effect of teaching mathematics concepts within a science...

77
MNS Physics July 2009 Effect of Teaching Mathematics Concepts Within a Science Context Adrian Boyarsky, Russell Bray, and Mark Henrion Arizona State University Action Research required for the Master of Natural Science degree with concentration in physics.

Upload: others

Post on 24-Sep-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

MNS Physics

July 2009

Effect of Teaching Mathematics Concepts Within a Science Context Adrian Boyarsky, Russell Bray, and Mark Henrion Arizona State University Action Research required for the Master of Natural Science degree with concentration in physics.

Page 2: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 2

 

Table  of  Contents  Abstract ..........................................................................................................................3 Introduction  and  Rationale..............................................................................................4 Literature  Review ............................................................................................................5 Method ...........................................................................................................................6 Data  and  Analysis ............................................................................................................9 Investigator  1 ............................................................................................................ 15 Data....................................................................................................................... 19 Student  Interviews ................................................................................................ 25 Analysis ................................................................................................................. 27 Conclusion............................................................................................................. 28

Investigator  2 ............................................................................................................ 28 Method ................................................................................................................. 28 Data....................................................................................................................... 29 Post-­‐instruction  Interview  Problems...................................................................... 34 Analysis ................................................................................................................. 41 Conclusions ........................................................................................................... 45

Investigator  3 ............................................................................................................ 47 Method ................................................................................................................. 47 Data....................................................................................................................... 56 Student  Interviews ................................................................................................ 65 Student  Surveys..................................................................................................... 69 Analysis ................................................................................................................. 70 Conclusion  and  Implications .................................................................................. 72

Overall  Conclusion ........................................................................................................ 72 Implications  for  Instruction ........................................................................................... 73 Implications  for  Future  Research ................................................................................... 73 Bibliography .................................................................................................................. 75 Appendices ................................................................................................................... 76 Math  Concepts  Inventory  2003 ....................................... Error! Bookmark not defined.

Page 3: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 3

Abstract  Traditional  mathematics  courses  have  consistently  been  taught  based  upon  procedure,  rules,  and  memorizing  information.    The  investigators,  however,  have  noticed  that  students  have  difficulty  in  proportional  thinking  and  graphing  quantities.    High  school  math  students  were  treated  with  a  course  design  that  introduced  proportional  reasoning  through  a  modeling  approach  in  physics  concepts.    Results  indicate  that  students  who  were  treated  demonstrated  higher  gains  in  understanding  of  common  algebraic  concepts  of  proportional  reasoning  and  graphing  than  students  who  received  a  traditional  approach  to  mathematics  instruction.                                                        Effect  of  Teaching  Mathematics  Concepts  Within  a  Science  Context    Principal  Investigator:  Colleen  Megowan  Co-­‐Investigators:    Adrian  Boyarsky,  Russell  Bray,  and  Mark  Henrion    

Page 4: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 4

Introduction  and  Rationale  Proportional  reasoning  and  interpreting  graphs  are  both  complicated  mental  processes  that  are  prevalent  in  all  areas  of  mathematics  and  science.  (Lesh,  Landau,  1983).    A  vast  majority  of  the  students  we  encounter  on  a  daily  basis  can  state  that  slope  is  equal  to  rise  over  run,  and,  since  they  can  give  this  basic  definition  of  the  algebraic  term,  no  one  ever  asks  them  to  give  it  a  second  thought.    Few  students  make  the  connection  that  for  a  linear  relationship  between  two  variables,  as  the  independent  variable  increases  or  decreases  by  a  certain  increment,  the  dependent  variable  increases  or  decreases  by  the  slope  multiplied  by  that  increment.    In  some  high  school  algebra  classes,  students  can  make  it  through  an  entire  school  year  without  ever  seeing  that  the  slope  of  a  line  is  not  just  a  number,  but  a  rate  of  change  that  not  only  has  units,  but  implications  that  affect  our  world.    The  vertical  intercept  of  a  graph  is  also  a  key  element  of  graphical  understanding  whose  importance  can  be  overlooked.    What  is  the  physical  interpretation  of  a  non-­‐zero  vertical  intercept  and  why  do  some  graphs  intercept  the  vertical  axis  at  zero  while  others  do  not?        Classroom  experience  by  the  researchers  shows  that,  as  the  relationship  between  variables  gets  more  complicated,  even  fewer  students  can  reason  proportionally  about  how  changing  the  independent  variable  changes  the  dependent  variable.    Not  all  quantities  change  in  even  increments.    Sometimes  graphing  one  quantity  versus  another  can  produce  curves,  peaks,  and  bends  that  can  baffle  high  school  students.    What  do  the  numbers  in  front  of  our  independent  variable  mean,  and  does  our  vertical  intercept  make  any  sense  at  all?    The  graph  is  now  much  more  interesting  than  a  straight  line,  but  being  able  to  use  that  graph  to  answer  questions  and  make  predictions  is  an  enormous  jump  in  the  process  of  understanding  graphs.      The  goal  of  this  study  is  to  investigate  student  conceptual  and  procedural  understanding  when  proportional  reasoning  and  interpretation  of  graphs  are  taught  in  a  scientific  modeling  context  as  opposed  to  a  traditional  mathematics  classroom.    Students  were  tested  on  the  Mathematics  Concepts  Inventory  (MCI)  before  and  after  working  through  various  labs  and  data  collection  lessons  that  emphasize  proportional  reasoning  and  interpretation  and  understanding  of  graphs.    Having  students  derive  proportional  equations  from  lab  demonstrations  that  use  both  linear  and  non-­‐linear  relationships,  we  introduce  important  relationships  that  the  students  will  face  in  many  courses  and  disciplines.    The  students  graphed  these  situations,  found  slopes  of  the  relationships,  and  interpreted  the  data  conceptually.    By  introducing  proportional  reasoning  and  interpretation  of  graphs  in  this  way,  we  examined  how  students’  understanding  shifts  toward  a  more  coherent  conceptual  model  while  arming  them  with  the  tools  to  relate  these  concepts  to  other  novel  problems.          

Page 5: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 5

Literature  Review  Walk  down  the  street  and  ask  the  average  person  what  he/she  thinks  of  mathematics  and,  chances  are,  a  majority  of  responses  will  range  from  dreadful  stories  of  sadistic  high  school  teachers  to  blatant  proclamations  of  ignorance  of  a  subject  that  is  often  viewed  as  a  silly  set  of  predetermined  rules  and  facts  for  dealing  with  numbers  that,  if  one  does  not  care  to  memorize,  cannot  be  understood  or  used  in  any  useful  manner  (Paulos,  2001).    In  schools  across  America,  students  are  taught  mathematics  in  ways  that  often  overlook  the  useful  contexts  with  which  people  use  mathematics  on  a  daily  basis  in  everything  from  grocery  shopping  to  calculating  fuel  mileage  (Borasi,  1992).    Learning  mathematics  as  a  set  of  rules  and  algorithms  for  solving  for  a  letter  of  the  alphabet  that  has,  for  some  mysterious  reason,  snuck  into  a  math  problem,  results  in  the  failure  of  average  citizens  to  see  mathematics  as  the  most  creative  and  imaginative  of  disciplines  (O’Shea,  2007).        People  associate  mathematical  concepts  with  how  they  are  originally  introduced.    Several  different  people  may  be  able  to  recite  the  quadratic  formula  by  heart,  but  the  formula  itself  may  carry  an  extremely  different  meaning  for  each  of  these  people  based  on  how  quadratic  equations  were  taught  in  school  (Steffe,  Nesher,  Cobb,  Goldin,  &  Greer,  1996).    In  order  to  be  truly  competent  in  mathematics,  people  need  to  have  a  solid  understanding  of  both  conceptual  and  procedural  knowledge.    Students  must  be  able  to  construct  relationships  between  previously  established  and  newly  minted  mathematical  concepts  and  be  highly  skilled  in  using  the  rules,  algorithms,  and  procedures  used  to  solve  mathematical  tasks.    Falling  short  in  procedural  knowledge  can  leave  a  student  with  a  solid  conceptual  understanding  but  no  ability  to  quantitatively  solve  problems,  while  a  lacking  in  conceptual  knowledge  can  force  a  student  to  use  rote  memorization  of  equations  to  solve  a  problem  without  ever  seeing  any  meaning  or  richness  in  the  task  at  hand  (Hiebert,  1986).    Establishing  the  complicated  relationship  between  conceptual  and  procedural  knowledge  is  no  easy  task,  but  some  think  that  the  link  to  learning  mathematics  and  using  it  in  other  subjects,  areas,  and  contexts  is  modeling  instruction  (Blum,  Niss,  &  Huntley,  1989).    Even  though  the  teaching  styles  found  in  most  college  courses  across  America  do  not  corroborate  this  idea,  many  teachers  and  experts  contend  that  knowledge  is  acquired  by  construction,  not  by  transmission  alone.    Learning  something  is  far  different  than  merely  hearing  something,  and  when  we  learn,  the  new  piece  of  knowledge  is  fitted  into  our  now  reorganized  existing  body  of  knowledge.    Humans  always  associate  knowledge  with  other  pieces  of  knowledge  and  with  contexts  that  help  reconcile  or  make  sense  of  the  new  idea.    This  is  only  part  of  the  reason  why  teaching  mathematics  in  relation  to  a  variety  of  real-­‐world  problems  in  domains  other  than  mathematics  not  only  enhances  understanding  but  makes  the  problems  themselves  and  the  subject  as  a  whole  more  significant  and  meaningful  to  students  (Steffe  et  al.,  1996).    In  1980,  the  National  Council  of  Teachers  of  Mathematics  made  a  focus  on  problem  solving  the  primary  goal  of  

Page 6: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 6

mathematics  education  for  the  1980s,  stating  that  acquiring  facts  is  futile  if  they  cannot  be  used  to  solve  novel  problems  (Borasi,  1992).    According  to  constructivist  theory,  students  need  to  solve  problems  that  are  considered  their  own  before  any  sort  of  meaning  is  applied  to  knowledge  that  is  learned  in  a  classroom  (Laborde,  Glorian,  &  Sierpinska,  2005).        By  teaching  proportional  reasoning  and  graphical  understanding  through  modeling  with  scientific  contexts,  students  get  countless  opportunities  to  form  relationships  between  these  mathematical  ideas,  experiences  from  their  daily  lives,  and  the  role  of  proportional  reasoning  and  graphing  in  other  subject  areas  (Harel  &  Confrey,  1994).    Principles  of  effective  teaching  of  math  applications  through  a  variety  of  contexts  as  suggested  by  Steffe  et  al.  (1996),  reads  like  a  checklist  of  techniques  that  a  student  in  a  Modeling  Workshop  at  Arizona  State  University  would  encounter.    In  a  high  school  classroom  where  science  concepts  are  being  used  to  teach  proportional  reasoning  and  graphing,  interesting  problems  are  posed  in  familiar  contexts,  students  use  prior  knowledge,  peer  interactions  enhance  motivation  and  guide  construction  of  knowledge,  and  students  have  opportunities  to  reflect  on  problems  and  state  what  knowledge  has  been  developed.    The  goal  of  teaching  proportional  reasoning  and  graphing  through  scientific  contexts  to  high  school  students  will  be  to  develop  meaningful,  useful,  conceptual  and  procedural  knowledge  through  problems  that  carry  significance  for  the  learners.    Students  will  connect  pieces  of  information  to  a  grander  overview  of  these  mathematical  topics  and  acquire  visualization  and  conceptualization  skills  without  missing  out  on  the  algorithmic  procedures  needed  to  perform  well  on  more  traditional  assessments  that  emphasize  rote  math  manipulation  skills.    In  a  study  of  mathematical  modeling  instruction  for  proportional  reasoning  in  pre-­‐adolescents,  students’  conceptual  understanding  exceeded  procedural  understanding  (Harel  &  Confrey,  1994.    All  students  need  a  firm,  connected  foundation  of  conceptual  and  procedural  knowledge,  and  teaching  proportional  reasoning  and  interpretation  of  graphs  through  scientific  contexts  may  be  the  basis  for  this  foundation.    

Method  Investigator  1:    Investigator  1  teaches  at  Red  Mountain  High  School  in  Mesa,  Arizona.    Mesa  is  a  suburb  of  metropolitan  Phoenix,  and  the  high  school  has  an  enrollment  of  approximately  2800  students  in  grades  10-­‐12.    The  population  of  the  school  is  approximately  82%  Caucasian,  11%  Hispanic,  4%  Asian,  2%  African  American,  and  2%  Native  American.    18%  of  students  are  economically  disadvantaged.    Investigator  1  worked  with  36  regular  level  math  students  who  had  earned  a  D  in  at  least  one  semester  of  either  their  algebra  1  or  geometry  courses.    Most  of  these  students  were  juniors.        Investigator  2:    Investigator  2  teaches  at  Desert  Vista  High  School  in  Tempe,  Arizona,  a  suburb  of  Phoenix.  Desert  Vista  has  an  enrollment  of  approximately  3000  students  in  

Page 7: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 7

grades  9-­‐12.    The  population  of  the  school  is  approximately  78%  Caucasian,  8%  Hispanic,  8%  Asian,  6%  African  American  and  1%  Native  American.    8%  of  the  students  are  economically  disadvantaged.    Investigator  2  worked  with  21  regular  physics  students.    The  math  prerequisite  for  physics  is  to  have  completed  Algebra  1-­‐2.    Investigator  3:    Investigator  3  teaches  at  Buckeye  Union  High  School  in  Buckeye,  Arizona,  a  suburb  of  Phoenix  until  2010.    Buckeye  Union  has  an  enrollment  of  approximately  1300  students  in  grades  9-­‐12.    The  population  of  the  school  is  18%  Caucasian,  10%  African  American,  70%  Hispanic,  1%  Asian  and  1%  Native  American.    90%  are  economically  disadvantaged.    He  worked  with  50  Algebra  2  students.    Algebra  2  is  primarily  populated  by  juniors  and  is  part  of  the  required  progression  for  most  students.    Control  Group  1:    This  control  group  was  comprised  of  33  regular  algebra  2  students  from  the  same  school  as  Investigator  1.    These  students  had  earned  a  C  or  higher  in  every  semester  of  their  algebra  1  and  geometry  courses.    Most  students  were  juniors.        Control  Group  2:    This  control  group  was  comprised  of  approximately  22  regular  algebra  2  students  from  the  same  school  as  Investigator  2.    Most  of  these  students  were  juniors.    Control  Group  3:    This  control  group  was  comprised  of  23  regular  algebra  2  students  from  the  same  school  as  Investigator  3.    Most  of  these  students  were  juniors.    Pre-­‐assessment  of  student  abilities:    The  assessment  used  in  this  study  is  the  Mathematics  Concepts  Inventory  (MCI),  version  7.  The  pre-­‐test  was  given  during  the  first  week  of  school  to  determine  initial  mathematical  reasoning  abilities  of  the  students  before  treatment,  specifically  in  proportional  reasoning  and  interpreting  graphs.        Treatment:    Students  in  the  treatment  group  were  introduced  to  proportional  reasoning  and  graphical  interpretation  through  modeling  based  labs  and  activities.    The  treatment  was  implemented  in  multiple  lessons  throughout  the  1st  semester  and  third  quarter  of  the  2008-­‐2009  school  year.        

1.    Students  began  by  doing  an  investigative  lab  in  which  they  collected  data  and  observed  relationships  between  variables  first-­‐hand.    More  detail  about  specific  labs  done  by  the  individual  investigators  will  be  described  later  in  this  paper.    2.    Students  then  examined  the  data  and  created  graphs  that  they  felt  were  appropriate.    The  students  created  these  graphs  by  hand  and  with  the  use  of  technology  available  in  the  classroom.    3.  Students  then  examined  the  elements  of  their  graphs,  including  the  meaning  of  slope,  y-­‐intercept,  shape  of  curve,  and  units.    Students  generally  whiteboarded  their  findings  and  articulated  this  meaning  as  a  group.    

