electric vehicle life cycle analysis by

102
Electric Vehicle Life Cycle Analysis By Russell S. Cohn S.B., Materials Science and Engineering, MIT (1992) Submitted to the Department of Mechanical Engineering In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in Technology and Policy at the Massachusetts Institute of Technology May, 1994 © Massachusetts Institute of Technology 1994. All rights reserved. Signature of Author . . . Department of Mechanical Engineering May 6, 1994 Certified by Certified by Accepted by Joel Clark Professor, Materials Science and Engineering Thesis Supervisor W _,, Richard de Neufville Chairman, Technology and Policy Program Ain A. Sonin Chairman, Graduate Studies LUgft4[R,: S

Upload: others

Post on 09-Jan-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Electric Vehicle Life Cycle Analysis By

Electric Vehicle Life Cycle Analysis

By

Russell S. Cohn

S.B., Materials Science and Engineering, MIT (1992)

Submitted to the Department of Mechanical EngineeringIn Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCEin Technology and Policy

at the

Massachusetts Institute of Technology

May, 1994

© Massachusetts Institute of Technology 1994. All rights reserved.

Signature of Author . ..Department of Mechanical Engineering

May 6, 1994

Certified by

Certified by

Accepted by

Joel ClarkProfessor, Materials Science and Engineering

Thesis Supervisor

W _,,Richard de Neufville

Chairman, Technology and Policy Program

Ain A. SoninChairman, Graduate Studies

LUgft4[R,: S

Page 2: Electric Vehicle Life Cycle Analysis By
Page 3: Electric Vehicle Life Cycle Analysis By

Electric Vehicle Policy Analysis

by

Russell S. Cohn

Submitted to the Department of Mechanical Engineeringin Partial Fulfillment of the Requirements for the Degree of

Master of Sciencein Technology and Policy

Abstract

The cost, emissions, and energy consumption of electric vehicles (EVs) aremodeled using a life cycle framework, which examines all phases of vehicle life from themining of raw materials to the ultimate disposal of the vehicle at the end of its useful life.The life cycle impacts of electric vehicles are compared to conventional gasoline vehiclesand ultra low emission vehicles (ULEVs) in an attempt to determine which approachminimizes environmental impact.

On a unit vehicle basis, EVs are found to produce least amount of carbon dioxide,hydrocarbons, NOx, and carbon monoxide of the three vehicles under study. However,EVs are the most expensive, consume the most energy, and produce the most particulateand sulfur emissions. Furthermore, they may result in more landfill than the other twovehicles if low volume production is assumed.

Given that the costs of EVs and ULEVs are different, a comparison ofenvironmental impact for a given amount of spending is analyzed. ULEVs cost roughly$500 more than an conventional gasoline powered vehicle, while EVs cost from $6,000 to$27,000 more, depending on the choice of assumptions. Using conservative assumptions,the cost of selling 2% to 10% of the new vehicle fleet as electrics is the same as the costof selling 100% of the fleet as ULEVs. Comparison of these two fleets shows that theULEV option consumes less energy and produces less of each type of emission except forCO 2.

Electric Vehicle Policy Analysis 3 Russell Cohn

Page 4: Electric Vehicle Life Cycle Analysis By

Electric Vehicle Policy Analysis 4 Russell Cohn

Page 5: Electric Vehicle Life Cycle Analysis By

Acknowledgments

This thesis was made possible by the insight and direction provided by Frank Field

and Joel Clark. Without their help I would still be asking myself that inane question,

"what exactly am I trying to accomplish here?" I could not have completed this thesis

without the moral support of the entire MSL crowd. Their persistent screen saving, name

calling, truck food eating, throat clearing, and otherwise bloviating behavior forced me to

come in late at night when I could finally get some work done.

Tom Lee helped me through the final stages of thesis writing. His late night

thoughts on the finer points of word processing, footnoting, and life in general gave me

the energy to come back for more. Gaby Lapus guided me through the more difficult

moments of this ordeal.

Bhanu Narasimhan and my crazy Australian neighbors helped me maintain some

sense of sanity throughout this turbulent experience. Our Thursday night Seinfeld get

togethers were about the only thing I could depend on from week to week.

My family deserves the deepest thanks. They have supported me and encouraged

me throughout my time at TPP, even though they still don't know what TPP really is,

except that it's not law school and it's not medical school. And finally I want to thank the

kind people at Gemini Consulting for giving me a place to go now that all of this is over.

Electric Vehicle Policy Analysis 5 Russell Cohn

Page 6: Electric Vehicle Life Cycle Analysis By

Electric Vehicle Policy Analysis 6 Russell Cohn

Page 7: Electric Vehicle Life Cycle Analysis By

TABLE OF CONTENTS

1. INTRODUCTION ............................................. 101.1. Background ................................................................................................ 13

1.1.1. Electric vehicle mandates ............................................. 131.1.2. Electric vehicle history ............................................. 141.1.3. Electric vehicle capabilities ............................................. 16

1.1.3.1. Consumer acceptance ............................................. 171.1.3.2. Research ............................................. 20

1.1.4. The raging EV debate ............................................. 211.2. Purpose ............................................. 23

1.2.1. Inform the debate .............................................................. 241.2.2. Alternative approaches ............................................. 271.2.3. Valuation ............................................. 271.2.4. Establish enabling requirements ............................................ 28

2. METHODOLOGY ........................................................................................ 302.1. Life cycle analysis ............................................ 302.2. Valuation ............................................. 32

2.2.1. Monetization ............................................. 332.2.2. The analytic hierarchy process ............................................. 362.2.3. Multi-attribute utility analysis ............................................. 392.2.4. Limitations ............................................. 41

2.3. Life cycle cost ............................................ 412.4. Technical cost modeling ............................................. 442.5. Selection of vehicles ................................................................................... 452.6. Life cycle energy analysis ....................................... 472.7. Life cycle emissions analysis ....................................... 47

3. ASSUMPTIONS ....................................... 503.1. EV assumptions ....................................... 50

3.1.1. EV cost assumptions ....................................... 523.1.2. EV energy assumptions ........................................ 563.1.3. EV emissions assumptions ....................................... 59

3.2. Gasoline vehicle assumptions ..................................................................... 613.2.1. Gasoline vehicle energy assumptions ....................................... 613.2.2. Gasoline vehicle energy assumptions ....................................... 623.2.3. Gasoline vehicle emissions assumptions ....................................... 62

3.3. ULEV assumptions ....... ......... ................. 633.3.1. ULEV cost assumptions ....................................... 633.3.2. ULEV energy assumptions ............ ............................ 643.3.3. ULEV emissions assumptions . ...................................... 64

Electric Vehicle Policy Analysis 7 Russell Cohn

Page 8: Electric Vehicle Life Cycle Analysis By

4. RESULTS ..... .... .......... 664.1. Cost ............................................................................................................ 664.2. Energy ...................................... 714.3. Emissions ................................................................................................... 72

5. ANALYSIS .............................................................................................................. 775.1. Vehicle analysis ...... ............. 77.....................5.2. Fleet analysis ..... .............. 80.....................

6. CONCLUSIONS ...................................... 84

7. FUTURE WORK ........................................ 86

APPENDIX ................................................................................................................. 87

REFERENCES .......................... 99.......

Electric Vehicle Policy Analysis 8 Russell Cohn

Page 9: Electric Vehicle Life Cycle Analysis By

Electric Vehicle Policy Analysis 9 Russell Cohn

Page 10: Electric Vehicle Life Cycle Analysis By

CHAPTER 1. INTRODUCTION

Environmental thinking to date can be characterized as having a "man on the

moon" approach to problem solving. Complicated and timely problems have been

attacked piecemeal by impassioned individuals, corporations, and government agencies

with the same spirit that the United States launched the Apollo project in 1969.

Unfortunately, environmental agendas are so diverse and far reaching that they often

come in direct conflict with one another. As this thesis will show, a reduction in one

environmental hazard may result in an increase in another. And in most cases,

environmental efforts involve some form of financial cost. Given the magnitude of these

costs, and the number of alternative approaches competing for limited funds, the burden

of cost can no longer be ignored.

This thesis, for the first time, will present a complete evaluation of an

environmental topic of urgent importance. Separate impacts are not viewed separately,

but rather as components of a greater whole. The specific issue under study is the electric

vehicle (EV), which has been mandated by California's Air Resources Board (CARB) for

the 1998 model year. Although the mandate was intended to reduce levels of carbon

monoxide (CO), oxides of nitrogen (NOx), and hydrocarbons in the air, the mandate will

also affect levels of other airborne emissions, energy consumption, and landfill. But more

importantly, the mandate will have far reaching economic effects. The cost of

implementing the EV mandate may in fact achieve better environmental "value" if spent

on other vehicle emission reduction techniques.

Electric Vehicle Policy Analysis 10 Russell Cohn

Page 11: Electric Vehicle Life Cycle Analysis By

The topics environmental attributes of interest in this report are those that are most

relevant to the automotive industry. Here, relevancy results from urgency or potential

urgency. Smog has received the most attention in this respect, as it is a visible and

dangerous health hazard affecting tens of millions of people annually in the Unites

States.l The emissions primarily responsible for smog are those that are already regulated

by various state and federal organizations: carbon monoxide (CO), oxides of nitrogen

(NOx), and hydrocarbons (HCs).2 Another airborne emission of concern is particulate

matter, which is believed to cause cancer.3 Oxides of sulfur (SOx) are known to cause

acid rain, and are therefore of grave concern.4 And finally, carbon dioxide (CO2) is

believed to contribute to global warming, although emissions of this gas are not yet

regulated by any agency in the U.S. or elsewhere.5

In addition to airborne gaseous emissions, solid emissions are created in the form

of landfill. Landfill has become a serious issue in the automotive industry primarily

because in some regions it may soon be classified as hazardous material. Any non-metal

substances which enter the shredder may emerge in the pile of materials destined for the

landfill (this stream of material is known as automotive shredder residue, ASR).

Substances such as oils, acids, coolants, gasoline, and paint which enter a landfill may

eventually leak out and threaten the surrounding water table and wildlife. Landfill is also

becoming a problem in areas which have limited space available.

Should ASR become classified as hazardous by state or federal legislatures,

landfill tipping fees (the fees charged to the shredder operator for use of the landfill) will

skyrocket. Even limited landfill availability may cause tipping fees to rise in the future.

Such a prospect is potentially disastrous for the auto recycling industry.

Electric Vehicle Policy Analysis 11 Russell Cohn

Page 12: Electric Vehicle Life Cycle Analysis By

A final environmental concern is energy. While energy prices remain low and the

discovery of oil and natural gas continues, legitimate fears of an eventual energy shortage

remain.

But in addition to the environmental attributes listed above, the costs associated

with environmental policy decisions is also of vital importance. Society can spend only a

limited amount of its wealth on environmental goals without collapsing financially.

Prudent selection of those policies with the greatest added value is essential for the

efficient allocation of scarce environmental dollars.

Policy analysis must include the entire scope of the issue at hand. The above

mentioned attributes of concern must be determined at all stages of the policy, rather than

at a single instant. By widening the scope of analysis to include all relevant

environmental attributes and all life cycle stages, a more accurate assessment of the

impact of a policy can be made. For this reason, life cycle analysis is used to incorporate

the entire life span of a single vehicle, from the mining of the material to the production,

operation, maintenance, and finally the eventual disposal.

This is not enough, however. An "all or nothing" approach will only show how a

given policy will differ from the current situation. Alternative approaches to the same

problem must also be considered. In this case, ultra low emission vehicles (ULEVs) are

considered as a potential alternative approach to vehicle environmental impact reduction.

ULEVs are essentially conventional gasoline vehicles with enhanced catalytic converters

which eliminate much of the initial cold start emissions. ULEVs are discussed in detail in

Section 3.3.

