson representation of diode circuit at kth iteration

/k tV Vsk

t

Ig eV

=

/ ( -1) - Vk Vtk s k kJ I e V g=

Newton-Raphson for Diode

gk Jk

ik+1

vk+1

R

E +-

-

+

Page 18: ECE 497 JS Lecture - 11 Modeling Devices for SIjsa.ece.illinois.edu/ece497js/Lect_11.pdf · Title: Microsoft PowerPoint - Lect_11.ppt Author: Jose Schutt-Aine Created Date: 2/24/2004

18Copyright © by Jose E. Schutt-Aine , All Rights ReservedECE 497-JS, Spring 2004

Current Controlled

+

-V

i

ik

V

I

Companion

+

-

Rk

Ek

+

-

( )

k

ki i

dh iRdi =

= ( )k k k kE h i R i= −

Page 19: ECE 497 JS Lecture - 11 Modeling Devices for SIjsa.ece.illinois.edu/ece497js/Lect_11.pdf · Title: Microsoft PowerPoint - Lect_11.ppt Author: Jose Schutt-Aine Created Date: 2/24/2004

19Copyright © by Jose E. Schutt-Aine , All Rights ReservedECE 497-JS, Spring 2004

For a General NetworkLet x = vector variables in the network to be solved for. Let f(x) = 0 be the network equations. Let xk be the present iterate, and define

Let Nk be the linear network where each non-linear resistor is replaced by its companion model computed from xk.

( )k k kA f x Jacobian of f at x x′= → =

j -

j ++

-Vj

ij

( )j j jI g V=

Page 20: ECE 497 JS Lecture - 11 Modeling Devices for SIjsa.ece.illinois.edu/ece497js/Lect_11.pdf · Title: Microsoft PowerPoint - Lect_11.ppt Author: Jose Schutt-Aine Created Date: 2/24/2004

20Copyright © by Jose E. Schutt-Aine , All Rights ReservedECE 497-JS, Spring 2004

jk j k j kV P P+ −= −j -

j +

IkGk

Vk

I

V

( )

k

kV V

dg VGdV =

= [ ]k k k kI g V G V= −

Companionmodel

General Network

Page 21: ECE 497 JS Lecture - 11 Modeling Devices for SIjsa.ece.illinois.edu/ece497js/Lect_11.pdf · Title: Microsoft PowerPoint - Lect_11.ppt Author: Jose Schutt-Aine Created Date: 2/24/2004

21Copyright © by Jose E. Schutt-Aine , All Rights ReservedECE 497-JS, Spring 2004

Non-linear Reactive Elements:

C(v) ⇒ ⇒ Jk Jngk

+

-

V Vn+1

+

-

in+1in+1

Vn+1

+

-

q(V)h

Jn

( ) , dqq f v idt

= =

1

1n

n nt t

dqq q hdt

+

+=

= +

1 11 1 1

( ), ( )n n nn n n

q q f vor i i vh h h+ +

+ + += − ⇒ =

Page 22: ECE 497 JS Lecture - 11 Modeling Devices for SIjsa.ece.illinois.edu/ece497js/Lect_11.pdf · Title: Microsoft PowerPoint - Lect_11.ppt Author: Jose Schutt-Aine Created Date: 2/24/2004

22Copyright © by Jose E. Schutt-Aine , All Rights ReservedECE 497-JS, Spring 2004

Jk

slope= gk

Ik

I I=f(V)

VVk

I=f(V)v

+

-

I

gk Jk

ik+1

vk+1

-

+

General Element

Page 23: ECE 497 JS Lecture - 11 Modeling Devices for SIjsa.ece.illinois.edu/ece497js/Lect_11.pdf · Title: Microsoft PowerPoint - Lect_11.ppt Author: Jose Schutt-Aine Created Date: 2/24/2004

23Copyright © by Jose E. Schutt-Aine , All Rights ReservedECE 497-JS, Spring 2004

E

B

C

Vbc

Vbe

Ide

αrIdc

Cbc

Cbe

E

C

B

αfIde

IdcIB IC

IE

Bipolar Transistor

Page 24: ECE 497 JS Lecture - 11 Modeling Devices for SIjsa.ece.illinois.edu/ece497js/Lect_11.pdf · Title: Microsoft PowerPoint - Lect_11.ppt Author: Jose Schutt-Aine Created Date: 2/24/2004

24Copyright © by Jose E. Schutt-Aine , All Rights ReservedECE 497-JS, Spring 2004

R1

Vcc

Vout

Q1Q6Vin

RE

Q2Q3

R2R3

Q4

Q5

R4 R5

Vin

R4 R5

RE

R1

R2

Vout

R3

Iout

Vcc

TTL Gate

Page 25: ECE 497 JS Lecture - 11 Modeling Devices for SIjsa.ece.illinois.edu/ece497js/Lect_11.pdf · Title: Microsoft PowerPoint - Lect_11.ppt Author: Jose Schutt-Aine Created Date: 2/24/2004

