ece580 guest-lecture f2011 - classesclasses.engr.oregonstate.edu/eecs/fall2017/ece580... · prof....

17
1 Prof. Andreas Weisshaar ECE580 Network Theory - Guest Lecture Fall Term 2011 1 Scattering Parameters Motivation Difficult to implement open and short circuit conditions in high frequencies measurements due to parasitic Ls and Cs Potential stability problems for active devices when measured in non-operating conditions Difficult to measure V and I at microwave frequencies Direct measurement of amplitudes/ power and phases of incident and reflected traveling waves Prof. Andreas Weisshaar ECE580 Network Theory - Guest Lecture Fall Term 2011 2 Scattering Parameters Motivation Difficult to implement open and short circuit conditions in high frequencies measurements due to parasitic Ls and Cs Potential stability problems for active devices when measured in non-operating conditions Difficult to measure V and I at microwave frequencies Direct measurement of amplitudes/ power and phases of incident and reflected traveling waves

Upload: others

Post on 16-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

1

Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 1

Scattering Parameters

Motivation §  Difficult to implement open and

short circuit conditions in high frequencies measurements due to parasitic L’s and C’s

§  Potential stability problems for active devices when measured in non-operating conditions

§  Difficult to measure V and I at microwave frequencies

§  Direct measurement of amplitudes/power and phases of incident and reflected traveling waves

Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 2

Scattering Parameters

Motivation §  Difficult to implement open and

short circuit conditions in high frequencies measurements due to parasitic L’s and C’s

§  Potential stability problems for active devices when measured in non-operating conditions

§  Difficult to measure V and I at microwave frequencies

§  Direct measurement of amplitudes/power and phases of incident and reflected traveling waves

2

Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 3

General Network Formulation

+

+

−==k

k

k

kk I

VIVZ ,0

Characteristic (Port) Impedances

−+ += kkk VVV −+ += kkk IIIPort Voltages and Currents

+ –

port 1

port 2

port N

+ – I2

I1

IN

V2

V1

VN

Note: all current components are defined positive with direction into the positive terminal at each port