Electric Vehicle Policy Analysis 12 Russell Cohn

Page 13: Electric Vehicle Life Cycle Analysis By

1.1. Background

While conventional gasoline vehicles have come a long way in terms of energy

and emissions reduction, three factors limit the effectiveness of such incremental

improvements. First, reduction in emissions and energy consumption have been largely

offset by the increase in vehicle miles traveled. Consumers continue to drive further

distances more frequently for a number of societal reasons. Second, vehicles tend to

degrade over time, and the inspection and maintenance efforts necessary to ensure that

vehicles remain in their initial condition are overwhelming. And finally, there exists no

methodology for evaluating a safe or desirable level of emissions or energy consumption.

In light of these three shortcomings, complete elimination of unwanted environmental

impacts is often thought to be the only acceptable environmental goal. Further

improvements on the conventional vehicle will merely fall victim to the three difficulties

above.

1 .1.1. Electric vehicle mandates

The current interest in electric vehicles stems from the California Air Resources

Board (CARB) mandate that 2% of the vehicles that auto manufacturers must sell in 1998

produce zero emissions. The volume increases to 5% in 2001 and 10% in 2003. A

number of creative design approaches have been proposed to store or generate energy

without producing emission, although to date only electric vehicles have demonstrated

promise in meeting the mandate. Electric vehicles of all sorts have in fact existed for over

100 years, indicating that the California mandate is feasible on a technological level. This

Electric Vehicle Policy Analysis 13 Russell Cohn

Page 14: Electric Vehicle Life Cycle Analysis By

demonstration of electric vehicle technology was a key input in the decision making

process which resulted in the CARB zero emission mandate.

The responsibility to sell EVs rests with the manufacturers, as they must not only

produce and offer EVs for sale, but they must also sell at least the given percentage to

avoid a monetary penalty of $5000 per vehicle below the mandated level. The CARB

legislation does not address how consumers should use the electric vehicles after the time

of sale.

In addition to California, the 12 Northeast states have taken steps to copy CARB's

mandate. All states must comply with the 1992 Federal Clean Air Act (CAA) which

mandates total emissions levels but leaves compliance strategies up to individual states.

Meeting CAA requirements is necessary for continued federal funding of infrastructure

and other state initiatives.

Outside the United States, other nations, such as Taiwan, are considering electric

vehicle requirements.6 Suddenly the whole nation is watching California. Success or

failure in this initial proving ground will determine the viability of electric vehicles as a

mass produced consumer product.

1.1.2. Electric vehicle history

Although the first electric vehicle mandates will not go into effect until 1998, EVs

have been in use for more than 100 years. In the years following their first demonstration

in 1882, electrics were far more popular than their gasoline powered counterparts mainly

because they were simpler and more reliable. However, as internal combustion energy

technology progressed in the early 20th century, gasoline vehicles became far more

Electric Vehicle Policy Analysis 14 Russell Cohn

Page 15: Electric Vehicle Life Cycle Analysis By

prevalent for a number of reasons, the most significant of which was range. Gasoline

powered vehicles could achieve a range of several hundred miles, while electrics were

limited to about 50 miles. This single factor more than any other led to the demise of

EVs. And despite technological improvements in battery capabilities, motor design, and

electronic control, range has not improved beyond that of early vehicles. (see table

below). Progress has been limited by battery technology. Specifically, the battery energy

density, which is the amount of energy that can be stored per unit of weight, has not

improved significantly.

Table 1. Range and speed of select electric vehicles, 1882-1993.

year vehicle name city range (miles) top speed (mph)

1882 Ayrton and Perry electric tricycle 10-25' 9*

1895 Baker and Elberg electric wagon 50* 15-18*

1977 Volkswagen Comercial (electric bug) 30-50* 42*

1993 GM Impact 70** 75**

* from Wakefield? ** manufacturer's claim

By the 1910's, Henry Ford's decision to manufacture only gasoline powered

vehicles all but eliminated electric vehicles from the mass market. Not until the energy

crises of the 1970's did electric vehicles reappear as an alternative to conventional

gasoline powered vehicles. The result of the energy crises, however, was to improve the

fuel efficiency of gasoline vehicles to a fleet average of 27.5 miles per gallon from 16

miles per gallon before the oil shocks. With the weakening of OPEC and the stability of

oil prices in the late 1970's and 1980's, there was little justification for continued interest

in EVs.

Electric Vehicle Policy Analysis 15 Russell Cohn

Page 16: Electric Vehicle Life Cycle Analysis By

More recent events, however, have transpired to once again bring EVs into the

spot light. Severe air quality problems, most notably in Los Angeles, have been linked to

vehicle emissions.8 In addition, fears of the much debated global warming theory have

raised questions about the long term implications of dependence on fossil fuel as a source

of energy. Electric vehicles have been proposed as a strategy to reduce both harmful

emissions and energy consumption.

California's EV mandates, discussed above, are but the first of many proposals to

reintroduce a technology which has already twice been rejected by consumers and

producers. However, current circumstances are very different from those of the past.

Urban air quality has, in some cases, deteriorated to an unacceptable level despite

numerous and costly attempts to limit airborne emissions.9 Proponents of EVs argue that

drastic and potentially unpopular action is necessary to combat environmental woes. And

if urgent and sustained attention and resources are devoted to electric vehicle technology,

there remains the possibility that EV performance and price will improve to the level of

conventional vehicles and beyond. California's EV mandates have created the potential

for a multi-billion dollar EV market which has in turn resulted in billions of dollars in

public and private sector research and development. Much of this effort has focused on

battery technology, which is widely recognized as the factor limiting performance.'0

1.1.3. EV capabilities

As mentioned above, electric vehicles have been in production for decades.

Current models, such as the GM Impact and the Ford Ecostar, perform much like

conventional vehicles with two notable exceptions. First, the total energy available is

Electric Vehicle Policy Analysis 16 Russell Cohn

Page 17: Electric Vehicle Life Cycle Analysis By

limited to battery storage constraints. This limits range to below 100 miles, and severely

restricts the use of appliances such as the air conditioner and heater. Recharging the

batteries normally takes hours, although a "quick charge" at higher voltage can partially

charge the battery in a matter of minutes. The disadvantages of quick charging are that it

may shorten the life of the battery, the high voltages may be dangerous to the user, and

charging efficiency is reduced.

A second difference between EVs and conventional gasoline vehicles is cost.

Again, the battery is at the center of this issue. Batteries are much more expensive than

comparable gasoline power systems, and batteries typically need replacement before the

end of the useful vehicle life. The high power electronics and light weight materials

needed in EVs also adds cost. Cost is discussed in more detail in Section 3.3.1.

1.1.3.1. Consumer acceptance

The success of electric vehicles depends ultimately on market performance.

Although mandates may put tremendous financial and political pressures on automakers

to sell EVs, these pressures alone will by no means guarantee that consumers will buy the

vehicles. The current regulations in California and the Northeast place the burden for sale

squarely on the manufacturers. However, if manufacturers are unable to sell the required

number of units, they will be forced to discount the price below cost, and will suffer a loss

on every vehicle sold. One Ford executive estimates that this loss will amount to $10,000

per vehicle." Consumers will pay for this loss, in one form or another, most likely

through higher prices for other vehicles. Manufacturers may, in effect, subsidize electric

vehicles with the rest of their sales. Since the elasticity of demand for autos is high, such

Electric Vehicle Policy Analysis 17 Russell Cohn

Page 18: Electric Vehicle Life Cycle Analysis By

a strategy may have the unfortunate outcome that consumers will hold on to their older,

more polluting cars longer before buying a replacement.

There is also speculation that state and regional governments will help ease the

financial burden by granting direct subsidies or tax write-offs for electric vehicle owners.

Again, consumers will pay for these subsidies through higher taxes or government cut

backs in other services.

A third response to selling vehicles at a loss is refusal on manufacturers' behalf to

comply. Although California and the Northeast represent large markets, there is the

remote possibility that producers will be unable to operate profitably in the regions under

the proposed mandates, and will either violate the regulations or exit the market.

The willingness of consumers to buy electric vehicles and the amount of the

various losses or subsidies will depend largely on the price of owning and operating the

vehicles. Given that the performance and convenience are well known, at least for the

first generation of EVs, price is one of the few variables that can be adjusted to lure

potential buyers.

The price consumers are willing to pay is therefore extremely important. A

number of market research studies attempt to calculate this price. An especially revealing

survey by Cambridge Reports Research International indicates that consumers, on

average, would not even consider owning an EV unless the life cycle cost of ownership is

15% less than a comparable gasoline vehicle. The report also indicates how many

consumers would consider buying EVs over a range of costs. Unfortunately, it is

impossible to determine exactly how many potential consumers will actually buy an EV.

Since car buyers typically consider several cars when making a purchase, it is assumed

Electric Vehicle Policy Analysis 18 Russell Cohn

Page 19: Electric Vehicle Life Cycle Analysis By

that at most 25% and as few as 10% of these potential buyers will ultimately decide on an

EV. Using these assumptions, the Cambridge Reports data indicates the following prices

consumers will be willing to pay:

Table 2. Price (as compared to gasoline vehicle) consumers arewilling to pay for EVs for three fleet sizes.

fleet potential buyers actual buyers actual buyerspenetration (upper bound)* (lower bound)**

2% (1998) 100% premium 10% premium same price

5% (2001) 50% premium same price 15% discount

10% (2003) 10% premium 10% discount 90% discount

* based on the assumption that 25% of potential EV consumers will buy an EV.** based on the assumption that 10% of potential EV consumers will buy an EV.

The above data reveals that in 1998, consumers will pay the same to 10% more for

EVs. As the mandated market expands in 2001, prices must be 15% less or the same as a

comparable gasoline vehicle. By 2003, a discount of 10%-90% will be necessary. All of

these calculations are based on current consumer preferences and current EV capabilities.

Should technological advances improve performance, range, or convenience, it is

expected that less discounting will be necessary.

While the above analysis offers insight into EV pricing, there is no way to

determine the pricing with any accuracy. In today's highly competitive auto market,

consumers are extremely unpredictable and overly sensitive to seemingly inconsequential

details. A trendy color or interior gadget can greatly influence sales of a vehicle. In

contrast, major performance capabilities and features of EVs are not nearly as clear, and

hence the above market research offers little more than a range of estimates.

Electric Vehicle Policy Analysis 19 Russell Cohn

Page 20: Electric Vehicle Life Cycle Analysis By

Fortunately, better estimates of feasible EV pricing are forthcoming. Both Ford

and GM are conducting pilot programs in which potential consumers test drive EVs for a

trial period. Last November, Ford delivered 81 electric Ecostar vans to fleet customers in

six cities. An ongoing thirty month evaluation will document rigorous, real world

experiences of the vehicles and impressions by the users. 2 GM, meanwhile, plans to lend

30 of its sporty Impact electric vehicles to community leaders and potential customers for

periods of two to four weeks. In all, hundreds of individuals will test the vehicles and

give their reactions.3 Once people are able to use the vehicles on an everyday basis, a

more accurate assessment of consumer acceptance can be made. The results of these

studies should appear in the coming year.

1.1.3.2. Research

As discussed earlier, electric vehicles are inferior to gasoline vehicles in terms of

range, convenience, and cost. However, it is entirely possible that advances in battery

technology will reduce or eliminate the disadvantages. In fact, there is even the outside

chance that EV capabilities will surpass those of gasoline vehicles. Much of the debate

surrounding the EV issue deals with this potential for technology improvement. Although

they have not achieved mass market success despite a hundred years of existence, a

sudden breakthrough could propel EVs to universal popularity. By mandating the

technology, California regulators hope to provide the incentives for major research in

battery technology.4

Unfortunately, billions of dollars and years of research have not yet produced the

desired improvements. Batteries have been in use for more than a hundred years, and

Electric Vehicle Policy Analysis 20 Russell Cohn

Page 21: Electric Vehicle Life Cycle Analysis By

efforts to improve their capabilities have already been ongoing outside of the auto

industry. Other demands for advanced batteries, such as space exploration, laptop

computers, and cellular telephones have already provided incentives for improvement

through research.

While many potential advances lie on the horizon, it is unclear that any of them

will materialize.1 5 Nonetheless, major funding of EV technology continues. Below is a

partial listing of recent expenditures by a number of organizations on research and

development of electric vehicles.