Page 8: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 8

4.  Students  then  generalized  the  relationship  they  found  between  the  variables  being  investigated  in  the  lab.    They  expressed  their  findings  in  terms  of  proportionality  and,  through  a  whiteboard  session,  had  an  opportunity  to  articulate  their  findings.    The  instructor  focused  the  conversation  on  the  proportionality  between  the  variables.    5.    Students  finally  were  given  various  application  word  problems  in  which  they  applied  similar  rationale  as  they  did  in  the  labs.    These  were  designed  to  allow  students  to  apply  their  knowledge  of  both  concepts  in  different  contexts  using  a  similar  method.    These  were  also  discussed  as  a  class  in  a  whiteboard  session  after  they  are  completed.  

 Assessment:  Student  thinking  was  assessed  in  a  variety  of  ways.    First,  the  students  took  the  MCI  at  the  beginning  of  the  year.  Students  were  asked  to  solve  application  problems  using  the  math  reasoning  skills  developed  during  in-­‐class  activities.    Each  investigator  interviewed  several  students  utilizing  a  think-­‐aloud  protocol.    In  these  interviews,  the  investigators  elicited  students  to  explain  their  reasoning  out  loud  as  they  worked  problems  without  any  leading  questions.    Various  student  whiteboards  were  photographed  and  some  student  worksheets  were  kept  so  that  the  progress  of  students  could  be  monitored.    At  the  end  of  the  third  quarter,  students  took  the  MCI  again.        Mathematics  Concepts  Inventory  (MCI),  vs.  7:  The  MCI  was  developed  by  the  Physics  Underpinnings  Action  Research  team  at  Arizona  State  University  (ASU)  in  June  2000  and  revised  six  times  in  the  next  three  years.  It  has  23  questions  and  is  intended  for  8th  and  9th  grade  students.  The  first  eight  questions  are  paired,  on  scientific  thinking  skills  (conservation  of  mass  and  volume,  proportional  reasoning,  control  of  variables).  They  were  recommended  by  Professor  Anton  "Tony"  Lawson,  ASU  School  of  Life  Sciences,  from  his  Classroom  Test  of  Scientific  Reasoning,  a  widely-­‐used  research-­‐informed  instrument.  Other  questions  are  released  TIMSS,  AIMS,  and  other  standardized  test  questions:  they  are  on  graphing  interpretation  skills  (#10-­‐12,19-­‐23);  relating  linear  equations  to  other  representations  (#9,15,18);  estimating  area  (#13)  and  volume  (#14);  measurement  (#16)  and  mean  value  (#17).  In  an  ASU  study  of  8th  and  9th  grade  students  in  science  and  math  classes  in  four  suburban  Phoenix  public  school  districts,  the  baseline  MCI  posttest  mean  score  in  spring  2006  was  52%.  In  2006-­‐2007,  after  their  teachers  took  a  three-­‐week  summer  physical  science  with  math  Modeling  Workshop,  their  mean  class  MCI  score  was  50%  pretest  (August  2006)  and  58%  posttest  (spring  2007)  (173  students;  matched  students,  teachers,  and  courses).  The  MCI  reliability  estimate  (Cronbach’s  alpha  coefficient)  for  the  2007  posttest  is  0.83.    When  drawing  inferences  from  group  level  data  (like  much  educational  research),  a  reliability  estimate  over  0.80  is  often  considered  sufficient.  The  MCI  is  at  http://modeling.asu.edu/MNS/MNS.html.      

Page 9: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 9

Data  and  Analysis  The  data  compiled  for  the  experimental  and  control  groups  were  examined  in  several  different  ways  in  order  to  draw  conclusions  about  the  method  implemented  in  this  study.    Below  is  a  summary  of  some  significant  findings  from  an  examination  of  the  data  regarding  pre  and  post-­‐test  scores  on  the  Mathematics  Concepts  Inventory.  Raw  data  comprise  the  appendix.  F-­‐tests  showing  that  the  experimental  and  control  groups  in  this  study  can  be  assumed  to  be  from  the  same  population  are  available  from  the  authors.    Experimental  Group  –  107  Students  Comparing  pre  and  post-­‐test  data  is  an  effective  way  to  measure  the  success  of  a  given  teaching  style.    For  the  experimental  group,  pre-­‐test  scores  showed  a  mean  =  12.4  (~54%)  with  a  standard  deviation  =  3.65.    Post-­‐test  scores  showed  a  mean  =  14.1  (~61%)  with  a  standard  deviation  =  3.99.    A  two-­‐sample  for  means  z  test  shows  this  to  be  a  significant  increase  in  scores  from  pre  to  post-­‐test.    z-­‐Test:  Two  Sample  for  Means      

  Pre-­‐Test   Post-­‐Test  Mean   12.4   14.1  Standard  Deviation   3.65   3.99  Known  Variance   13.3   16.0  Observations   107   107  Hypothesized  Mean  Difference   0    z   -­‐3.09    P(Z<=z)  one-­‐tail   0.000993    z  Critical  one-­‐tail                                1.64    P(Z<=z)  two-­‐tail   0.00199    z  Critical  two-­‐tail   1.96      

Page 10: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 10

A  comparison  of  histograms  for  pre  and  post-­‐test  scores  shows  this  positive  shift  in  mean  scores.      

   

 

Mean = 12.4 S.D = 3.65 n = 107

  Experimental  Group  Pre-­‐Test   Control  Group  Pre-­‐Test  Mean   11.7   13.1  Variance   16   11  Observations   50   23  df   49   22  F   1.46    P(F<=f)  one-­‐tail   0.17    F  Critical  one-­‐tail   1.91    

Mean = 14.1 S.D. = 3.99 n = 107

Page 11: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 11

Control  Group  –  75  students  The  control  group  used  in  this  study  did  not  show  quite  as  significant  gains  between  pre  and  post-­‐test  scores  on  the  mathematics  concepts  inventory.    Pre-­‐test  scores  showed  a  mean  =  14.5  (~63%)  with  a  standard  deviation  =  3.46.    Post-­‐test  scores  showed  a  mean  =  14.6  (~63%)  with  a  standard  deviation  =  3.62.    A  two-­‐sample  for  means  z  test  shows  that  this  increase  is  not  significant.    z-­‐Test:  Two  Sample  for  Means      

  Pre-­‐Test   Post-­‐Test  Mean   14.5   14.6  Standard  Deviation   3.46   3.62  Known  Variance   12.0   13.1  Observations   75   75  Hypothesized  Mean  Difference   0    z   -­‐0.161    P(Z<=z)  one-­‐tail   0.435    z  Critical  one-­‐tail   1.64    P(Z<=z)  two-­‐tail   0.872    z  Critical  two-­‐tail   1.96      

Page 12: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 12

Histograms  of  the  pre  and  post-­‐test  scores  show  the  similar  distribution  for  each  test.    

   

   

Mean = 14.5 S.D. = 3.46 n = 75

Mean = 14.6 S.D. = 3.62 n = 75

Page 13: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 13

Experimental  versus  Control  Directly   comparing   the   experimental   and   control   groups   in   this   study   revealed   some  things  that  support  the  researchers’  belief  that  teaching  mathematical  concepts  through  scientific   experiments   is   advantageous   for   high   school   students.     It   has   already   been  stated  that  the  experimental  group  showed  a  significant  increase  in  mean  scores  on  the  MCI  pre  and  post-­‐test,  while  the  control  group  increased  by  a  relatively  small  amount.    

   The  above  chart  shows  that  the  control  group  did  in  fact  have  a  higher  post-­‐test  mean  than  the  control  group,  but  a  two-­‐sample  for  means  z  test  shows  that  this  difference  in  means  is  not  significant.    

Page 14: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 14

   z-­‐Test:  Two  Sample  for  Means      

  Experimental  Post-­‐Test   Control  Post-­‐Test  Mean   14.1   14.6  Known  Variance   13.1   16.0  Observations   107   75  Hypothesized  Mean  Difference   0    z   -­‐0.870    P(Z<=z)  one-­‐tail   0.192    z  Critical  one-­‐tail   1.64    P(Z<=z)  two-­‐tail   0.384    z  Critical  two-­‐tail   1.96      One  method  of  comparing  gains  between  different  populations  is  by  analyzing  the  normalized  gain  for  each  group  (Hake,  1998).    This  statistic  measures  a  student’s  gain  from  pre  to  post-­‐test  by  taking  the  difference  between  pre  and  post-­‐test  scores  and  dividing  it  by  the  total  possible  gain;  thus:    

score)test -pre(score) (maximumscore)test -(pre score)test -(postg

!!

>=<  

 Hake’s  study  of  high  school  and  college  physics  instruction  led  him  to  consider  a  value  of  g  <  0.3  as  a  low  gain,  0.3  <  g  <  0.7  as  a  medium  gain,  and  g  >  0.7  as  a  high  gain.    Average  normalized  gains  for  the  experimental  and  control  groups  are  shown  in  the  chart  below.  

   We  saw  previously  that  the  control  group  had  a  very  small  increase  in  means  from  pre  to  post-­‐test.    Here  we  see  that  the  average  normalized  gain  for  the  control  group  is  near  zero.    A  two-­‐sample  for  means  z-­‐test  shows  that  the  difference  in  mean  normalized  gains  is  significant  between  these  two  groups.  

Page 15: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 15

 z-­‐Test:  Two  Sample  for  Means      

  Experimental  <g>   Control  <g>  Mean   0.140   -­‐0.040  Known  Variance   0.096   0.23  Observations   107   75  Hypothesized  Mean  Difference   0    z   2.91    P(Z<=z)  one-­‐tail   0.00179    z  Critical  one-­‐tail   1.64    P(Z<=z)  two-­‐tail   0.00359    z  Critical  two-­‐tail   1.96      The  above  data  give  some  indication  that  teaching  mathematics  concepts  through  scientific  laboratory  activities  may  significantly  improve  student  scores  on  the  MCI.    It  is  evident  that  students  in  the  experimental  group  made  greater  gains  from  pre  to  post-­‐test  than  students  taught  in  a  traditional  lecture  style  format.    Because  both  the  experimental  and  control  groups  consist  of  students  from  three  different  schools,  it  is  important  to  examine  data  collected  at  each  individual  school.            

Investigator  1  Russell  Bray,  Mathematics  Teacher,  Red  Mountain  High  School  

 Method  The  following  are  the  basic  blueprints  of  the  labs  used  for  the  experimental  group  at  Red  Mountain  High  School.    Helicopter  lab  Focus:  This  lab  was  introduced  as  the  first  in  a  series  to  have  the  students  focus  on  how  two  quantities  change  relative  to  each  other.    The  directions  are  vague  by  design  so  there  can  be  classroom  discourse  on  what  the  quantities  are  that  the  students  choose  to  compare.    This  opened  dialogue  for  the  students  and  introduced  the  nature  of  the  course  structure.    

Page 16: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 16

Equipment:    The  following  picture  and  whiteboards.  

   Activity:    The  students  were  asked  to  graph  the  position  versus  time  of  the  helicopter’s  path  based  on  the  picture.    In  small  groups,  they  presented  what  their  graphs  looked  like  and  discussed  the  similarities  and  differences,  all  the  while  focusing  on  specifically  what  “position”  they  were  measuring.    Some  students  chose  the  crow’s  distance  from  the  original  spot  of  the  helicopter  while  others  chose  the  odometer  reading  of  the  helicopter  as  their  position.    Others  chose  the  helicopter’s  altitude  above  the  Canyon  as  their  position.        Through  class  discourse  and  variations  of  possible  graphs  presented  by  the  teacher,  the  students  were  able  to  focus  on  a  wide  sample  of  different  position  versus  time  graphs.    Though  little  numbers  were  involved,  the  idea  of  co-­‐variance  of  quantities  was  introduced,  leading  to  equation  building  in  future  labs.    Bowling  ball  lab  Focus:  This  lab  focused  on  developing  the  students’  ability  to  reason  proportionally,  interpret  linear  position  versus  time  graphs,  explain  the  physical  meaning  of  the  slope  of  a  graph,  and  find  the  equation  of  a  line  of  a  data  set.    Equipment:  Bowling  ball.    

Page 17: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 17

Activity:    A  demonstration  of  a  bowling  ball’s  apparent  constant  motion  along  the  ground  is  demonstrated  to  the  class.    In  lieu  of  collecting  data,  a  variety  of  different  tables  of  values  are  given  to  the  students.    Each  table  of  values  can  easily  be  interpreted  as  data  collected  from  an  actual  bowling  ball  rolling  on  level  ground.    Some  samples  are  described  below:    

Time  (seconds)  

0   1   2   3   4   5   6  

Position  (feet)  

0   4   8   12   16   20   24  

 Time  

(seconds)  0   1   2   3   4   5   6  

Position  (feet)  

20   22   24   26   28   30   32  

 Time  

(seconds)  0   1   2   3   4   5   6  

Position  (feet)  

15   11.5   8   4.5   1   -­‐2.5   -­‐6  

 The  students  were  asked  to  first  describe  the  physical  motion  of  the  bowling  ball.    From  there,  they  were  asked  to  determine  characteristics  of  the  motion,  paying  special  attention  to  the  original  position  and  the  change  in  position  per  unit  of  time.    Using  that  information,  the  students  developed  the  equation  of  motion  of  each  of  the  data  situations.    Through  discourse  and  class  discussions,  they  related  each  of  the  graphs  and  equations  to  each  of  the  others  to  develop  the  concepts  of  slope  and  y-­‐intercepts.    Spaghetti  lab  Focus:  This  lab  focused  on  developing  the  students’  ability  to  reason  proportionally,  explain  the  physical  meaning  of  the  slope  of  a  graph,  and  find  the  equation  of  a  line  of  best  fit  for  a  data  set.    Equipment:  Dry  spaghetti,  paper  clips,  and  coffee  mugs.    Activity:  The  students  were  asked  to  place  set  amounts  of  dry  spaghetti  across  two  coffee  mugs  (or  any  two  heavy  objects)  and  then  count  the  number  of  paper  clips  needed  to  hang  on  the  spaghetti  before  the  dry  spaghetti  broke.      The  students  recorded  the  data  in  individual  groups  and  then  all  groups  combined  their  results  into  one  data  set.    The  students  then  graphed  the  data,  made  a  line  of  best  fit,  and  calculated  the  equation  of  the  line.        

Page 18: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 18

The  students  then  discussed  the  results  and  interpreted  the  meaning  of  the  line’s  slope  and  y-­‐intercept.    This  lab  also  introduced  the  effect  of  actual  data  collection  and  graphical  interpretation  of  a  non-­‐linear  model.    The  data  showed  a  slight  “up”  curve,  and  students  were  led  into  a  discussion  that  not  all  graphs  are  linear  in  nature.    Circle  lab  Focus:  This  lab  focused  on  developing  the  students’  ability  to  reason  proportionally,  interpret  linear  circumference  versus  diameter  data,  explain  the  physical  meaning  of  the  slope  of  a  graph,  and  develop  the  equation  of  the  circumference  of  a  circle.      Equipment:  Various  circle  objects  and  measuring  devices.    Activity:  Students  were  asked  to  measure  the  diameter  and  circumference  of  various  circular  objects.    They  then  pooled  their  data  into  one  class  set  and  graphed  the  relationship  between  circumference  and  diameter  of  a  circle.        The  students  discussed  the  value  of  the  slope  (pi)  and  developed  the  equation  of  the  circumference  of  a  circle  given  its  diameter  (C  =  πd).    Golf  ball  lab  Focus:  This  lab  focused  on  developing  the  students’  ability  to  reason  proportionally,  interpret  quadratic  position  versus  time  graphs,  and  verbally  discuss  the  differences  between  linear  and  quadratic  situations.    Equipment:  Video  of  golf  ball  in  freefall  and  Logger  Pro.    Activity:  Students  were  shown  a  video  of  a  ball  in  freefall  after  being  bounced  off  the  ground.    The  ball  travels  to  a  maximum  height  and  then  returns  to  the  ground.    The  students  loaded  the  video  into  Logger  Pro  and  determined  points  using  the  video  capture  feature.    The  data  was  plotted  as  position  above  the  ground  versus  time.      