−−22 IV

++22 IV

2,0Z

++NN IV

−−NN IV NZ ,0

++11 IV

−−11 IV

1,0Z

N-port Network

Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 4

Impedance Matrix

+ - V1

I1

+ - V2

+ - VN

I2

IN

Port 1

Port 2

Port N

N-port Network

⎥⎥⎥⎥

⎢⎢⎢⎢

⎥⎥⎥⎥

⎢⎢⎢⎢

=

⎥⎥⎥⎥

⎢⎢⎢⎢

NNNNN

N

N

N I

II

ZZZ

ZZZZZZ

V

VV

2

1

21

22221

11211

2

1

[ ] [ ][ ]IZV =

jkIj

ociij

kIV

Z≠=

=for0

,

+ - Vi,oc

Ij

Port i

Port j

Port N

N-port Network

Open-Circuit Impedance Parameters

3

Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 5

Admittance Matrix

+ - V1

I1

+ - V2

+ - VN

I2

IN

Port 1

Port 2

Port N

N-port Network

jkVj

sciij

kVI

Y≠=

=for0

,

Ii,sc Port i

Port j

Port N

N-port Network

Short-Circuit Admittance Parameters

⎥⎥⎥⎥

⎢⎢⎢⎢

⎥⎥⎥⎥

⎢⎢⎢⎢

=

⎥⎥⎥⎥

⎢⎢⎢⎢

NNNNN

N

N

N V

VV

YYY

YYYYYY

I

II

2

1

21

22221

11211

2

1

+ _ Vj

[ ] [ ][ ]VYI =

Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 6

+–

port 1

port 2

port N

+–

+–

I2

I1

IN

V2

V1

VN

−−22 IV

++22 IV

2,0Z

++NN IV

−−NN IV NZ ,0

++11 IV

−−11 IV

1,0Z

N-portNetwork

+–

port 1

port 2

port N

+–

+–

I2

I1

IN

V2

V1

VN

+–+–

port 1

port 2

port N

+–

+–

+–

+–

I2

I1

IN

V2

V1

VN

−−22 IV

++22 IV

2,0Z

++NN IV

−−NN IV NZ ,0

++11 IV

−−11 IV

1,0Z

−−22 IV

++22 IV

2,0Z

−−22 IV

++22 IV

2,0Z

++NN IV

−−NN IV NZ ,0

++NN IV

−−NN IV NZ ,0

++11 IV

−−11 IV

1,0Z++11 IV

−−11 IV

1,0Z

N-portNetwork

The Scattering Matrix The scattering matrix relates incident and reflected voltage waves at the network ports as (assume ):

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

⎥⎥⎥⎥

⎢⎢⎢⎢

=

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

+

+

+

NNNNN

N

N

N V

VV

SSS

SSSSSS

V

VV

2

1

21

22221

11211

2

1

−+ += nnn VVVIn = In

+ + In!

= Vn+ !Vn

!( ) Z0

with voltage and current at port n:

][][][ +− = VSVor

Note: S-parameters depend on port impedances Z0,n = Z0

Z0,n = Z0

4

Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 7

+–

port 1

port 2

port N

+–

+–

I2

I1

IN

V2

V1

VN

−−22 IV

++22 IV

2,0Z

++NN IV

−−NN IV NZ ,0

++11 IV

−−11 IV

1,0Z

N-portNetwork

+–

port 1

port 2

port N

+–

+–

I2

I1

IN

V2

V1

VN

+–+–

port 1

port 2

port N

+–

+–

+–

+–

I2

I1

IN

V2

V1

VN

−−22 IV

++22 IV

2,0Z

++NN IV

−−NN IV NZ ,0

++11 IV

−−11 IV

1,0Z

−−22 IV

++22 IV

2,0Z

−−22 IV

++22 IV

2,0Z

++NN IV

−−NN IV NZ ,0

++NN IV

−−NN IV NZ ,0

++11 IV

−−11 IV

1,0Z++11 IV

−−11 IV

1,0Z

N-portNetwork

The Scattering Matrix The scattering matrix relates incident and reflected voltage waves at the network ports as (assume ):

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

⎥⎥⎥⎥

⎢⎢⎢⎢

=

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

+

+

+

NNNNN

N

N

N V

VV

SSS

SSSSSS

V

VV

2

1

21

22221

11211

2

1

−+ += nnn VVVIn = In

+ + In!

= Vn+ !Vn

!( ) Z0

with voltage and current at port n:

][][][ +− = VSVor

Note: S-parameters depend on port impedances Z0,n = Z0

Z0,n = Z0

Interpretation? Power relationships?

Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 8

Transmission Line Basics

+ - V1

Port 1 Port 2

+ _ E1

Z0,1

+ _ E2

Z0,2

+1V

+2V

−2V

−1V

+ - V2 Z0, ! = "l

Lossless Transmission Line

V (z) =V0+e! j!z +V0

!e+ j!z

I(z) = I0+e! j!z + I0

!e+ j!z

Z0 =LC=V0

+

I0+= !

V0!

I0!

Characteristic Impedance:

! =" LCPhase Constant:

V2 =V2+ +V2

!

I2 = I2+ + I2

!

V1 =V1+ +V1

!

I1 = I1+ + I1

!

z0

5

Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 9

Net Power Flow on Lossless Line

Pave (z) = 12 Re V (z) I(z)( )*{ }=

V0+ 2

2R01! "L

2#$

%&= const.