Table 3. Recent EV research and development funding

researchfunding

organization ($millions) research purpose

Defense Advanced 25 variety of projectsResearch Projects Agency

Department of Energy 320 variety of projects

US Advanced Battery Consortium 260 battery technology

US Big Three 1,000 (est.) vehicle development

source: Automotive News, July 19, 199316

1.1.4. The raging EV debate

Electric vehicles have not attained mass market appeal at any time in their hundred

year history, despite billions of dollars in research and development. However, it is the

hope of government regulators that the mandates set forth by California for 1998 and

beyond will catalyze a sustainable EV market. Although EVs are not competitive now,

the mandated sales of EVs may indeed yield the economies of scale, developmental

Electric Vehicle Policy Analysis 21 Russell Cohn

Page 22: Electric Vehicle Life Cycle Analysis By

research, and publicity needed for the successful implementation of such a far reaching

technology.

Air bag restraining systems exhibited such a scenario. Auto manufacturers,

worried that consumers would not be willing to pay the extra costs associated with such a

device, resisted federal regulations that would require all cars to have driver side air

bags.'7 However, once consumers became aware of the safety advantage, air bags

demand (and profits) rose to unexpected heights. As a result of increased sales,

production cost fell with further experience and economies of scale. Most consumers now

expect not one, but two air bags, and they are more than willing to pay the extra cost. In

this example, a small government action changed the way consumers and producers

thought about a given product. It is entirely possible that EV mandates will serve the

same purpose.

There also exists the likelihood that further improvements will not take place, EVs

will not gain market appeal, and nothing will result from California's efforts except for

the loss tens of billions of dollars which could have been spent on other more promising

environmental strategies.

The California mandates have sparked an intense debate over the likelihood of

eventual success or failure of EVs. Those in favor of the regulations claim that costs will

fall and technology will improve to such a level that some day no one will ever consider

buying a conventional gasoline vehicle. Opponents point out that battery technology has

not improved considerably despite decades of wide scale use in other applications.

The bulk of the debate has focused on cost. Estimates of what an EV will cost

vary by 400%. Unfortunately, the success of EVs will depend largely on their cost, and

Electric Vehicle Policy Analysis 22 Russell Cohn

Page 23: Electric Vehicle Life Cycle Analysis By

without an accurate estimate of cost further debate is meaningless. The following table

shows some recent calculations for electric vehicle cost:

Table 4. Recent cost estimates for electric vehicles

reference cost assumptions/methods

DeLuchi $36,035** life cycle framework: 150 mile range battery powered EV

R.H. Williams $16-18,000 medium and long term fuel cells; based on DeLuchi's framework

Ford (Nichols) $36,000* purchase price only; based on a projected retail loss of $20,000 pervehicle; assumptions confidential

Solectria $19,995 Retail price: Solectria Force (Geo Metro electric conversion)50 mile range; no A/C

Solectria $59,350 Retail price: Solectria Force NiCad GT 100-120 mile range; no A/C

Sierra $28-37,000* confidential life cycle model

AAMA $50-72,600* manufacturing cost only; short term estimates; assumptionsconfidential

CARB $17,400* manufacturing cost only; sales weighted average based onmanufacturer and Sierra estimates

* based on cost relative to average vehicle price of $16,000.** based on a life cycle cost of $0.36/mile; 100,000 mile life is assumed.

sources: DeLuchi," Williams,'9 Ford,' Solectria,2 ' Sierra,2 2 AAMA, CARB.24

1.2. Purpose

The purpose of this thesis is three fold. First, it will inform the raging electric

vehicle policy debate with revealing information about the impact of the policies

involved. Many of the key decision making parameters, such as vehicle cost, are as yet

unknown, and without accurate data along these lines, further policy discussion is useless

at best and disastrous at worst. Second, this thesis examines alternative vehicle policies in

an attempt to compare their overall effect against a policy which includes electric

vehicles. And finally, this thesis will draw conclusions about the wisdom of current

policies. While a prediction of the success or failure of such a complex and far reaching

Electric Vehicle Policy Analysis 23 Russell Cohn

Page 24: Electric Vehicle Life Cycle Analysis By

mandate may not be possible, the technological limitations and requirements at least will

be analyzed.

1.2.1. Inform the debate

Discussions concerning the technical, environmental, economic, and

environmental implications of EVs have for the most part focused on unsubstantiated

claims and outrageous assumptions. Lobbyists, environmental groups, politicians,

academics, and members of industry have managed to draw conflicting conclusions on the

impact of electric vehicle legislation based on seemingly legitimate assumptions. While

such tactics are to be expected in any political argument, the current issue clearly merits a

more accurate and legitimate approach. Billions of dollars and the environmental health

or our nation are at stake. Clearly, a thorough understanding all associated issues must be

at least attempted.

Unfortunately, the generation of unsubstantiated data based on simplistic or

fallacious assumptions is much faster than scholarly scientific assessment. While many of

the early arguments have already been presented, only within the last several months have

some of the more scholarly works been completed and presented. This sudden increase in

the quality and validity of underlying data has come at a critical moment in the electric

vehicle debate, as regulators and producers are beginning to finalize plans for the first

round of electric vehicle mandates for 1998. The Northeast states, for example, are

weighing arguments for and against the implementation of California's EV mandates,

while other states are waiting anxiously.5

Electric Vehicle Policy Analysis 24 Russell Cohn

Page 25: Electric Vehicle Life Cycle Analysis By

The electric vehicle debate has by this late date explored every imaginable facet of

the proposed mandate. (Those which are currently unimaginable will most likely be

discussed as they appear.) Topics of discussion have included vehicle performance,

infrastructure development, consumer acceptance, airborne emissions, energy

consumption, and cost. A severe deficiency along any one of these lines would be

detrimental to the implementation of the proposed legislation.

Of all the topics mentioned, only the first one, vehicle performance, is well

understood if current or near term technology is assumed. The range, acceleration, and

speed of electric vehicles have been well documented by previous demonstrations. (See

section 1.1.2. above.) Proponents of EVs predict radical improvements in battery

technology which would greatly improve vehicle performance. And given that auto

manufacturers must begin designing and tooling for 1998 model year vehicles now, it is

unlikely that advanced battery technologies will appear in the first or even second

generation of vehicles.

Infrastructure development and consumer acceptance are two of the least

understood topics of discussion simply because they will not occur on a wide scale until

EVs are distributed and operated on a wide scale. Auto makers continue to perform

market research on their vehicles: GM and Ford, for example, have begun pilot

distributions of their electric vehicles, and the results of these studies may or may not be

available to the public in the coming months. An independent research organization has

also conducted surveys designed to gauge the reaction of consumers.2 6

Of all the topics relevant to EV discussion, the last three (emissions, energy, and

cost) present the greatest uncertainty and will ultimately be the most influential in the

Electric Vehicle Policy Analysis 25 Russell Cohn

Page 26: Electric Vehicle Life Cycle Analysis By

likelihood that the EV mandates succeed in achieving the goal of reducing environmental

hazards. These two factors, uncertainty and influence, have sparked a bitter and

emotional debate fueled by outrageous analysis interspersed with examples of

misinformation borderline misconduct. Consider the following:

* Electric vehicles have been falsely classified as "zero emission" vehicles.The electricity used to charge them produces emissions, a fact which theEPA tried unsuccessfully to cover up.27

* The same EPA report uses average power plant emissions in its estimates,rather than the "marginal" emission rates produced by the dirtier and lessefficient power plants that would realistically supply the extra energy usedto recharge electric vehicles.

* A recent publication calculated the costs of owning and operating electricvehicles. The data and formulae used in these calculations were withheldfor reasons of confidentiality, thus preventing independent confirmation.2 8

* Other recent publications assumed that EV bodies would cost the same asconventional vehicle bodies. The higher cost of lightweight materials andlost economies of scale in low production volume were dismissed withoutdiscussion.2

This thesis will provide a more accurate assessment of vehicle cost, emissions, and

energy consumption, using appropriate and justifiable assumptions. Once such data has

been brought to light, an informed and intelligent debate over the future of electric

vehicles can proceed without the distractions such as those listed above. Any contribution

to the growing body of clearly defined and well implemented analysis will aid in an

enlightened assessment of electric vehicle policy.

Electric Vehicle Policy Analysis 26 Russell Cohn

Page 27: Electric Vehicle Life Cycle Analysis By

1.2.2. Alternative approaches

Although regulators and environmentalists promote electric vehicles as the best

long term approach to environmental and energy problems, it is not clear that other

vehicle approaches will not provide the same or superior benefits for the same cost. One

alternative approach discussed in this report is the ultra-low emission vehicle (ULEV)

which has also been mandated in California and elsewhere. This vehicle is no different

from an ordinary gasoline vehicle with the exception that its emissions, as measured in

grams per mile, are greatly reduced through the use of an innovative catalytic converter.

A number of exhaust systems have been designed to achieve such reductions, and the

additional costs and emissions reductions are known within a narrow range. As a point of

reference, conventional gasoline vehicles are also examined using the same framework.

Discussion of alternative environmental approaches is essential for the simple

reason that funds for environmental improvement are not limitless. Beyond some very

high cost, as measured per vehicle for society on the whole, an environmental program

will fail catastrophically. Beyond this cost, consumers will refuse to pay for

environmental strategies, and manufacturers and legislators will be unable to subsidize the

high cost. But even below this upper limit, alternative approaches may exist which

provide superior environmental results at lower cost.

1.2.3. Valuation

The first two goals of this thesis, discussed above, detail the economic cost and

environmental benefits of electric vehicles as compared to ULEVs and conventional

vehicles. While bits and pieces of this data may be of use to other parties contemplating

Electric Vehicle Policy Analysis 27 Russell Cohn

Page 28: Electric Vehicle Life Cycle Analysis By

electric vehicle issues, the data in its raw form is of little consequence by itself. Rather,

the valuation of the data is of much more interest. Obviously, the three vehicle

approaches chosen in this report, EV, ULEV, and conventional, will have different costs,

emissions, and energy consumption rates. Should no one vehicle be superior in all three

categories, it will be difficult to determine which one provides the highest environmental

"value" given its cost. This is in part because the relationships (monetary or otherwise)

between inventoried emissions and human concerns, such as disease or death, have not

been established. Grams of say, carbon monoxide are of no direct relevance to the quality

of human existence or the overall quality of our environment. Unfortunately,

environmental science has not evolved to the point where chemical emissions are

correlated to such factors.

Furthermore, in the absence of universal agreement as to environmental and

financial priorities, such any valuation is impossible. Different regions and individuals

within those regions have different priorities, thereby preventing consensus.

1.2.4. Enabling requirements

Although valuation may prove to be difficult or impossible, an attempt to analyze

the feasibility of electric and low emission fuel vehicles is nonetheless worthwhile.

Despite a lack of consensus on environmental priorities, government mandates such as the

Federal Clean Air Act and California's own vehicle mandates are very real goals which

must be met. Based on the cost of owning and operating the vehicle, one can attempt to

establish criteria within which a given approach is viable. For example, an acceptable

long run cost can be proposed as a percentage of conventional vehicle cost. While this

Electric Vehicle Policy Analysis 28 Russell Cohn

Page 29: Electric Vehicle Life Cycle Analysis By

type of assessment is immature and requires further attention, clearly a framework must

be established for evaluating the feasibility of the various approaches.

Once rudimentary criteria are established, a prediction of the feasibility of the

various approaches can be made. But of more importance is the sensitivity of cost,

emissions, and energy consumption to those important vehicle parameters which are

likely to change in the coming years. For example, electric vehicle cost may be

prohibitively high initially, but there may exist some combination of enabling

technologies and market factors which brings cost down to a reasonable level at which

electric vehicles will be feasible. Once those feasible scenarios are outlined, one can

begin to determine the likelihood that such scenarios materialize. The final goal of this

thesis, then, is to identify criteria required for feasibility and those technical or market

factors necessary to meet those criteria.

