ee2_signalscomms_scee08007_datasheet_2014_complete.pdf

6
SCEE08007 Signals and Communications 2 Formula and Tables of Transforms Trigonometric Identities sin x = e jx e -jx 2j cos x = e jx + e -jx 2 1 = cos 2 x + sin 2 x cos 2x = cos 2 x sin 2 x cos 2 x = 1 2 (1 + cos 2x) sin 2 x = 1 2 (1 cos 2x) cos 3 x = 1 4 (3 cos x + cos 3x) tan (A ± B)= tan A ± tan B 1 tan A tan B cos(A ± B) = cos A cos B sin A sin B sin(A ± B) = sin A cos B ± cos A sin B sin A + sin B = 2 sin A + B 2 cos A B 2 sin A sin B = 2 cos A + B 2 sin A B 2 cos A + cos B = 2 cos A + B 2 cos A B 2 cos A cos B = 2 sin A + B 2 sin A B 2 cos A cos B = 1 2 [cos(A + B) + cos(A B)] sin A cos B = 1 2 [sin(A + B) + sin(A B)] sin A sin B = 1 2 [cos(A B) cos(A + B)] a cos x + b sin x = c cos (x + θ) where c = a 2 + b 2 and θ = tan -1 b a g a b c a b Cosine Rule: c 2 = a 2 + b 2 2ab cos γ Sine Rule: a sin α = b sin β = c sin γ Fourier Series Analysis of Periodic Waveforms If g(t) is periodic with period T , then: g(t)= a 0 2 + n=1 [a n cos (0 t)+ b n sin (0 t)] where a n = 2 T T 2 - T 2 g(t) cos (0 t) dt and b n = 2 T T 2 - T 2 g(t) sin (0 t) dt or: g(t)= n=-∞ c n e jnω 0 t where c n = 1 T T 2 - T 2 g(t) e -jnω 0 t dt where ω 0 = 2π T =2πf 0 ; f 0 = 1 T is the fundamental frequency.

Upload: erica-stevens

Post on 10-Nov-2015

212 views

Category:

Documents


0 download

TRANSCRIPT

  • SCEE08007 Signals and Communications 2

    Formula and Tables of Transforms

    Trigonometric Identities

    sinx =ejx ejx

    2jcosx =

    ejx + ejx

    2

    1 = cos2 x+ sin2 x cos 2x = cos2 x sin2 x

    cos2 x =1

    2(1 + cos 2x) sin2 x =

    1

    2(1 cos 2x)

    cos3 x =1

    4(3 cosx+ cos 3x) tan (AB) =

    tanA tanB

    1 tanA tanB

    cos(AB) = cosA cosB sinA sinB sin(AB) = sinA cosB cosA sinB

    sinA+ sinB = 2 sin

    (A+B

    2

    )cos

    (AB

    2

    )sinA sinB = 2 cos

    (A+B

    2

    )sin

    (AB

    2

    )

    cosA+ cosB = 2 cos

    (A+B

    2

    )cos

    (AB

    2

    )cosA cosB = 2 sin

    (A+B

    2

    )sin

    (AB

    2

    )

    cosA cosB =1

    2[cos(A+B) + cos(AB)] sinA cosB =

    1

    2[sin(A+B) + sin(AB)]

    sinA sinB =1

    2[cos(AB) cos(A+B)]

    a cosx+ b sinx = c cos (x+ ) where c =a2 + b2 and = tan1

    b

    a

    g

    a

    b

    c

    a

    b

    Cosine Rule: c2 = a2 + b2 2ab cos

    Sine Rule:a

    sin=

    b

    sin=

    c

    sin

    Fourier Series Analysis of Periodic Waveforms

    If g(t) is periodic with period T , then:

    g(t) =a02

    +

    n=1

    [an cos (n0t) + bn sin (n0t)]

    where an =2

    T

    T2

    T

    2

    g(t) cos (n0t) dt and bn =2

    T

    T2

    T

    2

    g(t) sin (n0t) dt

    or: g(t) =

    n=

    cn ejn0t where cn =

    1

    T

    T2

    T

    2

    g(t) ejn0t dt

    where 0 =2piT

    = 2f0; f0 =1

    Tis the fundamental frequency.

  • Fourier Transform Analysis of Aperiodic Signals

    The Fourier transform of a signal g(t) is given by:

    G() =

    g(t) ejt dt and g(t) =1

    2

    G() ejt d

    Parsevals theorem of energy conservation:

    |g(t)|2 dt =1

    2

    |G()|2 d

    Selected Fourier Transforms

    g(t) G()

    1 (DC level) 2()

    u(t) (unit step) () +1

    j

    ej0t 2( 0)

    cos0t [( 0) + ( + 0)]

    sin0t

    j[( 0) ( + 0)]

    n=

    (t nT ) (impulse train)2

    T

    m=

    (

    2m

    T

    )

    g(t ) (time shift) ej G()

    g(at) (scale in time)1

    |a|G(a

    )

    ej0t g(t) G( 0) (frequency shift)

    g1(t) g2(t) (convolution) G1()G2() (multiplication)

    g1(t) g2(t) (multiplication)1

    2G1() G2() (convolution)

    Duality: If g(t) transforms to p(), then p(t) transforms to 2g().

    Symmetry: If g(t) is real, then G() = G() ( means complex conjugate).

    If g(t) is real and even, then G() is real and even.

    If g(t) is real and odd, then G() is imaginary and odd.

  • z-Transforms

    The z-transform of a discrete-time causal sequence

    g[n] (defined for n = 0, 1, 2, . . . ) is given by:

    G(z) =

    n=0

    g[n] zn

    Selected z-Transforms

    g[n], (n 0) G(z)

    [n] (unit pulse) 1

    [nm] zm

    1 (unit step)z

    z 1

    n (unit ramp)z

    (z 1)2

    rnz

    z r

    n rnr z

    (z r)2

    sin(0n)z sin0

    z2 2z cos0 + 1

    cos(0n)z2 z cos0

    z2 2z cos0 + 1

    rn sin0nz r sin0

    z2 2z r cos0 + r2

    rn cos0nz2 z r cos0

    z2 2z r cos0 + r2

    rn g[n] G(r1z

    )

    g[n+ 1] z G(z) zg(0)

    g[n 1] z1G(z) + g(1)

    Final Value Theorem:

    limn

    g[n] = limz1

    (z1)G(z) (discrete-time)

    Communications Theory

    Amplitude Modulation An amplitude modu-

    lated (AM) signal can be expressed as:

    xc(t) = Ac [1 + amn(t)] cos (2fct)

    Angle Modulation The general angle-modulated

    signal is given by:

    xc(t) = Ac cos (2fct+ (t))

    For PM: (t) = kpm(t)

    For FM: (t) = kp

    tm() d

    = 2fd

    tm() d

    Angle Modulation

    (t) = sin (2fmt)

    the angle-modulated signal is:

    xc(t) = Ac

    n=

    Jn () cos [2 (fc + nfm) t]

    where Jn () =

    Jn () , for n even

    Jn () for n odd

    The bandwidth is given by Carsons Rule:

    B 2 ( + 1) fm

    For a FM modulator withm(t) = A cos (2fmt),

    = fdA/fm

    Carsons Rule For Arbitrary FM Signals:

    B 2 (D + 1)W

    where W is the bandwidth of the message signal

    m(t), and the deviation ratio is

    D =peak frequency deviation

    W

  • C = B log2 (1 + S/N) bit/s Q = wr/BW = wrL/R = wrCR