( )''0)'( zj

Lzj eeVzV ββ −++ Γ+=

( )''

0

0)'( zjL

zj eeZVzI ββ −+

+

Γ−=

'z 0

LZβγ jZ =0

+

=Γ0

0

VV

L)'(zI

+–)'(zV

'z 0

LZβγ jZ =0

+

=Γ0

0

VV

L)'(zI )'(zI

+–)'(zV

+–)'(zVZ0 = R0 (real)

Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 10

Generalized Scattering Parameters considerations and definitions

I + _ E

0Z+

- V LZ0Z

+V−V

2EV =+

−+ += VVV −+ += III

++ = IZV 0−− −= IZV 0

( )IZVV 021 +=+

( )IZVV 021 −=−

0

0

ZZZZ

VV

L

L

+

−==Γ

+

( )E

EZZ

ZVL

L

Γ+=

+=

1210

{ }

max

0

2

21

*21 )(Re

P

RV

IVP

=

=

=

+

+++

+ _ E

0Z+

- V LZ

+V−VI

(assuming Z0 is real Z0 = R0)

!

!! 0

6

Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 11

Normalized Wave Quantities

+ _ E

0R+

- V LZ

ab

I

{ } 0

2

21*

21 )(Re RVIVP ++++ ==

§  It is useful to express power P without characteristic impedance (port impedance) Z0 = R0 (but P still depends on R0)

0RVa

+

=

{ } 0

2

21*

21 )(Re RVIVP −−−− =−=

0RVb

=

{ }2221

0

2

0

2

22

ba

RV

RV

PPPL

−=

−=−=−+

−+

(assuming real Z0)

Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 12

Scattering Matrix

⎥⎥⎥⎥

⎢⎢⎢⎢

⎥⎥⎥⎥

⎢⎢⎢⎢

=

⎥⎥⎥⎥

⎢⎢⎢⎢

NNNNN

N

N

a

aa

SSS

SSSSSS

b

bb

2

1

21

22221

11211

2

2

1

jkaj

iij

kabS

≠=

=for0

( ) ( ) )(22

allfor0,0

,0

allfor0,0

,0 jiRERV

RERV

SjkEjj

ii

jkEjj

iiij

kk

≠==

≠=≠=

+ - V1

I1

Port 1

Port 2

Port N

N-port Network

+ _ E1

R0,1

+ - V2

I2

+ _ E2

R0,2

+ - VN

IN

+ _ EN

R0,N

7

Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 13

Scattering Parameters

)(port frompowermaximumportleavingpoweractual

00max,

2ji

ji

PPS

jkE

jkEj

iij

kk

≠==≠=

≠=

Physical meaning of 2

ijS

Physical meaning of 2

jjS

jjL

jjL

jj

jj

jkaj

jjj RZ

RZRV

RVab

Sk ,0,

,0,

,0

,0

0 +

−===

+

≠=

{ }2max, 1 jjjjjL SPPPP −=−= −+

( = real) 00 RZ =

+-V1

I1

Port 1

Port j

Port N

N-portNetwork

R0,1

+-VjIj

+_Ej

R0,j

+-VN

INR0,NZL,j

+-V1

I1

Port 1

Port j

Port N

N-portNetwork

R0,1

+-VjIj

+_Ej

R0,j

+-VN

INR0,NZL,j

Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 14

Relation to Z-Matrix

IZV =

( ) ( )baRZbaR −=+ − 2/10

2/10

⎥⎥⎥

⎢⎢⎢

=

NR

R

,0

1,02/1

0

000000

R

( ) ( )aUZUZb −+= −nn

1

⎥⎥⎥

⎢⎢⎢

=

NNN

N

ZZ

ZZ

1

111

Z

( ) ( ) ( )( ) 11 −− +−=−+= UZUZUZUZS nnnn

2/10

2/10

−−= RZRZn

Impedance matrix:

with

Express V,I in terms of a and b

with normalized impedance matrix

and port impedance matrix ( ) 12/10

2/10

−− = RR

( = real) 00 RZ =

8

Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 15

Scattering Parameters

§  Port n is said to be matched when it is terminated with a load having the same impedance as the port impedance Z0,n.

§  Often, all port impedances are chosen to be equal and Z0,n = 50 Ω.

§  The values of the scattering (S-) parameters depend on the chosen port impedances.