Electric Vehicle Policy Analysis 29 Russell Cohn

Page 30: Electric Vehicle Life Cycle Analysis By

CHAPTER 2. METHODOLOGY

A number of frameworks have been proposed to assess the environmental and

economic effects of consumer and durable goods. These methods are discussed below,

along with additional modifications and assumptions that have been made specifically for

the purpose of understanding electric and ultra low emission vehicles.

2.1. Life cycle analysis

One of the main concerns of environmental analysis is that all activities associated

with a product be considered. Many studies and regulations address individual and

isolated effects, such as corporate average fuel efficiency (CAFE) regulations which

require automakers produce and sell autos which have a weighted average fuel efficiency

of 27.5 miles per gallon. CAFE regulations do not address the energy required to produce

or recycle the vehicles, nor do they address other issues such as landfill or hazardous

waste. For environmental studies and regulations to be successful, they must take the

holistic approach of assessing all environmental impacts over the entire life cycle of the

product. "Life cycle analysis" (LCA) has been presented in the literature in various forms

for decades [references original Coke-ADL study]. By far the most popular approach in

the current literature views the life of a product as a single entity for comparison. All

stages of the product's life are included: production of materials, forming of components,

assembly of finished product, operation, and disposal or recycling. At each stage,

attributes such as emissions of CO are determined, and these are summed over all life

Electric Vehicle Policy Analysis Russell Cohn30

Page 31: Electric Vehicle Life Cycle Analysis By

cycle stages yielding a total "life cycle" inventory of resources consumed and byproducts

created.

Initial life cycle studies were inconsistent in defining the boundaries of the given

product, and hence their findings were often contradictory as was the case of the cloth

diaper debate.30 The sheer volume of data necessary to conduct a thorough life cycle

assessment presents ample opportunities for manipulation, rendering LCA results

questionable. In many cases, LCA and environmental analysis in general has degenerated

to tools for marketing and public relations.3'

The difficulties in applying LCA in a consistent and meaningful manner prompted

the Society for Environmental Toxicology and Chemistry (SETAC) in 1990 to define

strict guidelines for the application of life cycle analysis.32 The "boundaries" of a product

were well defined, thereby eliminating much of the potential for creative data selection

and manipulation. The collection of data required for a complete LCA, under the SETAC

guidelines, is so costly that it has spawned an entire industry of environmental

consultants. The preparation of an environmental impact assessment has become an

arduous process requiring years of research and tens of thousands of dollars.

While the SETAC guidelines represent a major advancement of LCA

methodology, several issues remain unresolved. Environmental impact as a whole is

discussed, without reference to the concentration of these impacts within certain regions.

Clearly areas of high population should be treated differently than areas of little or no

population. Intertemporal issues also remain. The timing of environmental releases is not

addressed by SETAC, and serious debate surrounds this issue.33

Electric Vehicle Policy Analysis 31 Russell Cohn

Page 32: Electric Vehicle Life Cycle Analysis By

Despite the high cost, effort, and limitations of LCA, as defined by SETAC, the

final inventory outputs are given in units which are not directly relevant to human or

environmental interests. Even the most thorough analysis can only give inventories in

terms of measurable quantities, such as grams of carbon monoxide produced, or BTUs of

energy consumed. While interesting, these quantities do not translate directly into factors

of human interest, such as number of deaths by cancer or acres of lost rain forest. Thus it

is impossible to place a value on the product under study, regardless of the quantity and

quality of life cycle data.34 The following section will discuss valuation methods in more

detail.

Due to the limitations of the SETAC methodology, this technique will not be used.

Instead, comparison of readily available data will be used. Although this approach

sacrifices accuracy for simplicity, this is the only feasible approach given the scope of this

project.

2.2. Valuation

Life cycle data alone tells little about direct environmental consequences, and as a

result, it must be converted into a context which is useful to decision makers. There are

two categories of this type of conversion: transformation and value measurement. Both

have been used in a number of applications, although little experience exists in their

application specifically to environmental valuation.

The many objectives of a decision are not directly comparable due to the fact that

they express different quantities and are given in terms of incompatible units. The

objectives may, however, be translated into a single common measure and then be

Electric Vehicle Policy Analysis 32 Russell Cohn

Page 33: Electric Vehicle Life Cycle Analysis By

compared and used to determine a single performance rating. The common measure must

be somehow related to all of the other quantities so that translation is feasible. Money is

often the measure of choice, as it is the thread that ultimately forms the fabric of many

important decisions. Conversion into money terms, or "monetization," is the

transformation of all decision variables into dollars or other currency equivalents. A

number of techniques have been proposed and demonstrated to determine how to

transform quantities into money terms.

Besides transforming objectives into dollar terms, a measurement of value of

objectives can be determined directly. A "value function" is a means for ranking relative

preference of sets of decision consequences without the use of dollars or other currency as

a basis for judgment.3 5 However, since cost is usually one of the consequences of any

important decision, value functions resemble monetization techniques with one important

exception. The relationship between value and the attributes which form the basis for the

decision is not linear by necessity, as is the case with monetization. For example,

reduction of a certain pollutant may have increasing value as that reduction approaches

complete elimination.

2.2.1. Monetization

Monetization is the translation of multi-objective decisions into a single dollar

metric. All environmental costs or benefits are converted to dollar values, the sum of

which is said to be the value of the decision. These costs and benefits are broadly

classified as social costs, market value, and consumer value. The choice of which of the

three to use depends entirely on the scenario at hand and the purpose of the study. Each

Electric Vehicle Policy Analysis 33 Russell Cohn

Page 34: Electric Vehicle Life Cycle Analysis By

can potentially contribute to the monetization process. In this case, the market cost is

used for the purpose of life cycle cost analysis.

Several procedures have been proposed for determining dollar equivalents of

environmental factors, although no universally agreed upon standards have emerged. Part

of the reason is that environmental goals generally do not have well defined or agreed

upon costs and benefits. For example, the value of clean air has never been assessed.

Since nobody owns the air, and there exists no market for the air, simulated or otherwise,

it is impossible to determine a price or cost. But by examining the social costs, related

health costs, and direct market costs incurred by various activities, we can extract a value

which is meaningful in some situations.

Another way to evaluate social costs is to equate them to the amounts of money

our society has chosen to spend on efforts to preserve environmental assets. The funds we

spend to save bald eagles from extinction or to prevent destruction of Amazon rain forests

an indication of how these species and ecosystems are valued.

The argument for monetization is based upon the notion that markets are an

efficient means for distributing resources. The effectiveness of markets, however,

depends on several assumptions, not the least of which is the requirement for accurate

information. In order to make rational decisions which affect a market, individuals must

have knowledge about all aspects the situation. In the environmental realm, however,

there is a great deal of uncertainty at many levels of the decision making process.

First, underlying physical relationships between the environment and industrial

activity have not been established, despite tremendous research efforts in the areas of

atmospheric science, epidemiology, and ecology. For example, the scientific community

Electric Vehicle Policy Analysis 34 Russell Cohn

Page 35: Electric Vehicle Life Cycle Analysis By

is unable to describe quantitatively and definitively the link between carbon dioxide and

global warming. Second, uncertainty is introduced by the volatile regulatory climate.

California's electric vehicle mandate, for example, may or may not be adopted by a

number of other states in the near future. And third, the costs of environmental

improvement are usually unknown.

In terms of calculation and interpretation of results, monetization is conceptually

simple. Once key values are agreed upon, the procedure for calculating costs is straight

forward. If a standard methodology for determining these key values is developed, the

entire process could conceivably become routine and reliable. In addition, once a

database of environmental values is created, it can be applied to almost any product or

activity without modification.

Beyond facilitating comparisons among attributes, monetization has the added

benefit that it uses cost as the decision making variable. Cost is one of the few metrics

that has a meaning of its own. All parties involved in the policy process, including

regulators, consumers, and producers, are capable of discussing cost issues, whereas these

same parties may not be able to discuss things such as utility or value, which are

presented in the next sections. Cost is a common language which provides a convenient

means of communication.

Monetization is hindered by the initial assumption of perfect information. Since

very little quantitative information is in fact available on environmental "goods," it is

difficult to assign dollar values. Conventional products such as cars, memory chips, and

hamburgers have known production costs, raw material costs, availability, consumer

demographics, and a long list of other measurable factors which are known to influence

Electric Vehicle Policy Analysis 35 Russell Cohn

Page 36: Electric Vehicle Life Cycle Analysis By

market value. A clear lack of information creates a formidable challenge for buyers and

sellers of environmental products.

Even if agreement exists on the use of cost or benefit in the monetization process,

the question of who performs the valuation still remains. While it may be possible for an

individual to determine a value for goods and activities which have no markets, it is

unlikely that groups of individuals will agree on a single value.3 6 Conflict is inevitable,

and the resolution of such a conflict is a challenging task.

One final limitation of monetization is that it is linear, both in its valuation of

individual attributes and in the way it makes trade-offs between attributes. It is expected

that the value increases with scarcity, and the value relationship is non-linear. And where

several attributes are concerned, the importance of one attribute to another is constant,

regardless of the levels of each attribute."

2.2.2. The analytic hierarchy process

A number of methods exist which evaluate decisions based entirely on preferences

among the attributes which form the basis for the decision. Rather than calculating the

cost, benefit, or willingness to pay for each attribute individually, these methods compare

the attributes against each other in such a way that reveals the relative importance of each.

The result is a performance measure not unlike the dollar value given by monetization.

But by avoiding the need to value the attributes in dollar terms, practitioners of value

methods can avoid the arduous and controversial task of simulating markets. In addition,

the political and ethical dilemmas associated with monetization are eliminated because no

direct "value of life" is necessary.

Electric Vehicle Policy Analysis 36 Russell Cohn

Page 37: Electric Vehicle Life Cycle Analysis By

Value methods, unlike monetization techniques, are not limited to linear

relationships. A non-linear value function has the ability to represent preference behavior

such as saturation, which is the decrease in incremental value of continued improvement.

For example, the elimination of the last ton of carbon monoxide from the environment be

more beneficial than the elimination of the first ton.

The analytic hierarchy process (AHP) decomposes the valuation process into a

series of smaller problems which are addressed individually. The name derives from the

structuring of the process into levels of decision making. At the highest level the goal of

the process is defined, for example "environmental impact reduction." The goal is broken

down into measures which affect it, such as "pollution to air," and "energy consumption."

These measures are called attributes, and make up the second level of the hierarchy. Each

of these attributes can in turn be further decomposed into sub-attributes.

For example, pollution to air might be broken down into greenhouse gases,

smog-causing gases, etc. At the lowest level of the hierarchy are the proposed products or

strategies in question, known as the alternatives. These alternatives are the subject of the

study in that they are the possible approaches to achieving the goal. In the case of case of

environmental impact reduction, alternatives might consist of nuclear power, electric

vehicles, and conservation.

Once the problem is decomposed, the importance of each attribute with respect to

the goal is determined. This task is achieved by comparing the attributes, two at a time.

A practitioner of AHP might perform these comparisons by asking an individual

knowledgeable in the field the following subjective question: "With respect to the goal,

how much more (or less) important is Attribute 1 than Attribute 2 in your opinion?"

Electric Vehicle Policy Analysis 37 Russell Cohn

Page 38: Electric Vehicle Life Cycle Analysis By

Comparison of each possible pair of attributes is necessary. Care must be taken to avoid

biasing the respondent. Saaty has proposed a nine point ranking scale, which assigns

scores to various verbal reactions to this type of question.38 Once all comparisons have

been made, it is possible to define the goal as a linear function of the attributes.

Finally, the performance of each alternative with respect to each attribute is

determined. Again, comparison questions are asked: "With respect to Attribute 1, how

much more (or less) preferable is Alternative 1 than Alternative 2?" Comparison of each

pair is necessary. Ultimately, enough information is provided to rate each alternative on

the basis of its performance in terms of each attribute. The final step of AHP, synthesis,

is the determination of the performance of each alternative with respect to the goal.

Like monetization, AHP transforms various unlike characteristics, such as tons of

carbon dioxide and BTUs of energy, into a single measure. In the case of monetization,

the measure is dollars, whereas in the case of AHP it is value. But unlike monetization,

value has the unique capability of expressing preferences non-linearly. As the quantity of

a certain attribute increases, value may increase at a slower or faster rate. The example of

the bald eagle above, in which value increases with scarcity, could be expressed

adequately by a value function. The relationship between two attributes, however, is still

linear regardless of the amounts of each respective attribute.