Page 19: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 19

   The  students  were  led  into  a  discussion  of  how  the  quantities  of  position  and  time  are  varying  and  the  meaning  of  the  “slope”  and  vertical  intercept.    The  students  discussed  why  the  graph  is  curved  and  how  that  compares  to  lines  seen  in  the  past.  These  data  also  introduced  the  need  for  another  mathematical  representation  other  than  the  linear  f(x)  =  mx  +  b  equations  used  in  the  previous  labs.    By  doing  a  curve  fit  of  the  data,  the  students  are  led  to  the  quadratic  equation  f(x)  =  Ax2  +  Bx  +  C  

 

Data  The  following  data  analysis  is  based  on  data  that  can  be  referenced  in  the  appendix.    Experimental  Group  –  thirty-­‐six  students  Pre-­‐test  scores  on  the  twenty-­‐three  question  MCI  showed  a    mean  =  12.1  and  standard  deviation  =  3.16.    Post-­‐test  scores  showed  a  mean  =  14.2  and  standard  deviation  =  3.49.    

Page 20: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 20

   A  paired  two  sample  for  means  t  test  shows  this  increase  between  pre  and  post-­‐test  scores  to  be  statistically  significant  with  α  =  .008.    z-­‐Test:  Two  Sample  for  Means            

    Experimental  Pre   Experimental  post  Mean   12.1   14.2  Standard  Deviation   3.16   3.49  Known  Variance   9.96   12.0  Observations   36   36  Hypothesized  Mean  Difference   0    z   -­‐2.67    P(Z<=z)  one-­‐tail   0.00384    z  Critical  one-­‐tail   1.64    P(Z<=z)  two-­‐tail   0.00768    z  Critical  two-­‐tail   1.96        

Page 21: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 21

A  look  at  the  distribution  of  pre  and  post-­‐test  scores  for  the  experimental  group  shows  this  shift  in  mean  and  standard  deviation.    

   

   

Mean = 12.1 S.D. = 3.16 n = 36

Mean = 14.2 S.D. = 3.49 n = 36

Page 22: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 22

Control  Group  –  thirty  students  Pre-­‐test  scores  on  the  MCI  revealed  the  following:    mean  =  15.7  and  standard  deviation  =  3.14.    Post-­‐test  scores  showed  a  mean  =  16.2  and  standard  deviation  =  2.88.        

 A  paired  two  sample  for  means  t  test  shows  that  the  difference  between  average  scores  on  the  pre  and  post-­‐test  is  not  statistically  significant.        z-­‐Test:  Two  Sample  for  Means            

    Control  Pre   Control  Post  Mean   15.7   16.2  Standard  Deviation   3.14   2.88  Known  Variance   9.87   8.3  Observations   30   30  Hypothesized  Mean  Difference   0    z   -­‐0.642    P(Z<=z)  one-­‐tail   0.260    z  Critical  one-­‐tail   1.64    P(Z<=z)  two-­‐tail   0.520    z  Critical  two-­‐tail   1.96        

Page 23: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 23

The  distribution  of  pre  and  post-­‐test  scores  for  the  control  group  shows  little  change.    

   

   Experimental  versus  Control  Group  When  comparing  experimental  and  control  group  pre  and  post-­‐test  scores  on  the  MCI  for  students  at  Red  Mountain  HS,  a  few  things  of  statistical  significance  are  found.        The  average  normalized  gain  for  the  experimental  group  in  this  study  is  <g>  =  0.20.  This  normalized  value  falls  into  what  is  considered  the  “low  gain”  category  by  Hake.    The  low  

Mean = 15.7 S.D. = 3.14 n = 30

Mean = 16.2 S.D. = 2.88 n = 30

Page 24: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 24

gain  category  includes  values  of  <g>  such  that  0  ≤  g  ≤  0.3.    However,  when  compared  to  the  average  normalized  gain  of  the  control  group,  <g>  =  0.06,  it  can  be  seen  that  the  difference  in  these  means  is  statistically  significant  with  α  =  0.000.    

 z-­‐Test:  Two  Sample  for  Means            

    Experimental  <g>     Control  <g>  Mean   0.204   0.0599  Known  Variance   0.024   0.026  Observations   36   30  Hypothesized  Mean  Difference   0    z   3.69    P(Z<=z)  one-­‐tail   0.00011    z  Critical  one-­‐tail   1.64    P(Z<=z)  two-­‐tail   0.000227    z  Critical  two-­‐tail   1.96        

Page 25: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 25

Student  Interviews  Interview  with  Students  in  Regard  to  Problem  #5  (MCI)    Student  102  Researcher:   Why  did  you  choose  answer  B  for  problem  number  9?  Student  102:   If  it  was  6  on  the  wide  cylinder,  then  it  will  be  9  on  the  skinny  cylinder.  Researcher:   I  realize  that  is  what  answer  B  says,  but  why  did  you  choose  it?    Tell  me  

your  thinking  on  how  you  got  that  answer.  Student  102:   If  it  goes  6  up  on  the  skinny  for  every  4  on  the  fat,  then  when  you  put  in  

50%  more,  then  it  will  go  50%  more  on  the  skinny  cylinder.  Student  129  Researcher:   Why  did  you  choose  answer  B  for  problem  number  9?  Student  129:   I  put  down  the  fraction  4  over  6  and  that  reduces  to  2  over  3.    So  when  

this  is  6,  then  I  have  to  change  this  to  9.  Researcher:   But  why  did  you  “change  it  to  9”  rather  than  change  it  to  a  different  

number?  Student  129:   Because  6  is  3  times  bigger  than  2  so  I  had  to  multiply  3  [points  to  

denominator  of  reduced  fraction]  by  3  to  get  9.  Student  131  Researcher:   Why  did  you  choose  answer  B  for  problem  number  9?  Student  131:   Because  if  the  water  goes  up  2,  then  you  will  go  up  2  on  the  other  

cylinder.    Comment:    The  first  two  students  [102  and  129]  demonstrate  strong  proportional  reasoning  by  verbalizing  the  idea  that  as  one  quantity  changes,  the  other  changes  as  a  multiple  of  the  first.    Student  102  uses  percentages  while  student  129  literally  uses  multipliers,  yet  both  convey  valid  logic  to  determine  the  correct  answer.    Student  131  does  not  show  this  same  knowledge  of  proportional  reasoning.  The  student  uses  “addition  steps”  rather  than  multipliers  from  one  cylinder  to  the  other  inaccurately.        Interview  with  Students  in  Regard  to  Problem  #19  (MCI)    Student  133  Researcher:   Why  did  you  choose  answer  D  for  problem  number  9?  Student  133:   I  knew  it  wasn’t  moving  at  first  so  it  had  to  be  either  B  or  D.    And  then  I  

was  going  to  pick  B,  but  then  I  changed  my  mind.  Researcher:   Why  did  you  choose  your  mind?  Student  133:   Because  the  position  was  getting  closer  to  the  origin  so  it  had  to  be  D.  Researcher:   What  do  you  mean  “closer  to  the  origin”?  Student  133:   The  thing  is  going  back  to  where  to  the  start  or  wherever  zero  is.  It  is  just  

going  the  other  way.  Back  towards  the  origin.  

Page 26: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 26

 Student  112  Researcher:   Why  did  you  choose  answer  B  for  problem  number  9?  Student  112:   The  thing  isn’t  moving,  then  it  rolls  down  the  hill.  Researcher:   How  do  you  know  it  is  not  moving  at  first?  Student  112:   Because  it  is  not  moving  its  direction  for  the  first  bit.  Researcher:   Its  direction?  Student  112:   I  mean  its  position.  Researcher:   So  then,  how  can  you  tell  it  rolls  downhill?  Student  112:   The  thing  rolls  down  the  slope  and  stops  at  the  bottom  [points  to  graph].    Student  102  Researcher:   Why  did  you  choose  answer  B  for  problem  number  9?  Student  102:   The  object  is  not  moving  at  first,  but  then  it  drops  to  zero  then  stops.    It  

was  on  top  of  a  hill  like  10  feet  up,  then  rolls  down  to  like  0.  Researcher:   What  is  the  position  a  measure  of  in  this  graph?  Student  102:   The  height  above  the  ground.  Researcher:   The  object  is  above  the  ground?  Student  102:   No.  No,  the  object  is  above  the  bottom  of  the  hill.    Like,  its  sea  level  thing.    

Altitude.    Comment:    Student  133  demonstrated  logical  proportional  reasoning  in  describing  the  situation  of  the  position  versus  time  graph.    The  student  eliminated  two  answers  based  on  the  constant  change  in  position  then  realized  that  the  origin  was  not  the  point  (0,0),  but  rather  the  zero  of  the  object’s  reference  point  to  position.    This  student  was  one  of  six  who  scored  this  question  correctly  on  the  post-­‐test.        Student  112  showed  a  shape  thinking  logic  to  the  problem;  that  the  object  follows  the  path  of  the  graph.    The  student  recognizes  that  the  object’s  motion  is  zero  at  the  beginning,  but  then  points  to  the  “downhill”  portion  of  the  graph.        However,  student  102  also  chose  the  same  answer  as  student  112,  but  gave  a  valid  reasoning  to  his  answer.    He  defined  his  position  as  distance  above  the  ground  (vertical  distance)  and  not  the  horizontal  distance  assumed  for  the  correct  answer.        This  does  raise  an  interesting  point  in  the  validity  of  question  #19  on  the  MCI.    If  two  correct  answers  can  be  determined  by  defining  the  position  differently,  then  revision  on  the  MCI  should  be  considered.  

 

Page 27: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 27

Analysis  Examining  the  class  means  for  pre  and  post-­‐test  scores  on  the  MCI  shows  a  significant  increase  in  scores  from  pre  to  post-­‐test  for  the  experimental  group  but  essentially  the  same  pre  and  post-­‐test  mean  for  the  control  group.    Both  the  experimental  and  control  groups  achieved  a  positive  normalized  gain  from  pre  to  post-­‐test,  but  the  control  group’s  gain  is  statistically  significant.    These  two  tests  indicate  that  working  through  various  labs,  collecting  data,  graphing,  analyzing,  and  whiteboarding  ideas  may  help  students  develop  mathematics  concepts.    The  experimental  group  at  Red  Mountain  High  School  was  chosen  in  large  part  due  to  the  nature  of  the  students  and  the  course  design.    Each  student  has  been,  in  some  way,  lower  than  average  in  mathematics  as  indicated  by  the  D  or  lower  they  received  as  a  grade  in  at  least  one  semester  of  the  prerequisite  courses  of  algebra  1  or  geometry.  Because  they  lacked  the  skills  to  continue  to  algebra  2,  a  course  was  designed  to  bridge  that  gap.    This  course  was  very  open-­‐ended  in  its  nature,  but  had  a  common  focus  on  real  world-­‐based  data.    The  control  group  was  chosen  to  reflect  a  course  that  was  very  set  in  its  traditional  approach,  and  the  most  reasonable  choice  was  an  algebra  2  course.    However,  during  the  second  half  of  the  school  year,  the  control  group  was  introduced  to  mathematical  concepts  in  a  non-­‐traditional  way  under  the  guidance  of  Arizona  State  University’s  National  Science  Foundation  Math-­‐Science  Partnerships  grant,  Project  Pathways,  curriculum.      As  part  of  this  process,  the  control  group  also  participated  in  the  golf  ball  lab.  Though  both  groups  had  treatments,  the  experimental  group  was  engaged  in  this  treatment  from  the  beginning  of  the  school  year  while  the  control  group  had  a  much  smaller  dose  confined  to  the  2nd  semester.          The  experimental  group  had  the  benefit  of  ample  time  to  investigate  and  develop  mathematical  concepts  introduced  in  classroom  activities.    There  were  no  outside  influences  pushing  the  class  such  as  district  exams  or  the  need  to  pass  the  Arizona  Instrument  for  Measuring  Standards  (AIMS).    The  class  progressed  at  a  leisurely  and  fluid  pace  throughout  the  year,  something  that  is  often  not  possible  in  most  mathematics  classrooms.    This  extra  time  led  to  very  enriching  and  lively  discussions  on  content  and  application  of  mathematics  outside  the  confines  of  the  classroom.  Another  luxury  of  the  course  was  that,  even  though  the  students  had  not  been  top  performers  in  mathematics,  the  course  was  optional.    The  students  had  the  minimum  math  credits  to  graduate,  but  were  sufficiently  motivated  to  continue  to  either  prepare  for  the  algebra  2  course  or  their  college  courses  for  the  following  year.    A  secondary  goal  of  conducting  the  course  in  a  non-­‐traditional  way  was  to  allow  communication  skills  to  flourish  in  the  context  of  math  and  science.    As  the  school  year  

Page 28: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 28

progressed,  students  grew  accustomed  to  clearly  expressing  ideas  to  their  classmates,  while  respecting,  encouraging,  challenging,  and  understanding  the  ideas  of  others.    

Conclusion  

Having  the  two  experimental  and  control  groups  take  the  same  course  was  not  feasible  at  Red  Mountain  High.    It  is  interesting  to  note,  however,  that  the  control  group  showed  positive  normalized  gains  while  being  treated  in  a  smaller  dose  of  the  experimental  treatment.    The  discourse  of  the  experimental  group  is  what  really  set  it  apart  from  a  traditional  mathematics  course.    The  time  that  could  be  used  to  develop  ideas,  whiteboard  results,  and  come  to  conclusions  within  the  class  was  generous  and  well  received  by  the  students.    The  students  articulated  their  thoughts  and  demonstrated  it  to  their  peers.    This  may  be  the  largest  factor  of  the  significant  gains  on  MCI  pre  and  post-­‐test  scores.      

Investigator  2  Adrian  Boyarsky,  Biology  and  Physics  Teacher,  Desert  Vista  High  School  

 

Method  This  study  included  a  control  group  and  an  experimental  group.    The  control  group  was  made  up  of  22  juniors  and  seniors  in  a  regular  Algebra  2  class.    These  students  took  the  Mathematics  Concepts  Inventory  (MCI)  within  the  first  two  weeks  of  school  in  fall  2008.    The  class  ran  as  normal  for  27  weeks,  and  students  took  the  MCI  again  at  the  end  of  the  3rd  quarter  in  March  2009.    The  experimental  group  included  21  juniors  and  seniors.    Twenty  of  these  students  were  concurrently  enrolled  in  regular  Algebra  2,  and  one  student  was  concurrently  enrolled  in  a  regular  pre-­‐calculus  class.    These  students  were  dispersed  among  five  different  math  teachers,  but  all  of  these  students  were  enrolled  in  regular  physics  1,  a  Modeling  Instruction  mechanics  class.    These  students  also  took  the  MCI  during  the  first  week  of  class  and  again  at  the  end  of  the  3rd  quarter.    Students  in  the  regular  physics  class  worked  through  a  student-­‐centered,  model-­‐based  mechanics  curriculum  and  were  measured  for  gains  in  understanding  of  mathematics  concepts.    Each  unit  began  with  an  inquiry  based  lab  activity  in  which  students  observed  some  phenomenon  and  found  relationships  that  might  exist  between  variables.    Students  learned  how  to  express  relationships  in  several  ways  including  diagrammatically,  graphically,  mathematically,  and  verbally.    Students  presented  their  findings  in  each  lab  using  all  of  these  methods.      Students  shared  findings  and  the  class  would  reach  consensus  on  any  relationships  that  existed  between  experimental  

Page 29: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 29

variables.    The  second  step  of  each  unit  focused  on  using  these  relationships  to  solve  physics  problems.    This  included  some  supplementary  labs,  worksheets,  and  teacher  generated  problems.    Each  unit  concluded  with  either  a  lab  practical  or  culminating  project  in  which  students  had  to  use  their  understanding  of  generated  models  to  solve  larger  problems.      No  special  mathematical  instruction  was  given  to  the  experimental  group  in  this  study  other  than  the  mathematics  needed  to  learn  physics  through  a  modeling  approach.    