§  S-parameters can be algebraically renormalized to different and unequal port impedances. (see later)

Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 16

Two-Port Networks Insertion and Return Loss

+ _ E

1,0Z

2,0Z⎥⎦

⎤⎢⎣

2221

1211

SSSS

RL IL Return Loss

indicates the extend of mismatch in a network in dB

dBinlog20 1110 SRL −=

Insertion Loss measure of transmitted fraction of power in dB

dBinlog20 2110 SIL −=

port 1:

from port 1 to port 2:

9

Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 17

Example

+ - V1

Port 1 Port 2

+ _ E1

Z0,1

+ _ E2

Z0,2

+1V

+2V

−2V

−1V

+ - V2 θ0Z

Lossless Transmission Line:

If Z0,1 = Z0,2 = Z0, the scattering parameters can be easily obtained by inspection:

02211 == SS θjeSS −== 2112

⎥⎦

⎤⎢⎣

⎡±⎥⎦

⎤⎢⎣

⎡=±

00

1001

][][θ

θ

j

j

ee

SU

( )

⎥⎦

⎤⎢⎣

−=

⎥⎦

⎤⎢⎣

−=−

−−

11

11

11

][][

2

11

θ

θ

θ

θ

θ

j

j

j

j

j

ee

e

ee

SU

( )( ) =−+= −10 ][][][][][ SUSUZZ

⎥⎦

⎤⎢⎣

+

+

−=

=⎥⎦

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

−=

−−

−−

θθ

θθ

θ

θ

θ

θ

θ

θ

2

2

20

20

1221

1

11

11

1

jj

jj

j

j

j

j

j

j

eeee

eZ

ee

ee

eZ

⎥⎦

⎤⎢⎣

−−

−−=

θθ

θθ

cotsinsincot

00

00

jZjZjZjZ

Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 18

50Ω Transmission Line - 50Ω References

2 4 6 80 10

0.2

0.4

0.6

0.8

0.0

1.0

freq,  GHz

mag

(S(1,1))

mag

(S(2,1))

10

Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 19

50Ω Transmission Line - 100Ω References

2 4 6 80 10

0.2

0.4

0.6

0.8

0.0

1.0

freq,  GHz

mag

(S(1,1))

mag

(S(2,1)) ( )

Ω=

Ω=

25100502inZ

6.01002510025

11 −=+

−=S

Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 20

Properties of S-Parameters Reciprocal networks:

Symmetrical networks:

Lossless networks: For a lossless passive network the scattering matrix [S] is unitary:

jiij SS = TSS ][][ =

][][][ * USS T =

Matrix symmetry! or

jjii SS = jiij SS =and

transpose complex-conjugate

Example: two-port network

⎥⎦

⎤⎢⎣

⎡=

2221

1211][SSSS

S ?][][ * =SS T

Electrical Symmetry and Matrix symmetry!

11

Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 21

Properties of S-Parameters Reciprocal networks:

Symmetrical networks:

Lossless networks: For a lossless passive network the scattering matrix [S] is unitary:

jiij SS = TSS ][][ =

][][][ * USS T =

Matrix symmetry! or

jjii SS = jiij SS =and

transpose complex-conjugate

Example: two-port network

⎥⎦

⎤⎢⎣

⎡=

2221

1211][SSSS

S ?][][ * =SS T

Electrical Symmetry and Matrix symmetry!

Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 22

Lossless Two-Port Networks

⎥⎦

⎤⎢⎣

⎡=

2212

2111][SSSS

S T⎥⎦

⎤⎢⎣

⎡= *

22*21

*12

*11*][

SSSS

S

⎥⎥⎦

⎢⎢⎣

++

++=⎥

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡= 2

222

12*2122

*1112

*2221

*1211

221

211

*22

*21

*12

*11

2212

2111*][][SSSSSSSSSSSS

SSSS

SSSS

SS T

⎥⎦

⎤⎢⎣

⎡=

2221

1211][SSSS

S

Then

From unitary condition follows:

222

212

221

211 1 SSSS +==+

*2221

*1211

*2122

*1112 0 SSSSSSSS +==+

Example: lossless TL

⎥⎦

⎤⎢⎣

⎡=

00

][θ

θ

j

j

ee

S

10222

212

11 =+=+ − θjeSS

000*2122

*1112 =⋅+⋅=+ −− θθ jj eeSSSS

12

Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 23

Lossless Two-Port Networks

⎥⎦

⎤⎢⎣

⎡=

2212

2111][SSSS

S T⎥⎦

⎤⎢⎣

⎡= *

22*21

*12

*11*][

SSSS

S

⎥⎥⎦

⎢⎢⎣

++

++=⎥

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡= 2

222

12*2122

*1112

*2221

*1211

221

211

*22

*21

*12

*11

2212

2111*][][SSSSSSSSSSSS

SSSS

SSSS

SS T

⎥⎦

⎤⎢⎣

⎡=

2221

1211][SSSS

S

Then

From unitary condition follows:

222

212

221

211 1 SSSS +==+

*2221

*1211

*2122

*1112 0 SSSSSSSS +==+

≥≤1

for passive (lossy) networks

Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 24

Applications

+ _ E

SZ

LZ⎥⎦

⎤⎢⎣

2221

1211

SSSS

inΓ

port 1 refZ ,0port 2

Terminated Port:

one-port network

++− += 2121111 VSVSV++− += 2221212 VSVSV

+++ Γ+Γ= 2221212 VSVSV LL

−+ Γ= 22 VV LLΓ

++

Γ−

Γ= 1

22

212 1

VSSVL

L

22

211211 1 S

SSSL

Lin Γ−

Γ+=Γ

special case: ZL=0 è ΓL = -1

22

211211 1 S

SSSin +−=Γ

All port (reference) impedances are

(Zs = Z0,ref )