AHP suffers from several fundamental flaws, not the least of which is reversal of

the ordering of alternatives upon the introduction of a new alternative. This phenomenon,

known as rank reversal, is especially likely when the new alternative is similar to any of

the existing alternatives. Rank reversal raises the possibility that the initial rankings were

arbitrary in the first place and that the entire process is flawed.39

Electric Vehicle Policy Analysis 38 Russell Cohn

Page 39: Electric Vehicle Life Cycle Analysis By

AHP is also limited by its time requirement. The large number of necessary

comparisons, coupled with the fact that some of these comparisons can be arduous to

perform, translates into hours of work for a single evaluation. And since each pair of

attributes is compared with respect to each alternative, the entire process must be repeated

when new attributes or alternatives are introduced. Previous responses are invalid. This

may be a serious limitation in the environmental arena, as product alternatives and

regulatory pressures are changing at a rapid pace.

2.2.3. Multi-Attribute Utility Analysis (MAUA)

Utility analysis, like AHP, is used to determine the performance of each

alternative with respect to the attributes in question. Common metrics, such as dollars,

are avoided and instead relative units are used to determine the value, or "utility" of the

alternatives. The utility function of each attribute is calculated separately using risk based

methods.40 In these methods, participants are asked to make a series of choices between

two possible scenarios, or outcomes. These choices reveal preferences regarding the

attribute in question, and ultimately form the basis of its utility function.

Attributes are weighted with respect to each other, again using risk based methods.

An overall utility function is determined, and is called a multi-attribute utility function

because it takes into account the utilities of several attributes. Once the function is

determined, measurable properties of the alternatives are taken as inputs to calculate

overall utility.

MAUA is non-linear both at the single attribute level and at the multi-attribute

level. At the single attribute level, as with AHP, value functions for each attribute can

Electric Vehicle Policy Analysis 39 Russell Cohn

Page 40: Electric Vehicle Life Cycle Analysis By

reflect non-linear preferences. Saturation, which is the decrease in incremental value of

continued improvement, is one example of a non-linear preference. In addition, trade-offs

between attributes can be made in a way that reflects the quantities at stake. As one

attribute becomes very large, its impact on the over-all decision may become more

important than a linear relationship would suggest.

A second advantage of MAUA is that the attribute values it defines are

independent of the alternatives. Once the individual value functions are derived, any set

of alternatives can be evaluated using these same functions. Unlike AHP, there is no need

to reformulate the preference relationships for each decision.

All of the valuation techniques discussed in this report suffer from a common

limitation, which is the intransitivity inherent to valuation by groups. MAUA is no

exception. Value or utility functions can be calculated for individuals, but groups present

a serious problem because individuals often disagree and even contradict each other. This

raises the important question of who should perform the valuation. MAUA can not

answer this question, nor can it cope with the varying preferences of individuals.

Attempts to aggregate or average utility functions of individuals into a single function fail

to capture the richness of opinions, and can lead to intransitivity. Arrow's Theorem goes

so far as to say that such an aggregation is impossible.41

A second limitation of MAUA is that the questioning procedure is difficult and

sometimes frustrating. Risk based comparisons of attributes are sometimes misleading

and confusing, so care must be taken to remove any biases from the questioning methods.

In addition, if a large number of attributes are needed for evaluation, the duration of

questioning is long enough to fatigue the respondent.

Electric Vehicle Policy Analysis 40 Russell Cohn

Page 41: Electric Vehicle Life Cycle Analysis By

2.2.4. Limitations

The three valuation techniques discussed above, MAUA, AHP, and monetization,

each have a unique list of shortcomings. However, they all fail to address two recurring

problems: lack of understanding of environmental mechanisms, and inability to cope with

diverging points of view. For these reasons, it is unlikely that valuation techniques can

aid in the decision making process in the environmental realm. The only clear value

judgment is that less of a harmful agent is preferable to more. This "less is best" rule,

while simplistic and obvious, is the only clear method for comparing environmental

outcomes. Unfortunately, application of this rule is limited because multiple impacts tend

to contradict each other. One alternative may produce less carbon monoxide but more

landfill than another. In such a case, objective selection of one alternative over another is

an elusive goal.

2.3. Life cycle cost

While by some calculations electric vehicles will be less expensive then

comparable gasoline powered vehicles,4 2 other estimates place the cost at a 400%

premium.4 More than any other variable, cost will determine the eventual market success

or failure of EVs. It is therefore essential to at least attempt to sort out the conflicting

claims and determine, within a reasonable degree of accuracy, the costs associated with

electric vehicles.

As with emissions, energy, and landfill, cost must be assessed on a lifecycle basis.

However, unlike environmental attributes, costs do not accumulate and therefore can not

be easily inventoried. The distinction between cost and price becomes vague since each is

Electric Vehicle Policy Analysis 41 Russell Cohn

Page 42: Electric Vehicle Life Cycle Analysis By

determined by market transactions rather than by some direct measurement or calculation

based on first principles. Furthermore, the notion of life cycle cost is not entirely useful

since no individual party is responsible for the entire life cycle. A more useful measure of

economic performance is the life time cost to a particular party; the consumer, for

example.

If cost, not price, is chosen as the attribute under investigation, then artificial

means of reducing expenses, such as tax incentives or government subsidies, do not

influence the outcome. Although such mechanisms may be used in practice, the

consumer ultimately pays for these programs through higher taxes. Along the same line

of reasoning, if manufacturers are forced to sell EVs at a loss, they will have to raise

prices of their other vehicles in order to remain in business. Again, consumers pay in the

end.

Life cycle cost, for the purpose of this study, refers to the cost per vehicle paid by

consumers on a unit basis over the life time of a vehicle. This includes manufacturing

cost, operation, maintenance, and disposal. Manufacturing cost is taken as the cost of

assembling a vehicle, and does not include research and development costs, as these are

already sunk. Operation cost is meant to include the energy cost associated with

powering the vehicle, maintenance, and battery replacement. Disposal includes the cost

to the consumer of disposing of the vehicle at the end of its usable life. Disposal costs are

usually negative, as there is normally some value remaining either due to scrap material or

usable components.

Electric Vehicle Policy Analysis 42 Russell Cohn

Page 43: Electric Vehicle Life Cycle Analysis By

The stream of costs involved in owning and operating a vehicle is of course

subject to opportunity costs. For this reason, all future costs are discounted at a rate of

10%. Final cost calculations represent the net present value of the stream of payments.

Once the applicable costs are defined, the task of calculating them begins. This is

a daunting challenge, considering that studies on routine products reveal widely divergent

initial estimations of cost. And unfortunately, EVs and ultra low emission vehicles have

never been mass produced, so there is little historical basis for cost analysis. Many of the

underlying technologies, such as advanced batteries, inverted gate bipolar transistor power

controllers, and heated catalytic converter, are untried and therefore present challenging

obstacles to accurate cost estimation. In addition to technology uncertainty, market

uncertainty plays a role in cost calculation. The type of vehicle (e.g.. sedan, sports car,

truck) desired by consumers is unclear, as are the methods and materials of construction

(e.g.. stamped steel, extruded aluminum, or molded plastic). A number of other variables,

such as the time of day at which users recharge batteries (night time charging may be

cheaper than day charging) also contribute to the list of problems associated with

determining life cycle cost to the consumer. These uncertainties are responsible for the

wide range of published cost estimates.

Should manufacturers decide to produce EVs, they will painstakingly make

hundreds or even thousands of complex decisions as to which materials, processes, and

design features to employ. They will experience the many costs associated with each of

these decisions. Consumers, after driving the proposed vehicles, will also make numerous

behavioral decisions which will influence life cycle cost. Only after a real world trial will

cost be known with any degree of accuracy. But cost forecasts, however premature, must

Electric Vehicle Policy Analysis 43 Russell Cohn

Page 44: Electric Vehicle Life Cycle Analysis By

be made at this early stage to assess the feasibility of the proposed vehicle strategies.

While it may be impossible to pinpoint the cost of an as yet fictional product, enough

information and experience exists to determine at least a reasonable range within which

the actual cost is likely to fall. Simplifying assumptions, when chosen carefully, can

greatly reduce the burden of uncertainty. These assumptions are discussed in further

detail in Chapter 3.

2.4. Technical cost modeling

Manufacturers and regulators typically rely of historical financial data when

estimating the cost of future products. However, EVs have never been mass produced

and thus no such history exists. Nor is data from other vehicles applicable, as EVs

represent a dramatic departure from the current stamped steel unibody standard. Battery

limitations will severely restrict curb weight, requiring the use of light weight materials

such as aluminum and polymer composites. In addition, low production volumes (at least

initially) will limit economies of scale in capital intensive processes such as metal sheet

stamping. As a result, alternative methods for cost analysis are necessary.

One such method which has been demonstrated extensively in the past is technical

cost modeling (TCM).44 Using this scheme, the manufacturing process is partitioned into

individual materials and operations, each of which is modeled based on applicable

engineering and financial data such as commodity material cost, equipment cost, cycle

times, tooling cost, and scrap rates. A database of such information has been developed

to accommodate typical automotive manufacturing processes such as metal sheet

stamping injection molding, welding, and adhesive bonding. Once the costs of

Electric Vehicle Policy Analysis 44 Russell Cohn

Page 45: Electric Vehicle Life Cycle Analysis By

individual materials and processes are calculated, the total manufacturing cost is taken as

their sum

TCM is extremely useful in modeling sensitivity of cost to almost any production

input or assumption. A well designed model can easily accommodate changes in

parameters such as production volume, tooling cost, or rejection rate. Such analysis is

instrumental in determining the range of conditions over which a proposed process or

material will be competitive with alternative manufacturing choices. This capability is

especially useful in evaluating early stage technologies such as electric vehicles.

To date, technical cost models have been developed for dozens of processes and

are applicable to hundreds of components and assembly operations. In particular, a model

exists for the body-in-white, which is the structural body component of an automobile.5

The body-in-white represents a large fraction of the total vehicle manufacturing cost.

2.5. Selection of vehicles

As stated above, the purpose of this study is to compare the cost, emissions, and

energy consumption of three types of vehicles: EVs, conventional gasoline vehicles, and

ULEVs. Ideally, representative vehicles from each category should be modeled and

compared among each other. However, each of these vehicle categories is far from

uniform. Conventional automobiles range from gas guzzling luxury cars to lightweight

economy cars to off road sport/utility vehicles to family sedans. New categories of

vehicles are constantly evolving to better meet the demands and needs of consumers. In

recent years, niches such as "near-luxury" sedans, luxury sports cars, and up-scale pickup

trucks have achieved moderate success. Current sales figures reveal no dominant model

Electric Vehicle Policy Analysis 45 Russell Cohn

Page 46: Electric Vehicle Life Cycle Analysis By

or style, and hence it is very difficult to choose a particular vehicle for the purposes of

this study. Averaging the outputs of several vehicles offers no solution either, as the

resulting fictional vehicle may fail to represent any real world vehicle.

Ultra low emission vehicles in this study are modeled as gasoline powered

vehicles with the addition of a hot start catalytic converter. Hence, ULEVs are as varied

in performance and purpose as conventional vehicles.

Electric vehicles present further challenges in selecting a base case for

comparison. Many electric vehicles exist in experimental, prototype, and pilot production

stages of development. They come in all shapes and sizes, have a variety of ranges and

top speeds, and have different cost drivers. Ford is currently testing an electric utility

van, Chrysler a mini-van, and GM a two-seated sporty coupe. German manufacturers are

focusing on electric mini-cars, while Japanese manufacturers are pursuing a range of

possibilities. A lack of consensus as to the optimal design or product strategy for electric

vehicles precludes the selection of a single representative vehicle for study.

A further difficulty in selecting an EV base case is that there is no evidence or

experience of an EV which is comparable in performance to a conventional vehicle. EVs

are limited in range, interior space, and acceleration to such an extent that EVs are not

perfect substitutes for conventional cars. For this reason, it is virtually impossible to

compare any EV to a gasoline vehicle.

