economic dispatch(1)

Upload: ismail-hussain

Post on 02-Jun-2018

225 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/10/2019 Economic Dispatch(1)

    1/25

    Economic Dispatch

  • 8/10/2019 Economic Dispatch(1)

    2/25

    Economic Dispatch

    Objective function

    Total cost of supplying load from Nunits

    Subject to load balance constraint

    Subject to generator limitations

    Subject to reserve requirements

  • 8/10/2019 Economic Dispatch(1)

    3/25

    Generator Characteristics

    Maximum power

    Minimum power

    Cannot operate regions

    Auxiliaries (2 10%)

  • 8/10/2019 Economic Dispatch(1)

    4/25

    Fuel Costs

    H= heat input per hour into the unit (GJ/h)

    (measured in Joules - GJ/h)

    FC= Fuel cost (/GJ)

    C= Per hour cost of fuel input (/h)= FCH

    P = Electrical power output (MW)

    E= Electrical energy output (MWh)

  • 8/10/2019 Economic Dispatch(1)

    5/25

    Input-Output Model

    Input:

    heat energy cost,

    Output net electrical output

    Obtained from design calculations heat rate tests

    Minimum load steam generator

    turbine

    combustion stability

    design constraints

  • 8/10/2019 Economic Dispatch(1)

    6/25

    Incremental Cost

    = Incremental cost of next MWh (/MWh)F

    P

    Slope of input-outputcurve (derivative)

    Cost of next MWh

  • 8/10/2019 Economic Dispatch(1)

    7/25

  • 8/10/2019 Economic Dispatch(1)

    8/25

    Input - output curves Incremental cost curve

    Types of Curves

    Pi (MW)

    /h

    1. Linear

    /MWh

    Costi = ai + bi pi

    Pi (MW)

    bi

    1. Constant

  • 8/10/2019 Economic Dispatch(1)

    9/25

    Input - output curves Incremental cost curve

    Types of Curves

    Pi (MW)

    /h/MWh

    Pi (MW)

    2. Piecewise Linear 2. Stepped

  • 8/10/2019 Economic Dispatch(1)

    10/25

    Input - output curves Incremental cost curve

    Types of Curves

    Pi (MW)

    /h/MWh

    Pi (MW)

    3. Quadratic 3. Linear

  • 8/10/2019 Economic Dispatch(1)

    11/25

    Economic Dispatch

    Aim: Dispatch the generation to meet

    demand in a least cost fashion

    Recall

    Input = fuel (/h) = F Output = electrical power (MW) = P

    Minimise Fwhile satisfying

    Pgeneration = Pdemand

  • 8/10/2019 Economic Dispatch(1)

    12/25

    Economic Dispatch

    Objective function:

    Total cost of supplying the load, FT Sum of the fuel costs (Fi(Pgen,i)) for allN

    machines being dispatched

    ,

    1

    F F ( )N

    T i gen i

    i

    P=

    =

    1 ,1 2 ,2 ,F F ( ) F ( ) ..... F ( )T gen gen N gen N P P P= + +

  • 8/10/2019 Economic Dispatch(1)

    13/25

    Economic Dispatch

    Main constraint: load balance :

    Total power generated by theNunits mustequal the load demand, Pload

    ,

    10

    N

    load gen i

    iP P

    == =

    ,1 ,2 ,( ......... ) 0load gen gen gen N P P P P + + =

    Constraint:

  • 8/10/2019 Economic Dispatch(1)

    14/25

    Economic Dispatch

    Minimise FT subject to load balance constraint

    Neglect transmission losses

    reserve constraint

    operating limits, and

    transmission constraints

    Lagrangian functionL

    Condition for extreme value of objective function results

    when taking first derivative of Lagrangian wrt all

    independent variables and setting them equal to zero

  • 8/10/2019 Economic Dispatch(1)

    15/25

    Economic Dispatch

    Lagrangian functionL

    Add an (unknown) weighted constraint functionto the objective function

    L = objective function + (lambda constraint)

    To solve a Lagrangian:

    DifferentiateL with respect to independent variables

    Set the derivatives equal to zero, and

    Solve the resulting equations

    L FT = +

    , ,

    1 1

    L F ( ) ( )N N

    i gen i load gen i

    i i

    P P P= =

    = +

  • 8/10/2019 Economic Dispatch(1)

    16/25

    Solving the Lagrangian

    Differentiate with respect toNpower outputs

    (Pgen,i) and equate to 0

    ,

    , ,

    F ( )L0, 1,2,....