Data    QUANTITATIVE  DATA  Experimental  Group:  Pre-­‐test  scores  on  the  twenty-­‐three  question  MCI  reveal  a  mean  =  14.42  (~63%).  Post-­‐test  scores  show  a  mean  =  17.1  (~74%).    A  paired  two  sample  for  means  t  test  shows  the  increase  between  pre  and  post-­‐test  scores  to  be  statistically  significant  with  α  =  .0003.    t-­‐Test:  Paired  Two  Sample  for  Means       Experimental  Pre   Experimental  Post  Mean   14.4   17.1  Standard  Deviation   3.82   3.72  Observations   21   21  Hypothesized  Mean  Difference   0    Df   20    t  Stat   -­‐4.37    P(T<=t)  one-­‐tail   0.00015    t  Critical  one-­‐tail   1.72    P(T<=t)  two-­‐tail   0.00030    t  Critical  two-­‐tail   2.09        

Page 30: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 30

The  following  graphs  show  the  distribution  of  scores  for  both  the  pretest  and  posttest  for  the  experimental  group.    While  the  sample  is  small,  a  definite  shift  in  the  data  can  be  seen.    With  the  experiemental  group,  the  shift  is  to  the  right.    

 

   Control  Group:  Pre-­‐test  scores  on  the  MCI  reveal  a  mean  =  14.22  (~62%).    Post-­‐test  scores  show  a  mean  =  15.28  (~66%).    A  paired  two  sample  for  means  t  test  shows  this  increase  between  pre  and  post-­‐test  scores  to  be  statistically  significant  with  α  =  .014.    

Mean = 14.4 S.D. = 3.82 n = 21

Mean = 17.1 S.D. = 3.72 n = 21

Page 31: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 31

t-­‐Test:  Paired  Two  Sample  for  Means       Control  Pre     Control  Post  Mean   14.2   15.3  Standard  Deviation   3.55   2.51  Observations   22   22  Hypothesized  Mean  Difference   0    Df   21    t  Stat   -­‐2.67    P(T<=t)  one-­‐tail   0.00720    t  Critical  one-­‐tail   1.72    P(T<=t)  two-­‐tail   0.0144    t  Critical  two-­‐tail   2.08        The  following  graphs  show  the  shift  between  pre-­‐test  and  post-­‐test  scores  for  the  control  group.    Unlike  the  shift  to  the  right  of  the  experimental  group,  the  control  group  shows  more  of  a  shift  to  the  middle.    

 

Mean = 14.2 S.D. = 3.55 n = 22

Page 32: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 32

   Experimental  versus  Control  Group  While  both  the  control  group  and  the  experimental  group  showed  statistically  significant  increases,  the  amount  of  increase  is  different.    The  graph  below  shows  the  pre-­‐test  and  post-­‐test  means  of  both  groups.  

   When  comparing  experimental  and  control  group  pre  and  post-­‐test  scores  on  the  MCI  for  students  at  Desert  Vista,  a  few  things  of  statistical  significance  are  found.        The  average  normalized  gain  for  the  experimental  group  in  this  study  is  <g>  =  0.33.    This  is  considered  by  Hake  to  be  a  medium  gain.    The  average  normalized  gain  of  the  control  group,  <g>  =  0.06,  is  considered  to  be  a  low  gain.  

Mean = 15.3 S.D. = 2.51 n = 22

Page 33: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 33

 t-­‐Test:  Two-­‐Sample  Assuming  Equal  Variances            

  Experimental  <g>   Control  <g>    Mean   0.328   0.0713        Variance   0.0623   0.0521  Observations   21   22  Pooled  Variance   0.0571    Hypothesized  Mean  Difference   0    df   41    t  Stat   3.52    P(T<=t)  one-­‐tail   0.000532    t  Critical  one-­‐tail   1.68    P(T<=t)  two-­‐tail   0.00107    t  Critical  two-­‐tail   2.02      

   

 Qualitative  Data  Classroom  Notebooks  Two  qualitative  instruments  were  used  with  the  experimental  group  only.    The  first  was  class  notebooks  which  housed  all  the  work  each  student  did  for  the  entire  course,  including  labs,  worksheets,  and  projects.    As  the  course  progressed,  these  were  periodically  collected.    For  the  purposes  of  this  project,  the  notebooks  would  show  any  progression  that  had  occurred  in  the  student’s  understanding  of  mathematical  concepts  and  how  they  might  be  applied  in  different  situations.    Students  were  scored  on  how  well  they  showed  relationships  mathematically  using  graphing  and  algebraic  methods.      It  was  clear  that  while  students  were  able  to  create  mathematical  models  for  data  collected  throughout  various  labs  and  graphically  represent  them,  they  failed  more  times  than  not  to  be  able  to  create  meaning  for  these  relationships.    Students  got  better  

Page 34: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 34

and  better  at  manipulating  variables  in  a  lab  setting,  finding  co-­‐variation  within  the  variables  and  expressing  the  relationships.    The  most  difficult  part  for  these  students,  even  at  the  end  of  the  course,  was  to  express  the  meaning  of  these  relationships  in  English  without  using  numbers.    While  there  were  a  few  exceptions,  this  was  a  general  trend  that  was  seen  most  of  the  time.    For  example,  questions  where  numbers  were  given  and  students  had  to  solve  for  one  or  more  variables  were  answered  correctly  the  majority  of  the  time,  whereas  questions  involving  conceptual  reasoning  without  numbers  gave  students  considerable  trouble.    

Post-­‐instruction  Interview  Problems  The  second  qualitative  data  set  collected  was  a  set  of  interviews.    During  the  interview,  each  student  was  given  questions  similar  to  those  found  on  the  MCI.    They  were  then  asked  to  solve  the  problem  and  describe  their  methods.    A  camera  recorded  their  written  work.  The  first  question  posed  was  a  variation  of  a  question  on  the  MCI:      To  the  right  are  drawings  of  a  wide  and  a  narrow  cylinder.  The  cylinders  have  equally  spaced  marks  on  them.  Water  is  poured  into  the  wide  cylinder  up  to  the  4th  mark  (see  A).  This  water  rises  to  the  6th  mark  when  poured  into  the  narrow  cylinder  (see  B).    Water  is  now  poured  into  the  narrow  cylinder  (described  in  Item  5  above)  up  to  the  11th  mark.  How  high  would  this  water  rise  if  it  were  poured  into  the  empty  wide  cylinder?    a.  to  about  7  1/3  b.  to  about  7  1/2  c.  to  about  8  d.  to  about  9  e.  none  of  these  answers  is  correct  

Page 35: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 35

     

Student  1  response:  

A)    B)      

           

A)      Student  recognizes  the  correct  ratio.  B)      Student  lists  many  correct  relationships  using  the  ratio,  but  has  

trouble  since  the  answer  is  not  a  whole  number.    Chooses  7  ½  because  he  does  not  calculate  the  ratio  correctly.  

Page 36: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 36

           

Student  2  Response:  

A)    B)      

                 

A)   Student  correctly  recognizes  the  ratio.  B)      Student  picks  the  correct  answer  by  using  the  ratio  22:33.    

Student  divided  11  by  33  on  the  calculator  and  then  multiplied  the  answer  by  22.    While  the  work  is  not  shown  on  the  paper,  it  does  lead  the  student  to  the  right  answer.  

Page 37: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 37

 Student  3  Response:  

A)          

B)            

 

A)   Student  correctly  realizes  the  ratio  and  the  relationship  between  the  2  situations.    He  sets  up  an  equation.  

B)   Student  uses  basic  algebra  to  isolate  the  variable  and  solve  the  question  correctly.  

Page 38: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 38

The  last  question  posed  to  the  students  was  as  follows:    Mr.  Smith  leaves  city  1  and  travels  towards  city  2  at  a  constant  speed  of  40mph.    At  the  same  time,  Mr.  Jones  leaves  city  2  and  travels  towards  city  1  at  a  constant  speed  of  55mph.    The  cities  are  500  miles  apart.    How  long  will  it  take  for  Mr.  Smith  to  pass  Mr.  Jones  on  the  road?    How  far  from  city  1  will  they  pass  each  other?      

Student  1  response:  

A)  B)                                            

A)      Student  1  began  by  creating  a  diagram  that  represented  the  situation.  

B)      Student  1  then  recognized  the  relationship  between  variables.    He  uses  the  given  data  to  determine  the  time  it  takes  for  each  man  to  cross  the  entire  500  miles  instead  of  how  long  it  takes  for  them  to  pass  each  other.  

C)      When  the  student  realizes  that  the  times  are  not  alike,  he  decides  to  take  the  average  of  the  two  values  to  get  his  time.    The  student  stops  after  this  step.  

Page 39: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 39

   

Student  2  Response:  

A)       B)    

C)                                  

A)     Student  begins  with  a  diagram  of  the  situation,  labeling  directions,  speeds  and  distances.  

B)     Student  realizes  that  since  there  is  a  constant  speed  he  can  calculate  how  far  the  two  men  will  travel.    Rather  than  setting  up  equations,  the  student  makes  distance  calculations  for  both  men  using  the  same  time  until  they  reach  the  same  position.  

C)     Once  student  finds  the  position,  he  records  how  long  it  took  the  men  to  get  there  and  how  far  each  has  traveled.  

Page 40: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 40

 Student  3  response:  

 

A)    B)    

C)    D)                                  

A)      Student  begins  by  writing  an  appropriate  formula  for  one  of  the  men.    Student  substitutes  in  one  of  the  men’s  data  and  gets  a  time.    The  student  calculated  the  total  time  for  Mr.  Smith  to  travel  the  entire  500m.      

B)      Student  substitutes  his  time  in  to  solve  for  distance.    He  gets  500miles  as  an  answer  but  does  not  seem  bothered  by  this.  

C)      The  student  does  assume  that  the  two  men  are  traveling  for  the  same  time  and  uses  this  to  solve  for  Mr.  Jones.    The  student  has  found  how  far  Mr.  Jones  would  travel  while  Mr.  Smith  traveled  the  entire  trip.      

D)      The  student  takes  several  minutes  to  try  to  understand  the  relationship  between  his  two  distances.    He  subtracts  one  from  the  other  to  get  his  final  answer.    No  explanation  for  this  is  given.  

Page 41: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 41

Analysis  By  examining  the  results  of  the  pre  and  post  MCI  tests,  significant  increases  in  both  the  control  group  and  experimental  group  can  be  found.    However,  the  increases  in  the  experimental  group  are  significantly  higher  than  those  in  the  control  group.    All  statistical  data  supports  the  fact  that  students  in  the  physics  class  outperformed  students  that  were  only  in  the  algebra  2  class.    This  suggests  that  a  Modeling  Instruction  physics  class  might  increase  student  understanding  of  mathematics  concepts.    The  physics  class  provided  opportunity  for  students  to  continually  use  mathematics  to  find  relationships.    By  creating  mathematical  models  and  using  these  models  to  explain  phenomena,  students  seem  to  gain  a  better  understanding  of  specific  math  concepts.        It  is  interesting  to  examine  which  questions  on  the  MCI  showed  the  most  significant  improvement  in  the  experimental  group.    Most  of  the  increase  can  be  found  in  six  specific  questions.    While  the  control  group  showed  increased  scores  overall,  results  of  the  same  six  questions  showed  significantly  less  gain.      The  following  are  proportional  reasoning  problems:    

     

5.    Below  are  drawings  of  a  wide  and  a  narrow  cylinder.  The  cylinders  have  equally  spaced  marks  on  them.  Water  is  poured  into  the  wide  cylinder  up  to  the  4th  mark  (see  A).    This  water  rises  to  the  6th  mark  when  poured  into  the  narrow  cylinder  (see  B).  

Both  cylinders  are  emptied  (not  shown)  and  water  is  poured  into  the  wide  cylinder  up  to  the  6th  mark.  How  high  would  this  water  rise  if  it  were  poured  into  the  empty  narrow  cylinder?    a.   to  about  the  8th  mark  

b.   to  about  the  9th  mark  

c.   to  about  the  10th  mark  

d.   to  about  the  12th  mark  

e.   none  of  these  answers  is  correct    

6.  Question  number  5  is  true  because  

a.   the  answer  can  not  be  determined  with  the  information  given.  b.   it  went  up  2  more  before,  so  it  will  go  up  2  more  again.  c.   it  goes  up  3  in  the  narrow  for  every  2  in  the  wide.  d.   the  second  cylinder  is  narrower.  e.   you  must  actually  pour  the  water  and  observe  to  find  out.  

   

Page 42: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 42

In  the  pre-­‐test,  23%  of  control  group  students  got  question  5  correct,  compared  to  19%  of  students  in  the  experimental  group.    However,  in  the  posttest,  while  the  control  group  increased  to  27%  correct,  the  experimental  group  increased  to  47%.    While  this  percentage  is  still  low,  it  is  a  drastic  increase.    These  problems  can  help  measure  a  student’s  ability  to  do  proportional  reasoning.    The  evidence  suggests  that  by  being  exposed  to  physics  Modeling  Instruction,  students  increase  their  abilities  to  reason  proportionally.    The  proportional  reasoning  abilities  can  also  be  seen  qualitatively  in  the  student  interviews.    While  one  student  struggled  with  the  math,  all  the  interviewed  students  were  able  to  recognize  the  correct  proportion  and  use  their  understanding  of  the  proportions  to  explain  the  reasoning  behind  their  answers.    

15.  Suppose  you  are  moving  to  the  right  at  5  m/s.    A  timer  starts  the  watch  when  you  are  2  m  from  the  starting  line.    Which  equation  best  describes  your  position  as  a  function  of  time?  

 

a.   p  =  2t  +  5  b.   p  =  5t  +  2  c.   p  =  5t  –  2  d.   p  =  5t  

   This  problem  is  testing  the  student’s  ability  to  represent  a  given  situation  with  a  mathematical  equation.    Scores  for  the  control  group  on  this  question  increased  from  23%  to  36%  between  pretest  and  posttest,  but  the  experimental  group  increased  from  24%  to  62%.    The  significantly  higher  increase  in  the  experimental  group  seems  to  suggest  that  physics  Modeling  Instruction  causes  a  better  understanding  of  how  to  represent  relationships  mathematically.    In  regular  math  classes,  students  are  very  rarely  asked  to  do  this.    More  often,  they  are  given  the  relationship  and  asked  to  solve  for  variables  in  a  given  situation.    By  having  to  constantly  come  up  with  their  own  mathematical  formulas  throughout  the  physics  course,  it  should  make  sense  that  these  students  would  become  better  at  this  skill.    The  results  seen  here  definitely  support  the  idea  that  delivering  mathematics  within  a  context  where  students  must  investigate  and  express  relationships  for  themselves  leads  to  higher  math  reasoning  abilities  than  they  might  attain  in  a  conventional  math  class.    