But despite the difficulties in choosing comparable vehicles, clearly some basis for

comparison must be made in order to achieve the purpose of this study. The approach

taken here is to model a number of scenarios for each vehicle type, and make comparisons

among these choices. In effect, a range of vehicles is compared for each type.

Electric Vehicle Policy Analysis 46 Russell Cohn

Page 47: Electric Vehicle Life Cycle Analysis By

2.6. Life cycle energy analysis

The energy used by a given vehicle is determined for each life cycle stage.

Operation is fairly straight forward, as the gasoline or electric power consumed can be

easily measured or calculated based on several simple assumptions.

The energy required to produce the vehicle, however, is less obvious. Ideally, all

the energy required in all stages of production, from mining the ore to the final assembly

should be included. However, collection of such data would be an immense undertaking

far beyond the scope of this study. Fortunately, researchers at the Oak Ridge National

Laboratory have provided simplifying data and methods for life cycle energy analysis.46

They have ascribed an "embodied energy" to materials commonly used in manufacturing.

This calculation accounts for all the energy needed to bring a pound of the given material

to a state where it can be formed into parts and components. All mining, refining, and

intermediate transportation operations are taken into account.

Using a similar approach, the Oak Ridge researchers account for energy saved

through recycling. An energy rebate is given for a number of materials, and this rebate is

treated as a negative embodied energy. Clearly, a number of issues surrounding the

determination of the rebate remain to be resolved. But the data given in their preliminary

report are adequate for the purposes of this study.

2.7. Life cycle emissions analysis

Emissions analysis represents the greatest stumbling block to date in the vehicle

policy realm. A simple calculation or measurement of emissions from a given vehicle is

not possible, mainly because emissions rates vary widely over time. For example,

Electric Vehicle Policy Analysis 47 Russell Cohn

Page 48: Electric Vehicle Life Cycle Analysis By

gasoline powered vehicles pollute more in their first two minutes of operation when their

catalytic converter is cold. Gradually, as the catalyst begins to function, emissions fall.

Vehicle aging also contributes to variation, as older vehicles tend to deteriorate and create

more emissions.

Electric vehicles present similar problems of emissions analysis. The power used

in charging the batteries is produced by a network of interconnected power plants. Some

of these plants are cleaner than others. The mix of clean plants (e.g. nuclear or hydro

power) and "dirty" plants (e.g.. coal or oil) changes from minute to minute depending on

demand. At night, when demand is low, only the cleanest plants are active. During the

day, however, as the demand for electricity approaches capacity, all plants, clean and dirty

alike, in a given region may be in operation. Furthermore, the energy mix varies greatly

from region to region. Pinpointing the exact plant that produced the energy used by a

given EV is impossible.

Several attempts have been made to calculate vehicle emissions based on all of the

above factors. By far the most prevalent is the Mobile5 model, which is produced by the

EPA. However, this model calculates fleet emissions rather than single vehicle emissions.

The model is based on the notion that fleets "roll over" as older vehicles are retired and

newer ones are brought into use. The model fails to address electric vehicles. EMFAC7,

produced by California's air resources bourd, is similar in nature to the EPA model.

Future versions of these and other models will likely offer improved capabilities

necessary for EV emissions evaluation.

In the mean time, however, simplifying assumptions must be made to approach

the task of life cycle emissions assessment. As for electric power emissions, a previous

Electric Vehicle Policy Analysis 48 Russell Cohn

Page 49: Electric Vehicle Life Cycle Analysis By

study has ascribed an "average" emission rate (in grams per kwh) for a number of

emission types.4 7 While this simplification glosses over the complexity associated with

the regional and temporal variations in emission rates, it serves as a starting point which

will no doubt be improved upon in the future. This method will at the very least give an

order of magnitude estimate of emission associated with electric power production.

A second emissions study has calculated the life cycle emissions produced by a

mid-sized conventional gasoline vehicle.4 8 Simplifying assumptions have again been

made as to the regional and temporal variation in operation-stage emissions. A "flat-line"

assumption has been made, meaning that a single emission rate per mile is multiplied by

total vehicle miles traveled to yield the total operational emissions. In addition, emissions

created during the production of the vehicle were calculated based on assumptions

regarding mining and refining operations.

Electric Vehicle Policy Analysis 49 Russell Cohn

Page 50: Electric Vehicle Life Cycle Analysis By

CHAPTER 3. ASSUMPTIONS

The calculations and models of cost, energy, and emissions depend entirely on the

assumptions that are made regarding literally hundreds of characteristics that reflect the

design, technology, and markets for the vehicles in question. In the case of conventional

gasoline vehicles, all of the relevant assumptions are well known and documented since

these vehicles have been in production for decades. Ultra-low emission vehicles, which

are similar to conventional gasoline vehicles, raise several questions due to their

pre-production stage of development. Electric vehicles, in contrast, present numerous

uncertainties worthy of debate.

All of the necessary assumptions are given in the models found in the appendix.

Those assumptions which are either subject to debate or at least merit careful scrutiny are

discussed fully in the sections below.

3.1. EV assumptions

The electric vehicle chosen for this study is based on an actual product designed,

built, and tested by a major auto manufacturer. This is not a fictional vehicle, but an

actual model intended to meet the 1998 California mandate. For reasons of

confidentiality, the identity of the model and maker remain anonymous.

The chosen vehicle, herein referred to as the electric vehicle base case, was

selected from the hundreds of existing and proposed EVs for two reasons. First, it works.

It demonstrates existing technology and processes, as opposed to other EV proposals

Electric Vehicle Policy Analysis 50 Russell Cohn

Page 51: Electric Vehicle Life Cycle Analysis By

which exist only on paper or as a prototype, and are therefore subject to a long list of

uncertainties. It was designed for production, and is by no means a mere experimental

gadget. It has even been crash tested and meets all federal safety standards.

Second, the base case EV is positioned for the mass market, although it is not

known if it will ever achieve mass market appeal. While other niche products have been

proposed and demonstrated, such as delivery vans and mini-cars, these specialty vehicles

will never fulfill the medium and long range fleet volume mandates of the California EV

mandates. Only a mainstream consumer vehicle could capture 5% of a of given market

(2001 mandate) or 10% market share (2003).

The choice of an existing model has a third advantage from the view point of the

author: it is easy to model. The evaluation of an existing product is much simpler and

faster than that of a fictional entity. Specifications for components and assembly

operations were obtained from the manufacturer, as were a long list of other necessary

assumptions as to the design, performance, and disposal of the vehicle. While the life

cycle costs, emissions, and energy inventories related to each of these components and

processes were not provided, the existing information provided a solid position from

which to begin investigations. In a sense, the vehicle design team has already made the

hundreds of difficult design decisions necessary in creating a new product. The

manufacturer has already conducted extensive market research, performed engineering

feasibility studies, and has selected those materials and processes best suited to the task.

This leaves the author the relatively simple task of modeling environmental and financial

implications within the lifecycle framework.

Electric Vehicle Policy Analysis 51 Russell Cohn

Page 52: Electric Vehicle Life Cycle Analysis By

The only disadvantage of the choice of the base case is the difficulty in comparing

it to a comparable gasoline powered vehicle. The chosen electric vehicle is a two

passenger, two door coupe, is somewhat sporty, and contains up-scale features such as

airbags, antilock brakes, power windows and locks, and a CD player, but no air

conditioner. According to the manufacturer, it accelerates from 0 to 60 mph in 8.5

seconds, has a range of 70 miles, and top speed of 75 mph. Clearly, there is no gasoline

vehicle to which this electric vehicle can be compared, although for the puroses of this

study, it is assumed that the base case electric vehicle belongs to the "sub-compact"

category.

From the information collected from the manufacturer, three vehicle scenarios

were selected. The "realistic" scenario reflects current technology and market conditions.

These are the best technology and market conditions that the manufacturer could expect if

EVs were to be sold immediately. Since the 1998 deadline looms less than 4 years away,

manufacturers must begin to design and tool for their EV entrants now. The the realistic

scenario is applicable to at least the first generation of EVs. The "optimistic" scenario

represents the best imaginable conditions for the EV market for the year 2003. Few

proponents of electric vehicles would foresee more optimal conditions than those stated in

this scenario. The third "medium" scenario represents an average of the other two.

3.1.1. EV Cost assumptions

An electric vehicle is a complicated mechanical device with no mass production

experience. The body alone contains hundreds of components, and is modeled separately

through the use of technical cost modeling (TCM) methodology discussed above. Where

Electric Vehicle Policy Analysis 52 Russell Cohn

Page 53: Electric Vehicle Life Cycle Analysis By

possible, the costs of individual body components are modeled based on size, weight,

material, production process, and production volume. A database of process information,

based on previous modeling experience, is called upon. Where component information is

unavailable, cost is estimated from other components using the same process and material.

Fortunately, the manufacturer of the base case electric vehicle provided detailed

information regarding the materials, processes, and weights of the various body

components. A summary of the body information is provided here, while the detailed

data used to generate cost is given in the appendix.

Table 5. Base case electric vehicle body assumptions *

totalprocess material system piece mass

count (kg)

stamping aluminum structure 65 59

folding aluminum structure 55 32

extrusion aluminum structure 41 26

casting aluminum structure 4 7

sheet molding polyester exterior 12 54compound (SMC)

reaction injection polyurea exterior 8 20molding (RIM)

injection molding polypropylene exterior 4 5

sheet molding polyester exterior I 6compound (SMC XTC)

injection molding high density exterior 3 17polyethylene (HDPE)

* source: manufacturer

The total cost of the body components (which includes only the vehicle structure,

exterior panels, and closures such as doors, hood and trunk lid) is calculated by adding up

Electric Vehicle Policy Analysis 53 Russell Cohn

Page 54: Electric Vehicle Life Cycle Analysis By

the costs of the individual components. In addition, the cost of assembly is calculated

based on the total number of welds (2000) and the total adhesive bonding length (270 m).

The above assumptions are useful only in determining the cost of the assembled

body. Many other components are necessary for a working vehicle, such as battery,

motor, electronics, paint, wheels, etc. The most important assumptions used in

calculating the costs of these additional components are summarized below for the three

electric vehicle scenarios. An exhaustive list of electric vehicle cost assumptions are

given in the cost model in the appendix.

Table 6. Electric vehicle life cycle cost model assumptions

Pessimistic Medium Optimistic

Production volume (00Os) 20 50 100

Body material Aluminum Aluminum All aluminumand plastic and plastic

Battery specific cost ($/kwh) 300 200 100

Battery specific energy (wh/kg) 30 60 90

Battery longevity (cycles) 800 1,000 1,500

Energy efficiency (miles/kwh) 3 4 5

Production volume is a function of total new vehicle sales, EV mandate

percentage, and market share for each producer. Assuming both California and the

Northeast states adopt the 2% EV mandate, this will represent a total market of 100,000

new vehicles annually. If a single producer captures 20% of this market, the production

volume is 20,000 as shown. Higher production volumes for the other scenarios are the

result of widened EV mandates: 5% in 2001, and 10% in 2003. Of course other states

Electric Vehicle Policy Analysis 54 Russell Cohn

Page 55: Electric Vehicle Life Cycle Analysis By

may adopt the EV mandates, however this will have a negligible impact on production

cost since economies of scale are small above 100,000 units.

Production volume has an impact on the body material choice. Below 100,000

units, manufacturers will most likely choose the materials and processes which minimize

fixed costs. In this case, the manufacturer has chosen an aluminum and plastic structure

with very few stampings. At higher production volumes, however, a conventional

stamped body structure is assumed. These choices will affect body cost.

Battery specific cost of $300/kwh is the current known cost for a lead acid battery

designed for electric vehicle use. Projected cost of $100/kwh is extremely optimistic, and

will require a breakthrough in battery technology and manufacturing capability. Without

a doubt, battery cost introduces more uncertainty into EV costing than any other factor.