25Copyright © by Jose E. Schutt-Aine , All Rights ReservedECE 497-JS, Spring 2004

0 1 2 3 4-200

-100

0

100

200

Vin=0.8VVin=1.4VVin=1.6VVin=1.8V

AS04 TT LI o

ut(m

A)

Vout

IV Curves for TTL Gate

Page 26: ECE 497 JS Lecture - 11 Modeling Devices for SIjsa.ece.illinois.edu/ece497js/Lect_11.pdf · Title: Microsoft PowerPoint - Lect_11.ppt Author: Jose Schutt-Aine Created Date: 2/24/2004

Copyright © by Jose E. Schutt-Aine , All Rights ReservedECE 497-JS, Spring 2004

IBIS - Introduction

• I/O Buffer Information Specification is a Behavioral method of modeling I/O buffers based on IV curve data obtained from measurements or circuit simulation.

• The IBIS format is standardized and can be parsed to create the equivalent circuit information needed to represent the behavior of an IC.

• Can be integrated within a circuit simulator using an IBIS translator.

Page 27: ECE 497 JS Lecture - 11 Modeling Devices for SIjsa.ece.illinois.edu/ece497js/Lect_11.pdf · Title: Microsoft PowerPoint - Lect_11.ppt Author: Jose Schutt-Aine Created Date: 2/24/2004

Copyright © by Jose E. Schutt-Aine , All Rights ReservedECE 497-JS, Spring 2004

Advantages of IBIS

• Protection of proprietary information

• Adequate for signal integrity simulation

• Models are free from vendors

• Faster simulations (with acceptable accuracy)

• Standardized topology

Page 28: ECE 497 JS Lecture - 11 Modeling Devices for SIjsa.ece.illinois.edu/ece497js/Lect_11.pdf · Title: Microsoft PowerPoint - Lect_11.ppt Author: Jose Schutt-Aine Created Date: 2/24/2004

28Copyright © by Jose E. Schutt-Aine , All Rights ReservedECE 497-JS, Spring 2004

PowerClamp

Threshold&

EnableLogic

GNDClamp

GNDClamp

GNDClamp

PowerClamp

PowerClamp

InputPackage

EnablePackage

OutputPackage

PullupRamp

PulldownRamp

PullupV/I

PulldownV/I

IBIS Diagram

Page 29: ECE 497 JS Lecture - 11 Modeling Devices for SIjsa.ece.illinois.edu/ece497js/Lect_11.pdf · Title: Microsoft PowerPoint - Lect_11.ppt Author: Jose Schutt-Aine Created Date: 2/24/2004

Copyright © by Jose E. Schutt-Aine , All Rights ReservedECE 497-JS, Spring 2004

IBIS Input Topology

Power_Clamp

GND_Clamp

Vcc

R_pkg

C_pkg

L_pkg

C_comp

GNDGND

Page 30: ECE 497 JS Lecture - 11 Modeling Devices for SIjsa.ece.illinois.edu/ece497js/Lect_11.pdf · Title: Microsoft PowerPoint - Lect_11.ppt Author: Jose Schutt-Aine Created Date: 2/24/2004

30Copyright © by Jose E. Schutt-Aine , All Rights ReservedECE 497-JS, Spring 2004

Vcc Vcc

Power_ClampGND_Clamp

GND GND

C_pkgL_pkg

R_pkg

C_omp

PullupPulldownRamp

IBIS Output Topology

Page 31: ECE 497 JS Lecture - 11 Modeling Devices for SIjsa.ece.illinois.edu/ece497js/Lect_11.pdf · Title: Microsoft PowerPoint - Lect_11.ppt Author: Jose Schutt-Aine Created Date: 2/24/2004

31Copyright © by Jose E. Schutt-Aine , All Rights ReservedECE 497-JS, Spring 2004

Create an IBIS modelfrom either simulation

or empirical data

Model fromEmpirical data?

No

Yes

Collect Data

Data in IBIStext file

Run IBIS Parser

Parser Pass

Get SPICE I/Oinfo

No

Yes

Run modelon

Simulator

YesModelvalidated?

No Adoptmodel

Run SPICE to IBISTranslator

IBIS Model Generation

Page 32: ECE 497 JS Lecture - 11 Modeling Devices for SIjsa.ece.illinois.edu/ece497js/Lect_11.pdf · Title: Microsoft PowerPoint - Lect_11.ppt Author: Jose Schutt-Aine Created Date: 2/24/2004

Copyright © by Jose E. Schutt-Aine , All Rights ReservedECE 497-JS, Spring 2004

IBIS for Signal Integrity

• Crosstalk• Ringing, Overshoot, undershoot• Distortion, Nonlinear effects• Reflections issues• Line termination analysis• Topology scheme analysis

Visit http://www.eigroup.org/ibis/ibis.htm