    i gen i

    gen i gen i

    d Pi N

    P dP

    = = =

    , ,

    1 1

    L F ( ) ( )N N

    i gen i load gen i

    i i

    P P P= =

    = +

    Differentiate with respect to Lagrange multiplier and equate to zero

    ,

    1

    L0

    N

    load gen i

    i

    P P =

    = = =

  • 8/10/2019 Economic Dispatch(1)

    17/25

    Economic Dispatch Examples

    Quadratic cost curves

    Demand is fixed

    Single instant in time

    We do not consider:

    Network constraints (common bus)

    Reserve constraint

  • 8/10/2019 Economic Dispatch(1)

    18/25

    ExampleDetermine the minimum operating cost and unit

    schedule to meet a system demand of 850 MW. Unit 1: P1,max = 600 MW, P1,min = 150 MW

    F1 = 561 + 7.92Pgen,1 + 0.001562(Pgen,1)2 /h

    Unit 2: P2,max = 400 MW, P2,min = 100 MW

    F2 = 310 + 7.85Pgen,2 + 0.00194(Pgen,2 )2 /h

    Unit 3: P3,max = 200 MW, P3,min = 50 MW

    F3= 78 + 7.97P

    gen,3+ 0.00482(P

    gen,3)2 /h

  • 8/10/2019 Economic Dispatch(1)

    19/25

  • 8/10/2019 Economic Dispatch(1)

    20/25

    Previously, just one constraint

    including maximum and minimum constraints

    Inequalities use Kuhn Tucker Conditions

    Economic Dispatchwith Maximum & Minimum Constraints

    min, , max,i gen i iP P P

    ,

    1

    0N

    load gen i

    i

    P P=

    =

  • 8/10/2019 Economic Dispatch(1)

    21/25

    Generic Kuhn Tucker Conditions

    Minimise: f (P)

    Subject to: wk (P) = 0 k= 1, 2, 3 Nwgj (P) 0 j = 1, 2, 3 Ng

    P = vector of real numbers, dimension =N

    The Lagrange function is

    1 1

    L( ) f( ) w ( ) g ( )gw

    NN

    k k j j

    k j

    = =

    = + + P,, P P P

    Objective fn Equality constraints Inequality Constraints

  • 8/10/2019 Economic Dispatch(1)

    22/25

    Optimal Conditions(Kuhn Tucker Conditions)

    j

    1. L( , , ) 0, 1,2, ....

    2. w ( ) 0, 1, 2,.....

    3. g ( ) 0, 1, 2,.....

    4. g ( ) 0, 1,2,.....

    0

    P

    P

    P

    P

    o o o

    i

    o

    k w

    o

    j g

    o o

    j j g

    o

    i NP

    k N

    j N

    j N

    = =

    = =

    =

    = =

    ( , , ) optimal solutionP o o o

    Complementaryslackness condition

  • 8/10/2019 Economic Dispatch(1)

    23/25

    Kuhn Tucker Conditions

    The Kuhn Tucker conditions

    Give necessary conditions for a minimum, butnot a precise procedure to find this minimum

    Experiment!

    by trial and error

    The minimum solution will satisfy the KT

    conditions

  • 8/10/2019 Economic Dispatch(1)

    24/25

    Example

    Unit 1: P1,max = 600 MW, P1,min = 150 MW

    F1 = 459 + 6.48Pgen,1 + 0.00128(Pgen,1)2 /h

    Unit 2: P2,max = 400 MW, P2,min = 100 MW

    F2 = 310 + 7.85Pgen,2 + 0.00194(Pgen,2 )2 /h

    Unit 3: P3,max = 200 MW, P3,min = 50 MW

    F3= 78 + 7.97Pgen,3 + 0.00482(Pgen,3)2 /h

    Determine the minimum operating cost and unitschedule to meet a system demand of 850 MW.

  • 8/10/2019 Economic Dispatch(1)

    25/25

    Example

    Unit 1: P1,max = 600 MW, P1,min = 150 MW

    F1 = 459 + 6.48Pgen,1 + 0.00128(Pgen,1)2 /h

    Unit 2: P2,max = 400 MW, P2,min = 100 MW

    F2 = 310 + 7.85Pgen,2 + 0.00194(Pgen,2 )2 /h

    Unit 3: P3,max = 200 MW, P3,min = 50 MW

    F3= 78 + 8.5Pgen,3 + 0.00482(Pgen,3)2 /h

    Determine the minimum operating cost and unit

    schedule to meet a system demand of 850 MW.