Page 43: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 43

The  following  question  asks  students  to  interpret  the  physical  meaning  of  a  graph:    

 19.   Here  is  a  graph  of  an  object’s  motion.    Which  sentence  is  a  correct  interpretation?                    

a.   The  object  rolls  along  a  flat  surface.    Then  it  rolls  forward  down  a  hill,  and  then  finally  stops.  

b.   The  object  doesn’t  move  at  first.    Then  it  rolls  forward  down  a  hill  and  finally  stops.  

  c.   The  object  is  moving  at  a  constant  velocity.    Then  it  slows  down  and  stops.  

d.   The  object  doesn’t  move  at  first.    Then  it  moves  backwards  and  then  finally  stops.  

 

 

The  data  show  that  the  experimental  group  scored  better  than  the  control  group  on  this  question  on  the  posttest.    While  the  proficiency  of  the  control  group  did  double  from  18%  to  36%,  the  experimental  group’s  proficiency  tripled  from  14%  to  42%.      While  both  groups  showed  significant  increases  in  their  ability  to  explain  the  meaning  of  the  graph,  the  experimental  group  scored  higher  and  had  a  larger  gain.    This  result  should  make  sense  to  those  who  teach  using  the  modeling  approach.    In  every  lab,  students  are  asked  to  create  graphical  representations  of  their  data  and  explain  the  meaning  of  the  graph.    This  practice  requires  them  to  see  a  graph  and  determine  its  significance.    Because  this  question  is  asked  in  a  context  with  which  the  physics  class  has  experience,  it  may  be  more  informative  to  test  a  graphical  representation  that  physics  students  are  not  as  familiar  with,  to  see  if  they  still  achieve  better  results  than  students  not  in  the  physics  class.  

p o s i t i o n

time 0

Page 44: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 44

The  following  question  tests  simple  graphical  analysis:  

 

 

In  an  experiment,  a  lab  group  graphed  the  mass  and  volume  of  samples  of  two  substances,    

A  and  B  to  determine  the  density  of  each.  

!

density =massvolume

 

20.   Which  of  the  statements  about  the  substances  is  correct?  

a. The  density  of  substance  B  is  about  6  g/cm3.  b. A  6  cm3  sample  of  A  is  has  greater  mass  than  a  6  cm3  sample  of  B.  c. The  density  of  substance  A  is  greater  than  the  density  of  substance  B.  d. A  20  g  sample  of  A  has  a  larger  volume  than  a  20  g  sample  of  B.    

     The  results  to  this  question  were  quite  shocking.    The  control  group  showed  no  gain  in  answering  this  question  between  pre-­‐test  and  post-­‐test,  with  a  total  of  only  23%  of  students  answering  correctly  both  times.    The  experimental  group  had  33%  of  students  answer  this  question  correctly  on  the  pre-­‐test,  but  a  large  gain  to  76%  by  the  post-­‐test.    This  stunning  result  could  be  the  result  of  the  continuous  exposure  to  graphs  in  the  physics  class.    Students  worked  with  graphs  like  these  almost  every  day.    The  practice  seems  to  have  improved  their  graphical  analysis  skills,  an  extremely  important  Algebra  2  topic.    The  evidence  suggests  that  by  going  through  the  modeling-­‐based  physics  class,  the  students  in  the  experimental  group  gained  more  in  the  area  of  graphical  analysis  than  students  enrolled  only  in  a  math  class.    The  final  question  in  which  the  experimental  group  significantly  outgained  the  control  group  is  shown  below.    It  asks  about  measurement  technique.    The  results  should  be  noted,  but  the  concept  of  measurement  is  one  that  is  taught  in  the  science  class,  not  necessarily  the  math  class.    The  results  do  not  add  much  to  the  idea  that  a  modeling  science  curriculum  increases  student  achievement  in  math.  

Page 45: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 45

   

16.  You  are  measuring  the  length  of  objects  in  the  lab  with  the  ruler  below.  Which  of  the  following  best  expresses  the  width  of  the  business  card?  

   

a. 5  cm  

b. 5.0  cm    

c. 5.05  cm  

d. 5.50  cm      While  the  quantitative  test  data  indicate  that  students  enrolled  in  a  Modeling  Instruction  physics  class  achieve  higher  in  specific  mathematical  concepts,  the  level  of  that  achievement  is  better  seen  when  analyzing  the  qualitative  data.    When  asked  in  interviews  to  solve  a  complex  algebraic  problem,  the  physics  students  struggled.    Not  one  of  the  interviewed  students  used  successful  graphing  or  algebra  skills  to  solve  the  problem,  even  though  it  was  asked  in  a  context  with  which  they  were  familiar.    Also,  when  asked  a  slightly  more  difficult  version  of  the  proportional  reasoning  problem,  students  struggled  with  the  math  needed  to  solve  the  problem.    While  all  students  recognized  the  proportional  relationship,  solving  for  an  unknown  value  proved  to  be  challenging  for  two  of  the  three  students  described  in  this  paper.    In  addition,  this  trend  was  also  seen  in  the  collected  lab  notebooks  throughout  the  year.    Students  were  unable  to  express  more  complex  relationships  or  solve  problems  with  multiple  unknowns  with  any  type  of  consistency.    The  basic  level  of  understanding,  however,  showed  an  increase  as  the  year  progressed  and  students  became  more  proficient  at  proportional  reasoning  and  graphical  analysis.  

 

Conclusions  Before  proclaiming  bold  conclusions  about  the  data  collected  at  Desert  Vista,  it  is  important  to  understand  the  circumstances  that  were  different  at  that  location  compared  to  Buckeye  or  Red  Mountain.    First,  the  sample  size  of  both  the  control  group  and  the  experimental  group  were  comparatively  small.    In  order  to  be  more  confident  as  to  the  meaning  of  the  information  gained,  it  would  be  nice  to  have  worked  with  larger  numbers  of  students.    Second,  unlike  the  other  schools  in  this  study,  the  experimental  group  at  Desert  Vista  was  not  a  non-­‐traditional  math  class.    All  the  students  in  the  

Page 46: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 46

experimental  group  were  enrolled  in  math,  most  in  Algebra  2.    They  all  had  different  math  teachers  with  different  teaching  styles  that  could  have  had  a  severe  impact  on  the  results  obtained  here.    The  control  group,  on  the  other  hand,  was  all  from  the  same  teacher’s  classroom  and  therefore  exposed  to  the  same  teaching  style  in  math  the  entire  year.    The  key  factor  that  separates  the  experimental  group  from  the  control  group  was  the  enrollment  of  the  experimental  group  in  the  Modeling  Instruction  physics  class.    Because  of  these  factors,  the  conclusions  made,  based  on  results  found  by  both  quantitative  and  qualitative  observations  should  not  be  mistaken  for  absolute  fact.    With  that  being  said,  there  definitely  is  evidence  to  support  some  general  conclusions.    The  data  obtained  from  pre-­‐tests  and  post-­‐tests  of  the  MCI  suggest  that  being  exposed  to  the  modeling  method  of  instruction  in  a  physics  class  helps  improve  student  achievement  in  mathematics  concepts.    This  result  should  not  be  shocking  to  those  who  have  experienced  the  ASU  Modeling  Instruction  courses.  These  results  indicate  that  if  similar  practices  were  used  in  a  mathematics  classroom,  students  would  have  higher  achievement  than  in  a  traditional  math  class.    Results  also  suggest  that  schools  would  be  wise  to  develop  ways  to  integrate  math  and  science  classes.    At  Desert  Vista,  higher  level  classes  have  already  taken  this  route  as  calculus  and  advanced  physics  teachers  work  together.    This  approach  might  work  even  better  for  students  at  lower  levels  where  development  of  key  math  concepts  is  slowest.    It  was  embarrassing  to  see  that  in  pre-­‐test  data,  both  the  control  group  and  the  experimental  group  had  less  than  30%  of  students  be  able  to  take  information  correctly  from  a  graph.    By  integrating  math  concepts  within  the  context  of  science  inquiry  at  middle  school,  freshman  and  sophomore  levels,  development  of  key  mathematics  concepts  might  be  enhanced  drastically.    The  data  also  indicate  which  specific  mathematical  concepts  a  modeling  approach  develops.    Proportional  reasoning  and  graphical  analysis  abilities  seemed  to  be  the  most  drastically  increased  basic  math  concepts  due  to  the  physics  instruction.    Students  also  found  it  easier  to  express  phenomena  in  terms  of  numbers  and  equations;  these  skills  are  practiced  more  in  the  science  class  than  in  the  math  class  but  have  a  huge  impact  on  student  understanding  of  math.    By  looking  at  the  qualitative  data,  the  level  of  gain  in  these  areas  can  be  more  accurately  determined.    Even  though  basic  math  concepts  improved,  the  level  of  improvement  was  limited  by  the  quality  of  instruction  from  a  first  year  physics  teacher  new  to  Modeling  Instruction.    The  instructor  was  also  juggling  five  biology  classes  that  consumed  most  of  his  prep  time.        Since  Modeling  Instruction  is  a  complex  skill  that  improves  with  experience,  the  results  shown  at  Desert  Vista  could  show  even  greater  increase  as  the  instruction  improves.    The  depth  at  which  students  were  able  to  show  their  understanding  of  relationships  was  expected  to  be  less  than  what  would  be  seen  in  an  experienced  modeler’s  classroom.    With  experience,  the  results  seen  here  could  have  been  far  more  significant.      

Page 47: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 47

   

Investigator  3  Mark  Henrion,  Mathematics  and  Physics  Teacher,  Buckeye  Union  High  School  

 

Method  In  an  effort  to  develop  mathematical  concepts  in  Algebra  2,  labs  were  implemented  at  every  opportunity  throughout  the  first  semester  of  the  2008-­‐2009  school  year.    Labs  were  often  used  to  introduce  new  topics  that  the  class  would  be  studying  for  the  next  several  weeks.    Each  lab  was  followed  by  a  whiteboard  meeting  where  students  shared  their  own  ideas  and  interpretations  of  what  had  occurred  throughout  the  experiment.    The  classes  in  which  these  labs  were  implemented  will  be  referred  to  as  the  experimental  group,  while  the  classes  consisting  of  traditional  lecture,  notes,  and  tests,  will  be  referred  to  as  the  control  group.    All  students  took  the  twenty-­‐three  question  Mathematics  Concepts  Inventory  (MCI),  a  test  developed  by  the  Physics  Underpinnings  Action  Research  Team  at  Arizona  State  University  in  June  of  2000,  during  the  first  week  of  school  and  again  at  the  end  of  the  third  quarter  in  March  2009.    The  following  is  a  brief  overview  of  the  labs  implemented  throughout  the  school  year.    Most  of  the  students  in  both  the  experimental  and  control  groups  were  in  the  eleventh  grade.    Buggy  labs  Focus  The  first  two  labs  of  this  school  year  focused  on  developing  the  students’  ability  to  reason  proportionally,  interpret  linear  position  versus  time  graphs,  explain  the  physical  meaning  of  the  slope  of  a  graph,  and  find  the  equation  of  a  line  of  best  fit  for  a  data  set.      Equipment  Buggy  cars,  batteries,  stopwatches,  meter  sticks,  and  tape.    Activity  For  the  first  part  of  this  activity,  each  group  of  students  was  given  a  single  buggy  car  and  asked  to  develop  a  way  to  find  the  speed  of  the  car  using  their  equipment.    Instructions  given  to  the  students  were  kept  somewhat  vague  to  allow  for  their  own  creativity,  but  it  was  requested  that  each  group  have  some  kind  of  position  versus  time  graph  at  the  end  of  their  experiment.    Most  groups  began  measuring  the  amount  of  time  it  took  for  their  buggy  to  travel  various  distances,  thus  producing  a  scatter  plot  with  time  on  the  horizontal  axis  and  position  on  the  vertical  axis.    The  students  put  these  data  into  their  graphing  calculators  to  produce  graphs  like  the  one  shown  below.      

Page 48: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 48

 The  next  step  was  finding  and  interpreting  a  line  of  best  fit  for  this  data  set.    Our  TI-­‐84+  graphing  calculators  label  the  horizontal  components  of  graphs  with  an  “x”  and  the  vertical  components  with  a  “y.”    The  students  had  to  modify  these  labels  to  fit  the  needs  of  our  experiment.    An  example  of  the  calculator’s  display  and  a  student’s  interpretation  is  shown  below.      

 “The  letter  ‘y’  represents  position,  the  letter  ‘a’  is  the  slope,  and  the  letter  ‘b’  is  the  y-­‐intercept.    The  slope  has  units  of  centimeters  per  second  since  centimeters  are  the  units  on  our  vertical  axis  and  seconds  are  the  units  on  our  horizontal  axis.    The  y-­‐intercept  has  units  of  centimeters.    This  equation  means  that  our  car  starts  at  0.67  centimeters  behind  the  ruler  and  travels  at  a  constant  speed  of  8.65  centimeters  per  second  after  that.”    After  finding  and  interpreting  the  equation  of  a  single  buggy  car,  each  group  was  given  a  second,  faster  buggy  car  and  asked  to  run  a  couple  of  different  experiments.    First,  students  were  asked  to  start  the  cars  at  the  same  position  and  graphically  represent  their  motion.    Graphs  like  the  one  below  were  common.  

Page 49: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 49

 Based  on  this  graph  and  the  previous  experiment,  students  began  to  understand  that  a  faster  car  meant  a  steeper  slope  on  their  position  versus  time  graph.    The  fact  that  both  graphs  were  linear  means  that  both  cars  were  moving  at  a  constant  speed,  and  equal  vertical  intercepts  mean  that  the  cars  started  at  the  same  position.  Students  were  then  asked  to  start  their  faster  car  behind  their  slower  car  and  graphically  represent  their  motion.    The  class  was  now  getting  graphs  like  the  one  below.      

 The  car  with  the  head  start  is  represented  by  the  line  with  a  greater  vertical  intercept,  and  the  faster  car  is  represented  by  the  line  with  the  steeper  slope.    The  intersection  point  of  the  two  lines  is  where  the  faster  car  has  caught  up  to  and  is  passing  the  slower  car.        Finally,  students  were  asked  to  graphically  represent  the  motion  of  their  buggy  cars  if  they  were  set  to  run  in  opposite  directions.    Graphs  like  the  following  were  common.  

Page 50: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 50

 Here,  the  sign  on  the  slope  simply  represents  the  direction  of  motion  of  the  car.    Some  students  had  trouble  getting  past  the  idea  that  one  car  was  traveling  uphill  while  the  other  was  traveling  downhill,  but  eventually  became  convinced  of  the  level  nature  of  the  floor  in  the  classroom.      For  each  experiment,  students  were  asked  to  find  and  interpret  the  slope,  vertical  intercept,  and  intersection  points  of  the  lines.    Students  were  also  asked  to  write  a  clear  English  sentence  explaining  what  exactly  is  happening  in  the  experiment.        Gravity  lab  Focus  This  lab  was  designed  to  further  develop  proportional  reasoning,  physical  meaning  of  slope,  and  skills  needed  to  find  and  interpret  a  line  of  best  fit.        Equipment  Spring  scales  and  hanging  mass  sets.    Activity  This  activity  began  with  a  group  discussion  about  how  Earth’s  gravity  affects  objects  of  different  sizes.    Some  students  were  aware  of  the  fact  that  a  ten  kilogram  mass  and  a  one  kilogram  mass  should  fall  to  the  earth  at  the  same  speed,  but  none,  through  no  fault  of  their  own,  had  gone  beyond  that  and  concluded  that  the  earth  would  need  to  exert  a  greater  force  on  the  larger  mass  if  it  were  going  to  accelerate  it  at  the  same  rate  as  the  smaller  mass.    Eventually,  one  student  compared  it  to  moving  a  toy  Hot  Wheels  car  and  a  real  car.    If  one  were  going  to  give  each  of  these  cars  the  same  speed  simply  by  pushing,  one  would  need  to  push  on  the  real,  heavier  car  with  a  much  greater  force.    From  here,  each  group  of  students  was  given  a  spring  scale  and  a  set  of  hanging  masses  and  asked  to  produce  a  graph  and  line  of  best  fit  relating  force  and  mass.    Graphs  and  lines  of  best  fit  like  the  ones  below  were  produced.      