However, the range of $300 down to $100 is all inclusive. It is extremely unlikely that

cost will fall below this range.49

In addition to the cost of the batteries themselves, the physical changing of the

batteries incurs service costs. These batteries will weigh hundreds of pounds, will contain

hazardous materials, and depending on the battery technology, may operate at extremely

high temperature. Removing old batteries and replacing them with new ones will likely

be a complicated, dangerous, and backbreaking task. This is no oil change. A

conservative estimate for the service of changing batteries is $200.

This raises the issues of what will happen to the battery at the end of the useful life

of the vehicle. If the battery is still relatively new when the vehicle is retired, it is

expected that the battery will have some resale value. If, however, the battery is at or

near the end of its useful life, it will probably contain no value. It is likely that the battery

Electric Vehicle Policy Analysis 55 Russell Cohn

Page 56: Electric Vehicle Life Cycle Analysis By

condition will drive the decision of when to retire the vehicle. As a simplifying

assumption, the cost of the fraction of the battery remaining at the end of the vehicle life

does not contribute to the life cycle cost.

Specific energy is modeled in much the same way. Current lead acid production

technology is capable of 30 wh/kg. A tripling of this capability is the most optimistic

claim of any battery proponent." Longevity of 800 cycles is currently feasible, although

long term testing of lead acid batteries has not yet confirmed this in electric vehicle

applications. After this limit, the battery loses its ability to maintain a charge due to

chemical and structural degradation. It is possible that battery life may increase to 1500

cycles, but highly unlikely that further improvements will occur.

Energy efficiency of 3 miles/kwh is claimed by the manufacturer of the base case

electric vehicle. Weight reduction, aerodynamic drag reduction, low resistance tires, and

regenerative braking systems are used to accomplish this efficiency. While this capability

is a great engineering achievement, there may still be room for improvement in other

areas. Improvements in motor efficiency, electronic controller efficiency, and battery

weight reduction, for example, may make 5 miles/kwh possible at best.

3.1.2. EV Energy assumptions

The most important EV energy assumption, vehicle efficiency, has already been

discussed in the above section. Additional assumptions involving transmission and

generation efficiency are based on well known characteristics of the power industry. For

example, battery charging efficiency is taken as 90%, as batteries typically lose 10% of

the supplied energy during recharge. This rate is applicable only under normal charging

Electric Vehicle Policy Analysis 56 Russell Cohn

Page 57: Electric Vehicle Life Cycle Analysis By

conditions. For quick charging at high voltage, when possible, charging efficiency is

much lower, although data is not yet available on this topic.

The efficiency of energy production at the power plant is calculated using two

inputs: theoretical heat rate, and actual heat rate. Both are expressed in btu/kwh.

Theoretical heat rate is 3,413 btu/kwh. In reality, however, much of the energy is lost to

heat, and an actual heat rate of about 9,000 BTUs of fossil fuel are needed to produce one

kwh of electrical power. Dividing the actual rate by the theoretical, only 38% of the fuel

results in electric power, while the remaining 62% is lost to heat and other inefficiencies.

The energy associated with production of electric vehicles (and all other vehicles

for that matter) is based on the embodied energy methodology proposed by researchers at

Oak Ridge National Laboratory.5 ' The energy consumed in all life cycle stages up to

assembly (e.g. mining, refining, transporting) is collapsed into this single term.

Embodied energy is given in btus/lb of material, and is multiplied by material weight to

yield the total energy required to bring a particular material to the point where it is ready

for incorporation into the vehicle.

Likewise, recovered energy (also given in btu/lb of material) is the energy that is

saved by recycling the material at the end of the useful vehicle life time. While this

energy is not "recovered" in the sense that energy is physically extracted from the

material, recycling of the material will decrease the demand for virgin material. The use

of the recovered energy approach assumes implicitly that all material that is amenable to

recycling will in fact be recycled and not landfilled. Such a situation is true at present, as

nearly 100% of the steel and aluminum in vehicles is currently recycled. However, if

Electric Vehicle Policy Analysis 57 Russell Cohn

Page 58: Electric Vehicle Life Cycle Analysis By

scrap prices fall due to market forces, it is entirely possible that a lower percentage of

material will be recycled.

The recovered energy approach also has the weakness that materials recycled from

scrap can not always substitute for virgin materials. Stamped sheet panels, for example,

must be made from extremely high quality material, and in many cases only virgin

material is satisfactory. Recycled material contains too many defects or has an improper

alloy composition. And since much of the metal expected to be used in electric vehicles

is sheet, the recovered energy approach is not completely accurate. However, automotive

scrap metal will in fact be used in other applications. This subject of "open loop

recycling" is under much debate, and no clear consensus has been reached as to how to

treat energy savings from materials recycling. The recovered energy assumptions

represent the maximum possible recovery, and this approach is used as an upper limit of

what is achievable through recycling.

The table below lists embodied energy and recovered energy for the important

automotive materials. In all cases, recovered energy is less than embodied energy, the

difference being that which is lost during the recycling process. Losses are due to

transportation, heat, and loss of material. Some materials, such as lead, have very little

loss, while others such as steel have high losses. The polymer materials offer no

recovered energy at all since they are generally unrecyclable in practice and inevitably

end up in landfills.

Electric Vehicle Policy Analysis 58 Russell Cohn

Page 59: Electric Vehicle Life Cycle Analysis By

Table 7. Embodied energy and recovered energy for various materials.

embodied recoveredenergy energy

material (OOObtu/lb) (OOObtu/lb)

Aluminum 147 120

Steel 28 11

!Lead 15 14

Copper 55 37

Polyester 49 0

HDPE 47 0

Polyurea 49 0

Polypropylene 52 0

Glass 24 15

Rubber 66 0

The recycling process itself also consumes energy. Automobiles to be scrapped

(known as "hulks") are typically transported to a "shredder," which breaks the vehicle into

small pieces and sorts these pieces into material classes for recycling. A typical shredder

consumes 9.35 watt hours pound of vehicle hulk.52 From this assumption, the total energy

needed to shred a single hulk is calculated.

3.1.3. EV emissions assumptions

Emissions during vehicle operation are calculated using the methodology

established by the Swedish Packaging Institute.3 A single emission rate, in grams per

kwh, is established for each emission type. These emission rates are given below. The

lifetime energy requirement of 26 Mwh was calculated earlier in the energy model.

Electric Vehicle Policy Analysis Russell Cohn59

Page 60: Electric Vehicle Life Cycle Analysis By

Table 8. Power generation emission rates.

emission g/kwh

C02 270

hydrocarbons 0.04

NOx 0.54

CO 0.05

particulates 0.11

S02 1.37

As discussed earlier, the assumption of a constant emission rate for each emission

type is not entirely accurate for reasons of variation in the production source. Nuclear

fuel, for example, produces no airborne emissions during operation (except in the case of

a nuclear disaster). Wind power and hydro power likewise produce no emissions. Coal

and oil fired plants, on the other hand, have very high emission rates, especially for older

plants. Natural gas produces somewhat less emissions.5 4 A number of ongoing studies

address these differences in a rigorous and detailed manner. For the purposes of this

study, however, the average expected emission rates given above are sufficient. (The

results given in the next chapter show stark contrasts in emissions from one vehicle to the

next. The relatively minor inaccuracies in the emission rates given above will have little

impact on the results.)

Emissions resulting from the mining, production, and post use stages are based on

a previous study of a gasoline vehicle.55 Estimates for the emissions created during the

mining, refining, and manufacture involved in a lightweight, aluminum intensive vehicle

serve as a basis for electric vehicle production related emissions. As mentioned earlier, in

the optimistic case the electric vehicle is taken to be an all aluminum structure similar to

Electric Vehicle Policy Analysis Russell Cohn60

Page 61: Electric Vehicle Life Cycle Analysis By

the one in the previous study. The same mining, production, and post-use data is

therefore applicable, and is merely adjusted for differences in weight. The electric

vehicle is 80% of the weight of a comparable gasoline powered vehicle.

3.2. Conventional gasoline vehicle assumptions

Assumptions for the conventional vehicle are by far the least controversial of the

three vehicles under study. All of the data is available from manufacturers or from the

trade press. For purposes of comparison, mid-sized, compact, and sub-compact vehicles

were chosen as discussed in the Section 2.5. For simplicity and accuracy, three actual

vehicles were selected as representatives of these vehicle classes: a Ford Taurus

(mid-sized), a Ford Escort (compact), and a Ford Festiva (sub-compact). While none of

these is directly comparable to the base case electric vehicle, the three selected gasoline

vehicles demonstrate available products.

3.2.1. Gasoline vehicle cost assumptions

Although the prices of the three vehicles in question are advertised in any major

newspaper, the manufacturing cost is not easy to determine. Vehicle cost is generally a

closely guarded secret, and hence is difficult to ascertain directly. However, it is

estimated that for mid-sized cars, the manufacturing cost is roughly half of the purchase

price, while distribution, marketing, corporate overhead, and profit account for the

remainder. For smaller cars, we can assume that the gross margin is substantially smaller.

While these are rough estimates, they serve the purposes of this report. Manufacturing

Electric Vehicle Policy Analysis 61 Russell Cohn

Page 62: Electric Vehicle Life Cycle Analysis By

cost for sub-compact, compact, and full-sized vehicles are assumed to be $6,800, $8,800,

and $10,000, respectively.

Fuel cost is calculated based on the fuel efficiency of the vehicles, vehicle miles

driven, and fuel cost per gallon. Fuel efficiency was obtained from published data.56 Life

time miles driven is assumed to be 130,000 miles, and fuel cost is taken as $1.10 per

gallon.

3.2.2. Gasoline vehicle energy assumptions

The embodied energy and recovered energy approaches discussed above for

electric vehicles are used in the same manner here. Energy consumed in the operation of

gasoline vehicles is calculated from the fuel efficiency.

3.2.3. Gasoline vehicle emissions assumptions

As mentioned in Section 3.1.3., a previous study has already addressed the issue

of gasoline vehicle life cycle emissions. The study tracked emission inventories at all

stages of the vehicle life. Federal emissions guidelines during operation (given in

grams/mile) were multiplied by vehicle miles traveled to determine operating emissions.

While this "straight line" approach ignores degradation in emission rates due to aging of

emission control equipment, and it overlooks the minute to minute variation in emission

rates due to changes in engine temperature, it nonetheless serves as a good initial estimate

of operating emissions. In the absence of a more detailed methodology, this approach is

the best existing tool for calculating vehicle emissions.

Electric Vehicle Policy Analysis 62 Russell Cohn

Page 63: Electric Vehicle Life Cycle Analysis By

3.3. Ultra Low Emission Vehicle (ULEV)

For the purposes of this study, a ULEV is taken as a conventional gasoline vehicle

with the addition of an enhanced catalytic converter. Normally, when a car starts, its

catalytic converter is cold and fails to break down reactive emissions. As the catalytic

converter heats up over the course of roughly two minutes, exhaust gases pass untreated

out the tail pipe. Gradually, the converter begins to warm up and "light off' is achieved.

In some driving conditions, most of the harmful emissions produced on a typical trip are

caused during the first two minutes before light off. By quickly heating the catalytic

converter by means of an electric heater, the initial start-up emissions are reduced to the

steady state, post light off emission rate.

Several designs have been tested, the most promising of which is under

development at Coming's Environmental Products Division. A resistive heater, powered

by the car battery, is located directly before the catalytic converter in the exhaust stream.

Almost instantly after ignition, the device heats the exhaust gasses which then break down

in the catalytic converter. Gradually, the catalytic converter heats up and the electric

heater is switched off.

Although this design has been shown to be feasible in laboratory tests, the

incorporation of such a device into a working automobile is still untried. However, there

is little expectation of difficulty in this process.57

3.3.1. ULEV cost assumptions

The electrically heated catalyst under development at Coming differs from a

conventional catalytic converter only in the addition of a small resistive heating unit.

Electric Vehicle Policy Analysis 63 Russell Cohn

Page 64: Electric Vehicle Life Cycle Analysis By

Coming's early and unofficial estimate of the cost of such a unit, in quantity, is $300. In

addition, additional wiring, electronics, and installation will be necessary. The total

additional cost of the heated catalytic converter is conservatively estimated at $500.

