ece680: ph i lph ysical vlsi did esignece.gmu.edu/~qli/ece680/chapter2 manufacture of cmos.pdf ·...

26
ECE680 Ph i l VLSI D i ECE680 Ph i l VLSI D i ECE680: Ph ysical VLSI Design ECE680: Ph ysical VLSI Design Ch II Ch II CMOS Manufacturing Process CMOS Manufacturing Process Chapter II Chapter II CMOS Manufacturing Process CMOS Manufacturing Process 1 9/4/2008 GMU, ECE 680 Physical VLSI Design

Upload: tranque

Post on 31-Jul-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

ECE680 Ph i l VLSI D iECE680 Ph i l VLSI D iECE680: Physical VLSI DesignECE680: Physical VLSI Design

Ch IICh II

CMOS Manufacturing ProcessCMOS Manufacturing Process

Chapter IIChapter II

CMOS Manufacturing ProcessCMOS Manufacturing Process

19/4/2008 GMU, ECE 680 Physical VLSI Design

id

DualDual--Well TrenchWell Trench--Isolated CMOS ProcessIsolated CMOS Process

AlCu

SiO

gate-oxide

TiSi2

poly

SiO2

Tungsten

p-well n-well

p+

p-epi

SiO2

n+ p+

p+

29/4/2008 GMU, ECE 680 Physical VLSI Design

Layout ViewLayout ViewSchematicSchematicVDD VDD

Layout ViewLayout ViewSchematicSchematic

DD

M2M4

Vin Vout Vout2

M1 M3

39/4/2008 GMU, ECE 680 Physical VLSI Design

Photo‐Lithographic Process

oxidation

opticalmask

photoresist coatingphotoresistremoval (ashing)

stepper exposure

process spin, rinse, dryacid etch

photoresist development

Typical operations in a single photolithographic cycle (from [Fullman]).

pstep

p , , y

49/4/2008 GMU, ECE 680 Physical VLSI Design

CMOS Fabrication Process

Define active areasEtch and fill trenches

Implant well regions

Deposit and patternpolysilicon layer

Implant source and drainregions and substrate contacts

Create contact and via windowsDeposit and pattern metal layers

59/4/2008 GMU, ECE 680 Physical VLSI Design

Define Active Area: Patterning of SiO2

Si-substrate

SiO2Hardened resist

Chemical or plasmaetch

(a) Silicon base material

PhotoresistSiO2

SiO2Si-substrate

(d) After development and etching of resist,chemical or plasma etch of SiO

(b) After oxidation and depositionof negative photoresist

Si-substrate

Si-substrate

SiO2

chemical or plasma etch of SiO2

Hardened resist

UV-lightPatternedoptical mask

Exposed resist

Si-substrate

SiO

(e) After etching

Si-substrate Si-substrate

(c) Stepper exposure

Exposed resist SiO2

(f) Final result after removal of resist(c) Stepper exposure

69/4/2008 GMU, ECE 680 Physical VLSI Design

CMOS Process Walk‐ThroughCMOS Process Walk Through

p epi

p+

p‐epi (a) Base material: p+ substrate 

with p‐epi layer

p‐epi SiO2

3SiN

4(b) After deposition of gate‐oxide

and sacrificial nitride (acts as a

buffer layer)p+

p+

(c) After plasma etch of insulating

trenches using the inverse of the active area mask

79/4/2008 GMU, ECE 680 Physical VLSI Design

CMOS Process Walk‐ThroughCMOS Process Walk ThroughSiO2 (d) After trench filling, CMP

planarization, and removal ofplanarization, and removal of sacrificial nitride

(e) After n‐well and 

V adjust implantsn

VTp adjust implants

(f) After p‐well and

VTn adjust implantsp

89/4/2008 GMU, ECE 680 Physical VLSI Design

CMOS Process Walk‐ThroughCMOS Process Walk Throughpoly(silicon)

(g) After Poly‐Si deposition(g) After Poly‐Si depositionand etch

p+n+ (h) After n+ source/drain and P+ source/drain implants. At the same time these step also dope the

SiO2

these step also dope the Poly‐Si

2(i) After deposition of SiO2 Insulator and contact hole etch

99/4/2008 GMU, ECE 680 Physical VLSI Design

CMOS Process Walk‐ThroughCMOS Process Walk Through

Al

(j) After deposition and 

patterning of first Al layer.

Al

M3

(k) After deposition of SiOinsulator etching of via’s

AlSiO2

M2

M3

insulator, etching of via s,deposition and patterning ofsecond layer of Al.

M1

109/4/2008 GMU, ECE 680 Physical VLSI Design

Advanced Metallization

11 SEM image of a real circuit whose oxide was etched9/4/2008 GMU, ECE 680 Physical VLSI Design

Design RulesDesign Rules

129/4/2008 GMU, ECE 680 Physical VLSI Design

Design RulesDesign Rules

Interface between designer and process engineer

Guidelines for constructing process masks

Unit dimension: Minimum line width

scalable design rules: lambda parameter

absolute dimensions (micron rules)

139/4/2008 GMU, ECE 680 Physical VLSI Design

CMOS Process LayersCMOS Process Layers

Layer Color Representation

Well (p,n)

Active Area (n+,p+)

Yellow

Green

Polysilicon

Metal1

Red

Blue

Select (p+,n+) Green

Metal1

Metal2

Contact To Poly

Blue

Magenta

Black

Contact To Diffusion

Via

Black

Black

9/4/2008 14GMU, ECE 680 Physical VLSI Design

Layers in 0.25 μm CMOS process

9/4/2008 15GMU, ECE 680 Physical VLSI Design

Intra‐Layer Design RulesIntra Layer Design RulesDifferent PotentialSame Potential

10

90

Well Polysilicon2

2

or6

10

Active3

2

Metal1 3

Contact

Metal24

3 32

Co cor Via

Select2

2Hole

3

Select

9/4/2008 16GMU, ECE 680 Physical VLSI Design

Transistor Layout

1

Tran

sist

or

23

T

2

5

9/4/2008 17GMU, ECE 680 Physical VLSI Design

Vias and ContactsVias and Contacts

2

1Via

1

2

5

4

1Metal to

Poly ContactMetal toActive Contact

5

3 2

222

9/4/2008 18GMU, ECE 680 Physical VLSI Design

Select Layer2

2

Select3

1

3 3

2

3 3

2 5

WellSubstrate

9/4/2008 19GMU, ECE 680 Physical VLSI Design

CMOS Inverter LayoutCMOS Inverter LayoutInGND VDD

A A’

Out

(a) Layout

np-substrate Field

Oxidep+n+

A A’

(b) Cross-Section along A-A’

9/4/2008 20GMU, ECE 680 Physical VLSI Design

Layout EditorLayout Editor

9/4/2008 21GMU, ECE 680 Physical VLSI Design

PackagingPackaging

El t i l L iti• Electrical: Low parasitics

• Mechanical: Reliable and robust

• Thermal: Efficient heat removal

• Economical: CheapEconomical: Cheap

9/4/2008 22GMU, ECE 680 Physical VLSI Design

Bonding Techniques

Wire Bonding

SubstrateSubstrate

Die

Pad

Lead Frame

9/4/2008 23GMU, ECE 680 Physical VLSI Design

Package Types

9/4/2008 24GMU, ECE 680 Physical VLSI Design

Package Parameters

9/4/2008 25GMU, ECE 680 Physical VLSI Design

Multi‐Chip Modules

9/4/2008 26GMU, ECE 680 Physical VLSI Design