Page 51: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 51

   One  student  interpreted  her  group’s  graph  and  line  of  best  fit  by  saying,  “As  the  mass  of  an  object  goes  up,  so  does  the  force  the  earth  puts  on  that  object.    The  earth  has  a  9.95  Newton  force  for  every  kilogram  of  mass.”    Although  the  vocabulary  here  was  a  little  rough,  the  student’s  interpretation  of  slope  was  spot  on.        Pendulum  lab  Focus  The  purpose  of  the  pendulum  lab  was  to  develop  proportional  reasoning  using  equipment  and  collecting  data  that  would  not  produce  a  linear  graph.    This  application  of  square  root  graphs  in  our  everyday  lives  was  an  effort  to  stretch  the  students’  minds.        Equipment  Ring  stands,  string,  and  stopwatches.    Activity  For  this  activity,  students  were  asked  to  produce  graphs  that  related  the  period  and  length  of  a  pendulum.    A  majority  of  the  groups  caught  on  pretty  quickly  that  they  could  easily  change  the  length  of  the  pendulum  and  measure  the  period  for  different  string  lengths.    One  student  worked  on  his  own,  put  his  data  into  Logger  Pro,  and  came  up  with  the  following  graph  and  equation.      

Page 52: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 52

 Compared  to  the  generally  accepted  equation  for  the  period  of  a  pendulum,  T  =  2π√(L/g),  this  is  remarkably  close.    After  finding  graphs  relating  period  and  string  length,  students  were  asked  to  interpret  their  results.    Rather  than  getting  a  straight  line  here,  most  groups  came  up  with  points  that  gave  them  a  side-­‐opening  parabola  and  an  equation  that  had  a  variable  raised  to  a  decimal  exponent.    The  groups  who  came  up  with  an  exponent  close  to  0.5  were  able  to  approximate  that  with  a  square  root  function.    From  there  we  could  discuss  what  one  would  need  to  do  to  double,  triple,  or  quadruple  the  period  of  their  pendulum.    In  order  to  double  the  period  of  the  pendulum,  the  length  would  have  to  be  increased  by  a  factor  of  four.    Tripling  the  period  requires  a  string  length  nine  times  that  of  the  original  string  length,  and  quadrupling  means  an  increase  in  string  length  by  a  factor  of  twenty-­‐five.    This  proportional  reasoning  was  what  we  were  going  after,  at  the  start  of  this  lab.        Bowling  ball  lab  Focus  This  lab  was  an  introduction  to  quadratic  models  and  another  kind  of  proportional  reasoning.    Students  observed  an  experiment  that  produced  a  quadratic  position  versus  time  graph  and  began  to  explore  how  corresponding  velocity  versus  time  and  acceleration  versus  time  graphs  might  look.    Equipment  Bowling  ball,  sidewalk  chalk,  stopwatches,  long,  smooth,  gradual  incline,  and  meter  stick  or  large  tape  measure.    

Page 53: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 53

Activity  This  activity  was  different  than  the  preceding  labs  in  that  the  class  performed  the  experiment  together  and  shared  the  same  data  set.    Starting  at  the  top  of  the  incline,  students  took  a  long  tape  measure  and  used  sidewalk  chalk  to  mark  off  one-­‐meter  increments.    Each  student  was  then  given  a  stopwatch  and  assigned  a  position  on  the  incline.    When  a  student  released  the  bowling  ball  at  the  top  of  the  incline,  each  student  started  his  or  her  stopwatch.    As  the  bowling  ball  rolled  past  each  student,  he  or  she  stopped  his  or  her  stopwatch.    After  doing  a  few  runs  the  students  began  to  notice  that  consecutive  students  toward  the  bottom  of  the  incline  had  shorter  gaps  in  time  than  consecutive  students  at  the  top  of  the  incline.    One  student  summarized  this  succinctly  by  commenting  that  “The  ball  is  going  faster  toward  the  bottom  so  it  takes  less  time  to  cover  each  meter.”    This  type  of  reasoning  was  precisely  the  goal  of  the  lesson.  After  doing  three  runs  and  averaging  the  time  for  each  position,  the  class  headed  back  inside  to  examine  the  data  in  Logger  Pro.    The  following  graph  was  produced.      

 For  the  first  five  seconds,  the  graph  appears  to  be  linear,  but  it  clearly  takes  a  different  path  from  five  to  six  seconds.    From  here,  the  class  did  a  curve  fit  on  the  data  and  came  up  with  a  quadratic  equation  that  fit  the  graph.    One  student  noted,  “That  shape  makes  sense  because  position  is  increasing  faster  than  time.”    This  was  a  perfect  lead-­‐in  to  discussion  of  what  a  corresponding  velocity  versus  time  graph  might  look  like.    Since  the  ball  was  speeding  up  as  it  moved  down  the  incline,  the  class  agreed  that  the  velocity  

Page 54: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 54

versus  time  graph  would  be  a  straight  line  with  a  positive  slope.    These  graphs  also  helped  some  students  get  past  the  notion  that  a  graph  could  be  increasing  in  the  positive  direction  even  though  the  object  in  question  was  moving  downhill.        Tennis  ball  lab  Focus  The  intent  of  this  lab  was  for  students  to  have  more  practice  with  applications  and    manipulation  of  quadratic  equations.    Equipment  Tennis  balls,  stopwatches,  meter  sticks.        Activity  For  this  lab,  students  threw  tennis  balls  as  straight  up  in  the  air  as  possible  and  recorded  the  time  it  took  to  fall  back  to  the  ground.    For  each  toss,  meter  sticks  were  used  to  measure  the  height  at  which  the  tennis  ball  was  released.    Although  it  is  nearly  impossible  to  throw  an  object  straight  up  in  the  air,  students  ignored  any  horizontal  motion  of  the  object,  focusing  purely  on  the  vertical.    The  class  was  not  yet  at  a  level  of  ability  to  handle  launch  angles  and  basic  trigonometric  functions.    After  obtaining  an  initial  vertical  height  and  a  time  of  flight,  students  used  the  vertical  motion  equation  yf  =  yo  +  vy0t  -­‐4.905t

2  to  find  their  initial  vertical  velocity.    From  there,  the  equation  vyf2  =  vyo

2  –  19.62(yf-­‐yo)  was  used  to  find  the  maximum  height  of  the  object.    Using  these  two  equations  to  find  the  desired  information  required  a  bit  of  reasoning  on  the  part  of  the  students.    It  took  some  a  long  time  to  realize  that  the  time  they  had  on  their  stopwatch  was  the  time  at  which  yf  =  0.    An  even  bigger  jump  came  when  it  was  determined  that,  when  finding  the  maximum  height  of  the  ball,  vyf  =  0.    Once  students  had  these  two  pieces  of  information,  the  equations  could  be  solved  for  the  desired  variable  with  some  basic  algebraic  skills.    Coffee  filter  decay  lab  Focus  Students  used  this  lab  to  get  a  feel  for  an  application  of  decay  graphs  and  horizontal  asymptotes.        Equipment  Coffee  filters  or  Styrofoam  bowls  and  motion  detector  connected  to  a  computer  with  Logger  Pro.        Activity  For  this  lab,  students  placed  a  motion  detector  on  the  floor  of  the  classroom  and  collected  data  by  dropping  different  numbers  of  nested  coffee  filters  straight  down  onto  the  detector.    By  doing  a  linear  fit  on  the  straight  line  part  of  the  velocity  versus  time  graph  produced  by  Logger  Pro,  students  were  able  to  find  the  acceleration  of  the  nested  pile  of  coffee  filters.    As  the  number  of  coffee  filters  increased,  so  did  the  acceleration  of  

Page 55: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 55

the  falling  object.    When  the  number  of  filters  reaches  about  ten,  the  acceleration  begins  to  level  off  pretty  close  to  the  accepted  value  of  gravity.    By  running  this  experiment  for  one  to  fifteen  coffee  filters,  students  were  able  to  produce  the  following  graph  relating  acceleration  versus  the  number  of  coffee  filters.  

 Here,  the  horizontal  asymptote  would  be  9.81  m/s2,  the  accepted  value  of  gravity  near  the  surface  of  the  earth.      Kickball  decay  lab  Focus  This  lab  was  run  during  a  unit  on  geometric  sequences.    The  goal  was  to  let  students  explore  the  relationship  between  exponential  decay  graphs  and  geometric  sequences  with  a  common  ratio  between  -­‐1  and  1.        Equipment  Kickballs  or  basketballs  and  stopwatches  with  lap/split  capabilities.    Activity  For  this  lab,  students  were  asked  to  come  up  with  a  graph  and  equation  relating  the  time  between  bounces  of  their  ball  and  the  bounce  number.    One  student  would  drop  the  kickball  from  as  high  as  possible  while  another  would  start  the  stopwatch.    When  the  ball  hit  the  floor,  the  student  with  the  stopwatch  would  press  the  lap/split  button,  recording  the  time  it  took  for  the  ball  to  reach  the  floor  and  bounce  once.        After  the  ball  bounced  up  and  back  to  the  floor  again,  the  student  with  the  stopwatch  would  press  the  lap/split  button  again,  recording  the  time  between  the  first  and  second  bounces.    Continuing  in  this  manner  until  the  ball  is  completely  at  rest  on  the  floor  gives  the  students  a  data  set  of  decreasing  time  intervals  based  on  the  bounce  number.        Plotting  these  points  on  a  graphing  calculator  and  running  an  exponential  regression  gives  the  students  an  exponential  decay  function  which  is  easily  related  to  a  geometric  sequence  with  common  ratio  between  -­‐1  and  1.    The  class  also  did  a  trial  using  the  video  

Page 56: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 56

analysis  capabilities  of  Logger  Pro.    This  tool  allowed  for  more  accurate  time  measurements  by  using  the  statistics  function  in  Logger  Pro.  

 

Data  The  data  compiled  for  the  experimental  and  control  group  were  examined  in  several  different  ways  in  order  to  draw  conclusions  about  the  method  implemented  in  this  study.    Below  is  a  summary  of  some  significant  findings  from  an  examination  of  the  data.        Experimental  Group  –  fifty  students  Pre-­‐test  scores  on  the  MCI  reveal  a  mean  =  11.72  (~51%)  and  standard  deviation  =  4.00.    Post-­‐test  scores  show  a  mean  =  13.06  (57%)  and  standard  deviation  =  3.72.      

Page 57: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 57

   A  paired  two  sample  for  means  z  test  shows  this  increase  between  pre  and  post-­‐test  scores  to  be  statistically  significant  with  α  =  0.028  for  a  one-­‐tailed  test  and  α  =  0.057  for  a  two-­‐tailed  test.  z-­‐Test:  Two  Sample  for  Means                 Experimental  Pre   Experimental  Post  Mean   11.7   13.1  Standard  Deviation   4.00   3.72        Observations   50   50  Hypothesized  Mean  Difference   0    z   -­‐1.90    P(Z<=z)  one-­‐tail   0.0285    z  Critical  one-­‐tail   1.64    P(Z<=z)  two-­‐tail   0.0570    z  Critical  two-­‐tail   1.96                  A  look  at  the  distribution  of  pre  and  post-­‐test  scores  for  the  experimental  group  shows  this  shift  in  mean  and  standard  deviation.    

Page 58: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 58

   

 

Mean = 11.7 S.D. = 4.00 n = 50

Mean = 13.1 S.D. = 3.72 n = 50

Page 59: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 59

Control  Group  –  twenty-­‐three  students  Pre-­‐test  scores  on  the  MCI  reveal  a  mean  =  13.09  (~57%)  and  standard  deviation  =  3.32.    Post-­‐test  scores  show  a  mean  =  11.87  (~52%)  and  standard  deviation  =  3.86.        

   A  paired  two  sample  for  means  t  test  shows  that  the  difference  between  average  scores  on  the  pre  and  post-­‐test  is  not  statistically  significant,  but  the  mean  on  the  post-­‐test  was  actually  lower  than  the  mean  on  the  pre-­‐test.  t-­‐Test:  Paired  Two  Sample  for  Means            

  Control  Pre   Control  Post  Mean   13.1   11.9  Standard  Deviation   3.32   3.86  Observations   23   23  Hypothesized  Mean  Difference   0    df   22    t  Stat   1.52    P(T<=t)  one-­‐tail   0.0718    t  Critical  one-­‐tail   1.72    P(T<=t)  two-­‐tail   0.144    t  Critical  two-­‐tail   2.07          

Page 60: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 60

A  look  at  the  distribution  of  pre  and  post-­‐test  scores  for  the  control  group  shows  the  more  scattered  nature  of  the  post-­‐test  scores.  

 

   Selected  Questions  The  MCI  includes  eight  questions  that  one  might  expect  to  be  on  a  typical  Algebra  II  chapter  test  at  Buckeye  Union  High  School.    These  questions,  numbers  9,  10,  11,  13,  15,  17,  18,  and  20,  cover  topics  including  finding  the  equation  of  a  line  from  a  table  of  values  (#9),  interpreting  graphs  (#10  &  20),  extrapolating  graphs  (#11),  estimating  area  (#13),  finding  the  equation  of  a  line  given  a  starting  position  and  constant  speed  (#15),  estimating  means  (#17),  and  finding  a  line  of  best  fit  (#18).    A  look  at  the  percentage  of  students  answering  these  questions  correctly  in  the  experimental  group  shows  improvement  on  every  question  except  for  number  20  from  pre  to  post-­‐test.  

Mean = 13.1 S.D. = 3.32 n = 23

Mean = 11.9 S.D. = 3.86 n = 23

Page 61: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 61

   The  average  score  for  the  selected  questions  on  the  pre-­‐test  was  4.38  with  a  standard  deviation  of  1.59,  while  the  average  post-­‐test  score  was  4.94  with  a  standard  deviation  of  1.30.    A  paired  z  test  shows  this  increase  in  means  to  be  significant  with  α  =  0.027  for  a  one-­‐tailed  test  and  α  =  0.054  for  a  two-­‐tailed  test.  z-­‐Test:  Two  Sample  for  Means            

  Experimental  Pre  Experimental  

Post  

Mean   4.38   4.94  

Standard  Deviation   1.59   1.30  Known  Variance   2.52   1.69  Observations   50   50  Hypothesized  Mean  Difference   0    z   -­‐1.93    P(Z<=z)  one-­‐tail   0.0268    z  Critical  one-­‐tail   1.64    P(Z<=z)  two-­‐tail   0.0536    z  Critical  two-­‐tail   1.96      

Page 62: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 62

For  the  control  group,  the  percentage  of  students  answering  the  selected  questions  correctly  stayed  the  same  for  questions  17,  18,  and  20,  but  declined  for  all  of  the  other  questions.    

   Pre-­‐test  scores  showed  a  mean  of  5  with  a  standard  deviation  of  1.35,  while  post-­‐test  scores  showed  a  mean  of  4.39  with  a  standard  deviation  of  1.47.    Clearly,  the  control  group  did  not  show  a  significant  increase  in  scores  on  the  selected  questions  from  pre  to  post-­‐test.      Proportional  reasoning  (questions  #5  and  6  on  the  Math  Concepts  Inventory):  In  the  pre-­‐test,  13%  of  control  group  students  got  questions  5  and  6  correct,  compared  to  20%  of  students  in  the  experimental  group.    In  the  posttest,  while  the  control  group  stayed  at  13%  correct,  the  experimental  group  increased  slightly  but  insignificantly  to  24%.    These  percentages  are  very  low.  The  lack  of  improvement  in  the  control  group  is  similar  to  that  of  the  control  group  of  Investigator  2  (page  42).  The  lack  of  improvement  in  the  experimental  group,  contrasted  with  large  improvement  in  the  experimental  group  of  Investigator  2,  may  indicate  that  one-­‐period  lab  days  bookended  by  several  days  of  traditional  lecturing,  note-­‐taking,  and  homework  are  insufficient  for  meaningful  learning  of  proportional  reasoning.  