13

Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 25

Shift in Reference Plane

−− = AjB VeV 111θ

11 lΔ= βθ Two-PortNetwork[SB]0Z 0Z

AS11 AS22

AS21

AS12

shift in reference plane

shift in reference plane

A AB B1lΔ 2lΔ

+AV1+BV2−BV2−AV1

+BV1+AV2

−BV1−AV2

Two-PortNetwork[SB]0Z 0Z

AS11 AS22

AS21

AS12

shift in reference plane

shift in reference plane

A AB B1lΔ 2lΔ

+AV1+BV2−BV2−AV1

+BV1+AV2

−BV1−AV2

+−+ = AjB VeV 111θ

−− = AjB VeV 222θ

22 lΔ= βθ

+−+ = AjB VeV 222θ

⎥⎦

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡+

+

B

B

j

j

AA

AA

B

B

j

j

VV

ee

SSSS

VV

ee

2

1

2221

1211

2

12

1

2

1

00

00

θ

θ

θ

θ

⎥⎦

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡=⎥⎦

⎤⎢⎣

⎡2

1

2

1

00

00

2221

1211

2221

1211θ

θ

θ

θ

j

j

AA

AA

j

j

BB

BB

ee

SSSS

ee

SSSS

Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 26

S-Matrix Renormalization

( ) ( ) ( )( ) 11 −− +−=−+= UZUZUZUZS nnnn

( )( ) 1−−+= SUSUZn

FZFRZRZ old2/1new,0

2/1new,0

newnn == −−

⎥⎥⎥⎥

⎢⎢⎢⎢

=new,0

old,0

new1,0

old1,0

000000

NN RR

RRF

Renormalization matrix ( = real) 00 RZ =

14

Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 27

0.1 0.2 0.4 0.5 0.6 0.8 1 2 4 8 16 32

j0.25

-j0.25

0

j0.5

-j0.5

0

j0.75

-j0.75

0

j1

-j1

0

j1.5

-j1.5

0

j2

-j2

0

j2.5

-j2.5

0

j3

-j3

0

j4

-j4

0

j5

-j5

0

Measurement Initial ECM Perturbed & Augmented ECM

S11

S21

S22

S22

Example

125Ω

Circuit Model

155Ω

Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 28

Comparison of Different Port Normalizations

Ω=Ω= 155125 2,01,0 ZZ Ω== 502,01,0 ZZ

S11

15

Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 29

Voltage Transfer Function from Scattering Parameters

+ _ E

0R

0R⎥⎦

⎤⎢⎣

2221

1211

SSSS

( )10121

1 IZVV +=+ ( )20221

2 IZVV −=−

11

11

0

111 1

1SS

RV

ZVIin +

−==

11

110 11SSRZin −

+=

+

- V1

+

- V2

( )111

2

11

111

2

101

202

1

221 1

111

2 SVV

SSV

VIRVIRV

VVS +==

⎟⎟⎠

⎞⎜⎜⎝

+−

+

=+

−==

+

11

21

1

2

1 SS

VV

+=

I1 I2

Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 30

Example Matched 3dB attenuator (Z0 = 50 Ω) (Ref: Pozar pp. 175/6)

Ω= 500Z+ _ E1

Ω= 500Z

121

01,

1,11 E

ZZZ

EVin

in =+

=

112 7077.056.850

5056.8444.41

444.41 VVV =⎟⎠

⎞⎜⎝

⎛+

⎟⎠

⎞⎜⎝

⎛+

=

02211 == SS

Ω≈Ω+Ω= 5056.8444.411,inZ

7077.02112 == SS dB3log20 2110 =−= SIL

16

Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 31

Example using Z-Matrix

Ω= 500Z+ _ E1

Ω= 500Z

Ω⎥⎦

⎤⎢⎣

⎡=

36.15080.14180.14136.150

Z

⎥⎦

⎤⎢⎣

⎡== −−

0072.38360.28360.20072.32/1

02/1

0 RZRZn ⎥⎦

⎤⎢⎣

⎡=

07077.07077.00

S

⎥⎦

⎤⎢⎣

⎡== −−

5036.10054.20054.20072.32/1

02/1

0 RZRZn ⎥⎦

⎤⎢⎣

−=

3333.06672.06672.01670.0

S

Ω== 502,01,0 ZZ

Ω=Ω= 10050 2,01,0 ZZ

Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 32

Example using Z-Matrix

Ω= 500Z+ _ E1

Ω= 500Z

Ω⎥⎦

⎤⎢⎣

⎡=

36.15080.14180.14136.150

Z

⎥⎦

⎤⎢⎣

⎡== −−

0072.38360.28360.20072.32/1

02/1

0 RZRZn ⎥⎦

⎤⎢⎣

⎡=

07077.07077.00

S

⎥⎦

⎤⎢⎣

⎡== −−

5036.10054.20054.20072.32/1

02/1

0 RZRZn ⎥⎦

⎤⎢⎣

−=

3333.06672.06672.01670.0

S

Ω== 502,01,0 ZZ

Ω=Ω= 10050 2,01,0 ZZ

Attenuator terminated in ZL=100Ω and S-Parameters wrt Z0,1=Z0,2=50Ω

167.021

21

31

1 211222

211211 ==Γ=

Γ−

Γ+=Γ SS

SSSS LL

Lin

Attenuator terminated in ZL=100Ω and S-Parameters wrt Z0,1=50Ω Z0,2=100Ω

167.01 11

22

211211 ==

Γ−

Γ+=Γ S

SSSSL

Lin

31

5010050100

2,0

2,0 =+

−=

+

−=Γ

ZZZZ

L

LL

02,0

2,0 =+

−=Γ

ZZZZ

L

LL

17

Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 33

Conversion between Network Parameters

Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 34

Properties of Network Parameters §  Symmetric Two-Port Network

§  Reciprocal Network

§  Lossless Network

jiij ZZ = jiij YY = jiij SS = 1=− BCAD

2211 ZZ = 2211 YY = DA =2211 SS =

assuming the same port impedances

{ } 0Re =ijZ ISS =*T{ } 0Re =ijY

1221

211 =+ SSe.g.

{ } 0,Re =CB{ } 0,Im =DA