Page 63: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 63

Gender  Data  An  in-­‐depth  examination  of  pre  and  post-­‐test  scores  for  girls  and  boys  in  the  experimental  and  control  groups  is  summarized  in  the  table  below.    

Group  (number  of  students)  

MCI  Pre-­‐Test  Mean  (out  of  

23)  

MCI  Post-­‐Test  Mean  (out  of  

23)  

MCI  Selected  Questions  Pre-­‐Test  

Mean  (out  of  8)  

MCI  Selected  Questions  Post-­‐Test  

Mean  (out  of  8)  

Girls  Experimental  

(31)  

11.7   12.7   4.39   4.68  

Boys  Experimental  

(19)  

11.8   13.6   4.37   5.37  

Girls  Control  (13)  

12.1   10.7   4.77   4.23  

Boys  Control  (10)  

14.4   13.4   5.30   4.60  

 Both  the  girls  and  boys  in  the  experimental  group  showed  improvement  on  the  MCI  and  the  MCI  selected  questions,  whereas  both  the  girls  and  boys  in  the  control  group  showed  a  decline  on  the  MCI  and  the  MCI  selected  questions.    Boys  in  the  experimental  group  made  a  significant  improvement  in  mean  scores  on  the  selected  MCI  questions.    Pre-­‐test  MCI  scores  on  selected  questions  for  boys  in  the  experimental  group  showed  a  mean  =  4.37  with  a  standard  deviation  =  1.46.    Post-­‐test  scores  from  this  group  showed  a  mean  =  5.37  with  a  standard  deviation  =  1.01.    A  t-­‐test  comparing  pre  and  post-­‐test  means  is  shown  below.  t-­‐Test:  Paired  Two  Sample  for  Means            

 Experimental  Boys  MCI  Selected  Pre  

Experimental  Boys  MCI  

Selected  Post  Mean   4.37   5.39  Standard  Deviation   1.46   1.01  Observations   19   19  Hypothesized  Mean  Difference   0    df   18    t  Stat   -­‐2.24    P(T<=t)  one-­‐tail   0.0189    t  Critical  one-­‐tail   1.73    P(T<=t)  two-­‐tail   0.0377    t  Critical  two-­‐tail   2.10    

Page 64: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 64

 The  chart  below  shows  the  percentage  of  students  answering  selected  questions  correctly  from  the  above-­‐mentioned  group.    Improvement  is  seen  on  every  question  except  for  #20,  where  the  percentage  of  students  answering  correctly  stayed  the  same.            

   Buckeye  Union  High  School  is  in  what  could  be  considered  a  rural  suburb  of  Phoenix,  Arizona.    Many  of  the  male  students  in  the  Algebra  II  experimental  group  spend  after-­‐school  hours,  weekends,  and  summers  working  at  blue-­‐collar  jobs  that  require  them  to  work  with  their  hands  and  solve  mechanical  problems.    Seventy-­‐eight  percent  of  the  males  in  the  Algebra  2  experimental  group  were  also  enrolled  in  some  type  of  vocational  education  class  at  Buckeye  Union  High  School.    Classes  such  as  woodworking,  welding,  automotive  technology,  and  agriculture  provide  opportunities  for  students  to  apply  mathematics  to  novel  projects.    Perhaps  the  significant  improvements  on  the  selected  questions  of  the  MCI  for  males  in  the  experimental  group  is  also  partially  a  result  of  applying  mathematics  in  multiple  situations  in  their  everyday  lives.    The  labs  performed  in  class  only  gave  them  more  chances  to  apply  mathematics  to  real-­‐world  situations.  

 

Page 65: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 65

Student  Interviews  Student  interviews  were  used  to  get  a  feel  for  how  students  were  thinking  about  the  types  of  problems  we  looked  at  during  these  labs.    A  whiteboard  was  presented  to  the  student  and  questions  were  asked  by  the  interviewer.      Interview  with  Student  #1  –  Check  for  proportional  reasoning  from  the  pendulum  lab  

 Interviewer:   Can  you  describe  the  experiment  that  gave  us  this  period  versus  length  

graph?  Student  #1:       We  used  this  experiment  about  using  the  pendulum,  like  how  many  

seconds  it  took  to  swing  back  and  forth,  and  how  long  the  string  was.  Interviewer:       What  variable  did  we  change  while  we  were  doing  the  experiment?    (long  

pause)      What  did  we  control?    How  did  we  get  these  different  data  points?  

Student  #1:       Isn’t  it  the  length  of  the  string?  Interviewer:       So,  this  is  our  equation  that  Logger  Pro  gave  us  after  we  did  a  power  

regression.    What  does  that  mean  for  us?  Student  #1:       That  means.    (long  pause)    I  will  write  it  in  another  way.    (student  #1  

rewrites  equation  as  T  =  √L.    Two  times  the  square  root  of  L.  Interviewer:      If  we  wanted  to  double  the  period  of  the  pendulum,  what  would  we  

have  to  do  to  the  length?      Student  #1:       To  double  it?    You  would  have  to  raise  it  to  four.    (student  #1  writes  out  T  

=  2√(4L))    The  square  root  of  four  is  two,  so  it’s  going  to  be  T  equals  two  times  two  times  square  root  of  L.      

Interviewer:       What  if  we  wanted  to  triple  the  period?      Student  #1:       Then  you  would  raise  L  by  nine.    That’s  going  to  equal  two  times  nine  L,  

and  square  root.    And  that  is  two  times  three  times  square  root  of  L.  

Page 66: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 66

Comment:  Student  #1  is  an  English  language  learner,  but  he  shows  a  good  functional  knowledge  of  how  one  side  of  the  equation  obtained  in  this  lab  affects  the  other  side.    Student  #1  was  also  able  to  make  the  connection  that  raising  a  variable  to  an  exponent  of  one  half  is  equivalent  to  taking  the  square  root  of  the  variable.        Interview  with  Student  #2  –  Check  for  understanding  of  position  versus  time  graphs  from  the  buggy  lab  

 Interviewer:       So  we  just  completed  the  lab  using  the  battery  –powered  buggies,  and  

we  have  a  couple  of  graphs  here.    What  can  you  tell  us  about  these  graphs?    This  is  for  car  A  and  car  B.  

Student  #2:       They  started  at  different  places.  Interviewer:       How  do  you  know  that?  Student  #2:       Because  car  A  started  at  zero  and  car  B  started  at  seven.  Interviewer:       What’s  different  about  the  graphs  of  the  two  cars?      Student  #2:       One  graph  is  steeper  than  the  other  one.  Interviewer:       Which  graph  is  steeper?      Student  #2:       B  Interviewer:       What  does  that  mean,  that  the  line  is  steeper  for  car  B?  Student  #2:       Well,  car  B  is  negative  and  car  A  is  positive.    So,  they’re  going  in  opposite  

directions.  Interviewer:       Okay.    What  does  that  mean  where  the  graphs  cross?    What  does  that  

point  represent?  Student  #2:       That’s  where  the  cars  cross.  Interviewer:       What  does  the  fact  that  line  B  is  steeper  tell  us  about  the  motion  of  the  

cars?  Student  #2:       That  car  A  is  slower  than  car  B.  

Page 67: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 67

Interviewer:       How  about  the  fact  that  both  lines  are  straight?    Does  that  tell  us  anything?  

Student  #2:       That  there’s  no  turning  or  anything.    They  just  went  straight  on.      Comment:      Student  #2  seems  to  have  a  grasp  on  steepness  of  lines  and  vertical  intercepts,  but  still  could  not  verbalize  that  a  straight  line  on  a  position  versus  time  graph  indicates  a  constant  velocity.    Scores  for  the  experimental  group  on  the  MCI  pre  and  post-­‐test  were  sub-­‐par  on  the  last  three  questions,  all  of  which  dealt  with  the  interpretation  of  position  versus  time  graphs.        Interview  #3  –  Check  for  understanding  of  position  versus  time  graphs  from  the  buggy  lab  

 Interviewer:       So  we  just  ran  through  the  lab  using  the  battery-­‐powered  buggy  cars.    

What  can  you  tell  us  about  the  graph  you  have  here  on  your  white  board?  

Student  #3:       Well,  the  y-­‐axis  represents  the  position,  and  the  x-­‐axis  represents  the  time.    And  with  the  graph  you  can  tell  that  car  A  was  going  much  faster.      

Interviewer:       How  do  you  know  that  car  A  was  going  faster?  Student  #3:       Because  of  its  slope,  it’s  much  steeper.    And  you  can  tell  they  start  at  

different  positions  because  A  starts  here  (pointing  to  vertical  intercept  of  A)  and  B  starts  here  (pointing  to  vertical  intercept  of  B).  

Interviewer:       What  feature  of  the  graph  is  that?    What  is  that  called?  Student  #3:       (long  pause)  The  y-­‐intercept.  Interviewer:       What  else  can  you  tell  us  from  the  graph?      Student  #3:       That  they  cross  points  here,  they’re  at  the  same  position  (points  to  

intersection  point  of  lines).  Interviewer:       What  does  that  mean  in  our  lab?    What  was  happening  with  the  cars?      

Page 68: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 68

Student  #3:       That’s  where  the  cars  met,  and  they  were  in  the  same  spot.  Interviewer:       These  are  the  two  equations  we  have  written  down  here.    What  does  the  

slope  of  these  equations  represent?  Student  #3:       Their  speed.  Interviewer:       All  right,  how  about  the  y-­‐intercept?  Student  #3:       Initial  position.  Interviewer:       So  if  I  asked  you  at  what  position  and  time  did  car  A  pass  car  B,  could  you  

work  that  out  for  me?  Student  #3:       Yeah.    (Student  begins  sets  the  two  equations  equal  to  each  other  and  

solves  for  t)  Interviewer:       All  right,  so  what  was  that  you  just  found?      Student  #3:       That  represents  (long  pause)  the  time.  Interviewer:       The  time  for  what?  Student  #3:       That  they  crossed  points.      Interviewer:       All  right,  how  about  the  position?  Student  #3:       Then  I’m  going  to  plug  time  back  into  the  equation.      Interviewer:       Which  equation  are  you  going  to  plug  it  back  into?  Student  #3:       Each  one.  (Student  substitutes  time  back  into  each  equation  and  gets  the  

same  position  for  each)  Interviewer:       And  that  represents…?  Student  #3:       They  were  at  the  same  position.    Comment:  Student  #3  has  a  decent  understanding  of  the  graphical  representation  of  the  buggy  lab  that  used  one  fast  and  one  slow  car.    She  was  also  able  to  find  the  position  and  time  at  which  one  car  passed  the  other  when  given  position  as  a  function  of  time  equations  for  each  car.    

Page 69: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 69

Student  #4  –  Check  for  understanding  of  position,  velocity,  and  acceleration  versus  time  graphs  from  the  bowling  ball  lab  

 Interviewer:       Can  you  tell  us  what  kind  of  lab  we  did  to  get  this  position  versus  time  

graph?      Student  #4:       You  rolled  a  bowling  ball  down  a  slant.    Everyone  lined  up,  and  everyone  

had  a  stopwatch,  and  they  stopped  their  stopwatch  whenever  the  ball  went  past  them.      

Interviewer:       Okay.    What  kind  of  shape  did  we  get  there?  Student  #4:       A  parabola.  Interviewer:       Why  did  we  get  that  shape  for  the  position-­‐time  graph?  Student  #4:       Because  the  speed  went  up.  Interviewer:       So  what  would  the  velocity-­‐time  graph  look  like  that  would  correspond  to  

that  position-­‐time  graph?  Student  #4:       (draws  a  straight  line  with  a  positive  slope  on  the  velocity-­‐time  graph)  A  

straight  line.  Interviewer:       How  come?  Student  #4:       Because  the  speed  increases.  Interviewer:       How  about  the  acceleration-­‐time  graph.  Student  #4:       (draws  a  horizontal  line  on  the  acceleration-­‐time  graph)  Constant.  Interviewer:       Why  is  that  constant?  Student  #4:       Because  gravity  is  constant.    Comment:      Student  #4  shows  a  solid  conceptual  understanding  of  how  position,  velocity,  and  acceleration  versus  time  graphs  relate  to  one  another.  

 

Student  Surveys  At  the  end  of  the  first  semester  of  the  2008-­‐2009  school  year,  students  were  given  a  brief  survey  of  how  they  felt  about  the  labs  and  experiments  implemented  in  their  

Page 70: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 70

algebra  II  class.    Students  were  simply  asked  if  they  enjoyed  lab  days  and  if  they  felt  like  the  labs  helped  them  learn  the  new  chapter  topic.    Results  are  shown  in  the  table  here.      

!"!#!$!%!&!'!(!)!*!"!!

+,-./01234514/6

78.9:8;23456803<012=>;8

9,10?6;4,1>,:

@0?A0,;4:02.BC;910,;6

 The  chart  shows  that  an  overwhelming  majority  of  the  students  enjoyed  lab  days,  while  a  slightly  smaller  percentage  felt  as  though  the  labs  helped  them  with  understanding  a  mathematical  topic.    These  percentages  were  evident  in  the  way  students  requested  more  lab  days  throughout  the  school  year  and  the  overall  attitude  and  participation  of  the  class  on  lab  days.  

 

Analysis  The  following  table  is  a  summary  of  data  collected  at  Buckeye  Union  High  School.  

Group   MCI  Pre-­‐Test  Mean  (out  of  

23)  

MCI  Post-­‐Test  Mean  (out  of  

23)  

MCI  Selected  Questions    Pre-­‐Test  Mean  (out  

of  8)  

MCI  Selected  Questions  Post-­‐Test  Mean  (out  

of  8)  Experimental   11.7   13.1   4.38   4.94  

Control   13.1   11.9   5.00   4.39  Girls  

Experimental  (31)  

11.7   12.7   4.39   4.68  

Boys  Experimental  

(19)  

11.8   13.6   4.37   5.37  

Girls  Control  (13)  

12.1   10.7   4.77   4.23  

Boys  Control  (10)  

14.4   13.4   5.30   4.60  

Page 71: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 71

Examining  the  class  means  for  pre  and  post-­‐test  scores  on  the  MCI  shows  a  significant  increase  in  scores  from  pre  to  post-­‐test  for  the  experimental  group  but  essentially  the  same  pre  and  post-­‐test  mean  for  the  control  group.    Students  in  the  experimental  group  also  showed  a  significant  positive  mean  increase  on  the  selected  questions  of  the  MCI,  whereas  the  control  group  mean  went  down  on  these  questions.    Comparing  the  experimental  and  control  groups  directly  is  difficult  because  of  the  large  difference  in  sample  size.    A  control  group  twice  the  size  of  the  control  group  used  at  this  site  would  allow  for  more  accurate  inferences  about  the  data  from  this  research  site.    One  obstacle  to  implementing  the  above-­‐mentioned  labs  is  the  nature  of  the  Algebra  II  classes  at  Buckeye  Union  High  School.    All  chapter  tests  and  quarterly  exams  are  district-­‐wide  assessments.    After  giving  such  assessments,  each  teacher  must  submit  data  indicating  the  number  of  students  who  earned  scores  that  would  be  labeled  as  Exceeds  (85%),  Meets  (70%),  Approaches  (60%),  and  Falls  Far  Below  (<60%)  according  to  the  Arizona  Instrument  for  Measuring  Standards  (AIMS).    It  is  required  that  all  tests  be  given  at  roughly  the  same  time  throughout  the  school  year.    District  chapter  tests  and  quarterly  exams  are  geared  towards  preparing  students  for  the  multiple  choice  nature  of  the  AIMS  math  test.    Out  of  sixteen  tests  given  to  the  Algebra  2  classes  during  the  2008-­‐2009  school  year,  students  were  only  asked  to  solve  fifteen  word  or  application  type  problems.    This  is  a  mere  3%  of  the  total  problems  seen  by  the  students,  which  means  that,  in  order  to  give  the  experimental  group  classes  a  fair  shake  on  the  common  district  assessments,  the  entire  chapter  could  not  be  based  around  the  introductory  lab.    At  some  point,  the  students  needed  to  develop  the  “drill  and  kill”  instincts  that  would  allow  them  to  crunch  numbers  and  achieve  decent  grades  on  the  chapter  tests.    Often  times,  these  labs,  including  setup,  data  collection,  analysis,  and  whiteboarding,  were  limited  to  one  fifty-­‐five  minute  class  period.    Several  students  commented  that  they  felt  rushed  and  that  the  material  did  not  always  have  sufficient  time  to  “sink  in.”    Student  surveys  indicated  that  96%  of  the  population  enjoyed  lab  days,  and  83%  of  the  population  felt  that  it  helped  them  learn  the  topic  at  hand.    If  the  class  went  a  week  or  two  in  a  traditional  lecture,  notes,  homework,  test  format,  students  were  requesting  to  do  a  lab  or  experiment.    Doing  labs  helped  break  up  the  monotony  that  can  creep  into  a  mathematics  classroom  that  is  trying  to  get  students  prepared  for  the  AIMS  and  AIMS-­‐based  chapter  tests.    Unfortunately,  lab  days  were  often  bookended  by  several  days  of  traditional  lecturing,  note-­‐taking,  and  homework.    Student  interviews  showed  students  examining  problems  that,  had  they  not  been  introduced  to  the  labs  done  in  the  experimental  Algebra  2  class,  they  may  never  have  encountered  throughout  their  high  school  education.    Although  it  was  not  evident  that  the  interviewed  students  had  an  absolutely  complete  and  thorough  understanding  of  the  problem  at  hand,  they  were  able  to  make  observations,  solve  problems,  and  draw  conclusions  about  problems  that  students  in  the  control  group  may  have  struggled  with  mightily.        

Page 72: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 72

Since  using  calculators  on  the  AIMS  Math  test  is  strictly  forbidden,  teachers  at  Buckeye  Union  High  School  are  discouraged  from  letting  students  use  technology  of  any  kind  on  district  common  assessments.    Throughout  these  labs,  students  used  a  variety  of  software  to  gain  understanding  and  develop  equations  to  explain  observations  made  during  the  labs.    Students  used  TI-­‐84+  Graphing  Calculators,  Logger  Pro,  Geometer’s  Sketchpad,  and  Microsoft  Excel.    During  the  implementation  of  these  labs,  not  one  student  found  numbers  that  came  out  to  nice,  evenly  divisible  integers  that  could  be  easily  manipulated  with  pencil  and  paper.    One  secondary  goal  of  using  these  experiments  to  enhance  mathematical  understanding  was  to  show  students  that  experiments  rarely  work  out  to  be  nice,  even  whole  numbers  in  real-­‐world  applications.    Life  is  full  of  fractions  and  ugly  decimals.    Fortunately,  powerful  yet  user-­‐friendly  software  is  available  to  handle  just  such  situations,  and  the  students  in  the  experimental  groups  were  proficient  at  using  this  software  by  the  end  of  the  first  semester.  

 

Conclusion  and  Implications  The  students  in  the  experimental  group  were  an  absolute  pleasure  to  work  with  and  be  around  on  a  daily  basis.    They  worked  hard,  stretched  their  brains,  and  jumped  in  head  first  when  it  came  to  using  the  technology  necessary  to  work  through  these  labs.    Whiteboard  meetings  were  enthusiastic  and  full  of  ideas  and  insights  into  various  mathematical  concepts  and  problems.    Quantitative  data  from  the  selected  questions  show  that  running  these  labs  in  a  typical  Algebra  2  classroom  does  not  hurt  a  student’s  ability  to  solve  basic  problems  that  may  be  found  on  a  typical  chapter  assessment  at  Buckeye  Union  High  School.        Qualitatively,  it  is  certain  that  the  students  in  the  experimental  group  enjoyed  the  labs  and  took  something,  albeit  the  ability  to  use  technology  in  a  lab  setting,  mathematical  concepts,  the  ability  and  confidence  to  share  ideas  with  their  peers,  or  otherwise,  from  the  labs.              

Overall  Conclusion  The  above  research  shows  that  students  can  learn  mathematical  reasoning  skills  by  engaging  the  material  differently  than  in  a  traditional  mathematics  course.    By  teaching  students  mathematics  concepts  using  science  applications,  the  students’  skills  increase  at  a  faster  rate  than  in  a  traditional  math  class.    The  most  significant  gains  seemed  to  be  in  the  concepts  of  proportional  reasoning  and  graphical  analysis.    The  increases  in  these  areas  may  be  caused  by  the  prevalence  of  these  concepts  in  the  design  of  the  activities  and  labs  that  were  used  throughout  the  

Page 73: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 73

treatment.  In  each  classroom  lab,  students  were  required  to  express  relationships  in  proportional  and  graphical  means  more  so  than  a  traditional  classroom.  It  seems  that  continuous  exposure  to  activities  where  proportional  and  graphical  skills  are  used  increases  the  conceptual  reasoning  abilities  of  the  treated  students.    The  traditional  mathematics  courses  seem  to  lack  the  context  necessary  to  build  the  conceptual  understanding  that  the  treated  courses  were  built  upon.    In  every  activity,  treated  students  had  a  concrete  example  to  refer  back  to,  throughout  their  development  of  the  topic  at  hand.    For  example,  the  linear  buggy  and  bowling  ball  labs  gave  treated  students  a  physical  situation  that  reinforced  the  constant  rate  of  change  model.    The  data  suggest  a  significant  increase  in  conceptual  understanding  when  a  modeling  approach  is  used.    

Implications  for  Instruction  Students  can  learn  mathematics  concepts  using  a  scientific  modeling  approach  that  differs  from  the  traditional  method  taught  in  most  schools.    The  research  shows  that  the  effectiveness  of  the  scientific  approach  can  produce  skills  greater  than  those  of  traditionally  taught  students.    Having  instruction  that  allows  for  a  more  cohesive  blend  of  sciences  and  mathematics  courses  may  prove  to  be  a  more  efficient  and  effective  way  to  teach  mathematics.    By  using  this  approach,  the  application  and  relevancy  of  the  material  may  keep  students  more  engaged  in  learning.    Implementing  the  Modeling  Method  of  instruction  described  in  this  paper  requires  highly  trained  teachers  who  cannot  be  one-­‐dimensional,  pencil  and  paper,  number  crunchers.    Getting  students  to  learn  in  a  mathematics  classroom  where  science-­‐based  investigations  are  used  to  introduce  new  topics  is  extremely  challenging.    Knowing  how  to  solve  a  series  of  mathematics  problems  is  simply  not  good  enough.    Teachers  need  training,  experience,  creativity,  and  the  support  of  their  administrators  and  department  chairs  in  order  to  effectively  use  these  methods  in  a  classroom  setting.    Investing  money  for  the  training  of  educators  in  this  teaching  approach  could  prove  to  be  a  worthwhile  endeavor  for  schools  nationwide.    Part  of  the  challenge  in  doing  activities  in  class  is  getting  over  the  fear  of  giving  some  of  the  control  of  the  class  over  to  the  students.    With  adequate  training,  this  fear  is  marginalized.            

Implications  for  Future  Research  The  data  examined  in  this  study  indicate  that  math  and  science  hybrid  (integrated)  courses  may  be  one  possible  way  of  improving  high  school  students’  conceptual  understanding  of  mathematical  topics.    For  future  research,  it  might  be  valuable  to  test  the  competencies  of  students  involved  in  hybrid  mathematics  and  science  courses  compared  to  students  taking  traditional  separate  mathematics  and  science  courses.    

Page 74: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 74

This  study  primarily  focused  on  developing  the  mathematical  concepts  of  proportional  reasoning  and  graphical  interpretation.    Future  studies  could  focus  on  developing  other  mathematical  concepts  such  as  geometric  transformations,  trigonometric  functions,  and  even  basic  arithmetic.        Students  in  this  study  were  in  the  eleventh  grade  and  had  already  taken  the  Arizona  Instrument  for  Measuring  Standards  in  High  School  (AIMS  HS)  in  the  tenth  grade  as  required  by  Arizona  state  law.    An  examination  of  how  the  method  used  to  instruct  the  treatment  group  would  change  AIMS  scores  for  students  in  the  ninth  and  tenth  grades  could  have  pedagogical  implications  for  students  who  have  yet  to  take  the  state  of  Arizona  standardized  test  at  the  high  school,  middle  school,  or  even  elementary  levels.                    We  can  see  that  a  broader  study  of  this  research  topic  is  needed  before  wide  brush  claims  can  be  made.    We  did  not  look  into  the  long  term  effects  of  the  treated  students  as  they  went  to  their  higher  level  courses,  nor  did  we  compile  other  accepted  mathematics  tests  such  as  ACT  or  SAT  assessments.    These  areas  should  be  considered  in  future  research,  as  it  would  be  a  more  complete  picture  of  how  the  students  improved  over  time  and  fared  during  college  entrance  exams.      

Page 75: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 75

Bibliography  Blum, W., Niss, M., & Huntley, I. (1989). Modeling Applications and applied problem

solving. Chichester, West Sussex, England: Ellis Horwood Limited. Borasi, R. (1992). Learning mathematics through inquiry. Portsmouth, New

Hampshire: Heinemann Educational Books, Inc. Brown, J., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of

learning. Educational Researcher, January-February, 32-42. Eisenhart, M., Bilko, H., Underhill, R., Brown, C., Jones, D., & Agard, P. (1993).

Conceptual knowledge falls through the cracks: Complexities of learning to teach mathematics for understanding. Journal for Research in Mathematics Education, 24(1), 10-40.

Greer, B. (1997). Modeling reality in mathematics classrooms: The case of word problems. Learning and Instruction, 7(4), 293-307.

Hake, R. R. (1998). Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics data for introductory physics courses. American Journal of Physics, 66(1), 64-74.

Harel, G. & Confrey, J. (Eds.). (1994). Development of multiplicative reasoning in the learning of mathematics. Albany, New York: State University of New York.

Hiebert, J. (Ed.). (1986). Conceptual and procedural knowledge: The case of mathematics. Hillsdale, New Jersey: Lawrence Erlbaum Associates, Inc.

Johnson, D. (1994). Motivation counts: Teaching techniques that work. Parsippany, New Jersey: Dale Seymour Publications.

Johnson, D. (1982). Every minute counts: Making your math class work. Parsippany, New Jersey: Dale Seymour Publications.

Koosis, D.J. (1997) Statistics. New York, New York: John Wile and Sons, Inc. Laborde, C., Glorian, M., Sierpinska, A. (Eds.). (2005). Beyond the banality of the

mathematics classroom. France: Springer. Lesh, R. & Landau, M. (Eds.). (1983). Acquisition of mathematics concepts and

processes. New York, New York: Academic Press, Inc. Paulos, J.A. (2001). Innumeracy: Mathematical illiteracy and its consequences. New

York, New York: Hill and Wang. O’Shea, D. (2007). The Poincare Conjecture. New York, New York: Walker

Publishing Company. Rogers, T. (2007). Insultingly stupid movie physics. Naperville, Illinois: Sourcebooks

Hysteria. Sautoy, M. (2003). The music of the primes. New York, New York: Perennial. Siegler, R. & Crowley, K. (1991). The microgenetic method: A direct means for

studying cognitive development. American Psychologist, 46, 606-620. Streffe, L., Nesher, P., Cobb, P., Goldin, G., & Greer, B. (Eds.). (1996). Theories of

mathematical learning. Mahwah, New Jersey: Lawrence Erlbaum Associates.  

Page 76: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 76

Appendix  Data  

Investigator  1     Investigator  2     Investigator  3  Experimental  Student  #   Pre   Post    

Experimental  Student  #   Pre   Post    

Experimental  Student  #   Pre   Post  

100   8   12     136   16   17     157   12   13  101   13   16     137   15   10     158   8   10  102   19   21     138   10   18     159   12   13  103   10   9     139   16   16     160   14   18  104   14   15     140   16   22     161   12   14  105   17   18     141   14   17     162   13   13  106   8   9     142   20   21     163   13   14  107   10   9     143   13   13     164   8   9  108   11   14     144   14   19     165   18   20  109   10   14     145   17   21     166   9   9  110   15   16     146   9   13     167   20   18  111   15   17     147   10   13     168   10   15  112   13   14     148   8   10     169   14   9  113   8   14     149   15   16     170   12   8  114   14   15     150   20   21     171   6   8  115   10   15     151   23   23     172   13   16  116   9   15     152   17   21     173   8   16  117   12   15     153   13   17     174   6   4  118   15   17     154   13   17     175   5   11  119   15   18     155   10   15     176   14   14  120   14   15     156   14   20     177   16   15  121   11   12             178   10   11  122   8   9             179   9   15  123   14   15             180   17   14  124   14   19             181   9   10  125   7   6             182   14   9  126   12   13             183   8   12  127   12   15             184   16   16  128   11   15             185   10   14  129   17   19             186   15   8  130   17   18             187   6   6  131   6   7             188   8   12  132   11   12             189   14   14  133   14   17             190   14   15  134   12   13             191   11   12  135   9   12             192   13   12  

                193   11   11                   194   5   9                   195   12   15                   196   16   14                   197   9   9                   198   16   21                   199   13   15                   200   13   16                   201   10   18                   202   8   8                   203   14   13                   204   17   14                   205   13   6                   206   19   18  

 

Page 77: Effect of Teaching Mathematics Concepts Within a Science ...modeling.asu.edu/modeling/Boyarsky,Bray,Henrion Math.pdfMNS Physics July 2009 Effect of Teaching Mathematics Concepts Within

Page 77

 Investigator  1     Investigator  2       Investigator  3  

Control  Student  #   Pre   Post    

Control  Student  #     Pre   Post    

Control  Student  #     Pre   Post  

300   13   14     330   12   16     352   12   10  301   15   15     331   15   15     353   16   15  302   17   18     332   17   17     354   17   12  303   18   18     333   15   16     355   19   16  304   12   13     334   6   11     356   10   12  305   18   20     335   14   14     357   6   5  306   17   16     336   14   14     358   11   9  307   17   17     337   12   13     359   12   14  308   19   20     338   8   12     360   14   16  309   16   16     339   13   15     361   12   10  310   21   21     340   17   17     362   15   11  311   15   14     341   9   10     363   14   17  312   20   20     342   17   17     364   14   9  313   18   16     343   14   17     365   11   15  314   20   20     344   18   19     366   20   10  315   11   14     345   21   21     367   11   8  316   20   20     346   12   13     368   15   14  317   14   15     347   19   16     369   8   11  318   11   10     348   15   16     370   14   11  319   20   21     349   13   16     371   12   15  320   15   15     350   16   16     372   14   5  321   11   12     351   16   15     373   15   19  322   10   13             374   9   6  323   13   14                  324   15   15                  325   18   19                  326   15   15                  327   13   15                  328   16   15                  329   13   15