3.3.2. Energy assumptions

The insertion of an additional component into the exhaust stream increases exhaust

back pressure, which in turn lowers the efficiency of the engine. The exact reduction is

not yet known, as vehicle trials have not yet been conducted. Furthermore, designers and

engineers can decrease or increase the back pressure by altering the geometry of the

heating device. It is expected that efficiency, power, and emissions will all be optimized

subject to the complex interactions of the three. While the exact effect on efficiency is

unknown, a 5% decrease in fuel efficiency is assumed for the purpose of this study.

3.3.3. Emissions assumptions

The emissions requirement, as detailed in California's 1997 ULEV standard, are

stated in terms of grams per mile, and are not to exceed this level at any time during

operation, including start-up. The California ULEV requirements are as follows:

Table 9. California's 1997 ULEV standards.

emission type g/mile

hydrocarbons 0.04

CO 1.7

NOx 0.2

Electric Vehicle Policy Analysis 64 Russell Cohn

Page 65: Electric Vehicle Life Cycle Analysis By

As in the case of the conventional gasoline vehicle, a straight line assumption is

again used. The above emission rates are simply multiplied by vehicle miles traveled to

calculate total operational emissions. This assumption is more valid in the ULEV case,

since emissions will not vary significantly from minute to minute. In addition, newer

catalytic converters are more durable than the first generation, and will therefore vary less

from year to year as well.

Electric Vehicle Policy Analysis 65 Russell Cohn

Page 66: Electric Vehicle Life Cycle Analysis By

CHAPTER 4. RESULTS

The models discussed in Chapters 2 and 3 were used to calculate the life cycle

cost, energy, and emissions for the three vehicles and their derivatives. All of the relevant

calculations and outputs are given in the appendix. This chapter presents the relevant

results in a way that is both meaningful and simple.

4.1. Cost

The cost of the gasoline vehicle are shown in the figure below. As discussed in

Chapter 2, costs reflect only material cost, manufacturing cost, fuel, maintenance, and

disposal cost. For the purpose of clarity, disposal cost is subsumed in maintenance cost in

the figure below. Profit margin, corporate overhead, marketing, and other indirect cost

elements are not included in this study. The initial manufacturing cost represents the

majority of the life cycle cost in any vehicle class.

r61

4o0UL)

U

-J4

- Sub-compact Compact Mid-sizedVehicle size/class

Figure 1. Gasoline vehicle life cycle costs.

Electric Vehicle Policy Analysis 66 Russell Cohn

Page 67: Electric Vehicle Life Cycle Analysis By

The figure below shows the cost results for ULEVs. They are roughly $1,000

more expensive than conventional gasoline vehicle for two reasons. First, the hot-start

catalytic converter was assumed to add $800 to vehicle cost. Second, this added

component, which lies in the exhaust stream, lowers engine efficiency and raises fuel cost.

Sub-compact Compact Mid-sizedVehicle Class/Size

Figure 2. ULEV life cycle costs.

The cost of an electric vehicle body (which includes only the structure, exterior

panels, doors, hood, and trunk lid) was calculated based on the material, process, and

component data supplied by the manufacturer. Cost was found to be highly sensitive to

production volume, since high fixed costs are involved in the tooling for aluminum

stampings. The figure below shows the calculated body cost as a function of annual

production volume.

Electric Vehicle Policy Analysis Russell Cohn67

Page 68: Electric Vehicle Life Cycle Analysis By

0U

1 10 20 30 40 50Production Volume (000s)

Figure 3. EV body cost sensitivity to production volume(includes structure, exterior panels, doors, hood, and trunk lid)

The electric vehicle cost for three scenarios is shown in the figure below. The

pessimistic, medium, and optimistic scenario are broken down into individual component

and life cycle stages for clarity. Battery cost is broken down further into initial battery

and additional battery costs. This distinction is made because the initial battery will most

likely be sold along with the vehicle, while the additional batteries will be purchased as

needed are therefore not included in the initial vehicle cost. The greatest difference

among scenarios is battery cost. This is because the specific battery cost falls, and the

number of additional batteries falls due to longer battery life. The pessimistic scenario

requires three full batteries during its life (i.e.. one initial battery and two subsequent

replacements), while the medium requires two and the optimistic scenario requires under

two,.

Electric Vehicle Policy Analysis 68 Russell Cohn

Page 69: Electric Vehicle Life Cycle Analysis By

40,000

O

0 30,000a)0

o 20,000

a)

:U 10,000a)

0

38,001

23,946I r...

15620..l

Pessimistic Medium OptimisticElectric Vehicle Assumptions

Figure 4. Electric vehicle base case life cycle costs

Since battery cost is more likely to influence EV life cycle cost than any other

factor, a sensitivity analysis was performed on battery cost. The specific cost ($/kwh)

was varied from its current $300 down to $60, which is unimaginably low by even the

most hopeful projections. 8 All other assumptions are taken from the "optimistic" EV

scenario above. The figure below shows the results of the sensitivity analysis. Only the

initial battery and additional battery costs vary. Even at $60/kwh, life cycle cost remains

above $14,000.

Electric Vehicle Policy Analysis

i] MaintenanceED Energy

[- Additional batteries

* Initial battery

E: Electronics

E Gear set

E: Motor

* Body ("glider")

L w l

69 Russell Cohn

I . ,: I i ' - .:. . .. .. .1

I. .. ::. : .. :::: I. I.::: :]:� I : :::.I

�. '�:: I

Page 70: Electric Vehicle Life Cycle Analysis By

- 20,000oU

>' 15,000

a,

;2 10,000M I

;; 5,000

n300 260 220 180 140 100 60

Battery SPecific Cost ($/kwh)Figure 5. EV life-cycle sensitivity to battery specific cost

After batteries, the next largest cost is for the body "glider" which includes the

body structure, exterior panels, paint, tires, seats, airbag, and all other components not

related to the drive system. The EV glider is much more expensive than that of a

comparable gasoline powered vehicle because it is designed with weight and energy

savings in mind. Lightweight materials, such as aluminum and plastics are much lighter

then the usual steel, although these materials cost much more. Wheels and tire are

designed for low rolling resistance and weight, and these benefits come at a cost higher

than conventional parts.

The results of the three life cycle cost models are summarized in the table below.

For the purpose of comparison, only sub-compact vehicles are included.

Electric Vehicle Policy Analysis

?% _ nrAtfl

70 Russell Cohn

Page 71: Electric Vehicle Life Cycle Analysis By

Table 10. Summary of life cycle cost analysis

vehicle type manufacture use recycle total

conventional gasoline (sub-compact) 6,800 3,487 -67 $10,220

ULEV (sub-compact) 7,200 3,600 -67 $10,733

EV (optimistic) 12,815 2,841 -57 $15,599

EV (medium) 18,850 5,132 -34 $23,947

EV (pessimistic) 25,187 12,850 -34 $38,003

EVs, on the whole, offer less rebate

and the ULEV. This is because of the high

$30 per ton. The ULEV is roughly $500

vehicle.

upon recycling than the

polymer content, which

more expensive than a

conventional vehicle

must be landfilled at

similar conventional

4.2. Energy

Based on the assumptions of Chapter 3, life cycle energy consumption was

calculated for the three vehicles in question. The results are shown in the figure below.

For consistency, only sub-compact versions of the gasoline vehicle and ULEV were

modeled. The energy consumed as fuel dominates life cycle energy use. The energy

required to extract, refine, and process the materials used to produce the vehicles

represent under 15% of the total life cycle energy consumption.

Electric Vehicle Policy Analysis 71 Russell Cohn

Page 72: Electric Vehicle Life Cycle Analysis By

EV gasoline ULEVVehicle Tvne

Figure 6. Life cycle energy comparison (sub-compact vehicles only)

4.3. Emissions

The results of the emissions models are shown in the following six graphs.

Unfortunately there is no clear "winner." Each vehicle performs well in some emissions

categories and poorly in others. EVs have very high SOx and particulate emissions,

which relate to the coal and oil fired power plants which produce the energy to recharge

EV batteries. The conventional gasoline vehicle performs relatively poorly in CO, NOx

and hydrocarbons, as these are the predominant mobile source emissions. The ULEV

performs rather well in all categories except CO2 where it is slightly worse than the

conventional gasoline vehicle due to losses in efficiency from the enhanced catalytic

converter. Also, the ULEV's CO emissions are halfway between the conventional

vehicle's and the EV's.

Electric Vehicle Policy Analysis

alAA

II

72 Russell Cohn

Page 73: Electric Vehicle Life Cycle Analysis By

)E

_o0)0Y

Figure 7. CO emissions

gasoline ULEV EV

Figure 8. NOx emissions

gasoline ULEV tV

Figure 9. Hydrocarbon emissions

Electric Vehicle Policy Analysis

E

cm

_o0,

E

o0

AA

73 Russell Cohn

Page 74: Electric Vehicle Life Cycle Analysis By

gasoline ULEV

Figure 10. SOx emissions

ICL gasoline

Figure 11. Particulate emissi

EV

EV

ons

gasoline ULEV EV

Figure 12. CO2 emissions

Electric Vehicle Policy Analysis

50

40

E 30

200° 20

10

n

ECO

0t

E

0)0._

74 Russell Cohn

Page 75: Electric Vehicle Life Cycle Analysis By

In addition to airborne emissions, solid emissions are created in the form of

landfill. At the end of the vehicles useful life, the vehicle is shredded and sorted by

material category. Nonmetallic materials, such as plastics are unrecyclable and have no

economic value. They are therefore sent to a landfill. The amount of landfill created by

each vehicle is merely the amount that went into the vehicle in the first place. The figure

below simply restates the assumptions about plastics composition for the vehicles in

question.

gasoline

ULEV

R EV optimisti(.2

EV medium

EV pessimistic

0 100 200 300 400 500 600Landfill (lbs)

Figure 13. Landfill comparison

The pessimistic and medium EV scenarios assumed an aluminum and polymer

body structure. The plastic materials used in the body panels contribute greatly to the

landfill load. In the optimistic scenario, however, high production volume is assumed and

this volume justifies the fixed tooling cost involved in aluminum stamping. An all

aluminum body, then, is chosen for reasons relating to economies of scale. This material

choice eliminates much of the plastic material that would otherwise enter the landfill.

Electric Vehicle Policy Analysis Russell Cohn

z ..liz. :

- . ...

....L . . I

75

Page 76: Electric Vehicle Life Cycle Analysis By

The all aluminum EV contributes about as much landfill as a conventional gasoline

vehicle or a ULEV. This is because these three vehicles use plastics in identical

applications: dash board, controls, interior, bumpers, etc.

Electric Vehicle Policy Analysis 76 Russell Cohn

Page 77: Electric Vehicle Life Cycle Analysis By

CHAPTER 5. ANALYSIS

All of the data presented thus far compares one vehicle to another. However,

given that the vehicles have very different costs, it makes more sense at this point to

compare equal expenditures in one vehicle type against expenditures in another. This

chapter will build on the unit vehicle comparisons to yield a dollar comparison of

alternative vehicle policies.

Already it has been shown that ultimately consumers pay for the losses imposed

by any vehicle policy. Given this fact, difficult choices must be made to achieve an

optimal environmental outcome for a given amount of spending. Section 5.1 below

demonstrates how alternative vehicle policies are chosen, based on cost. Section 5.2.

illustrates how these alternative vehicle fleets compare along environmental lines.

5.1. Vehicle analysis

Section 4.1 gave the costs of EVs as significantly higher than the comparable

gasoline powered vehicle. These costs can be compared to the consumer acceptance

figures given in the Section 1.1.3.2. The pessimistic case was designed specifically to

represent 1998 circumstances. If automakers must sell electric vehicles in 1998, they

must begin to design and tool for then right now. The pessimistic EV scenario, therefore,

is comparable to the 1998 scenario of consumer acceptance for the purpose of this

comparison. The medium and optimistic EV scenario are likewise comparable to be the

Electric Vehicle Policy Analysis 77 Russell Cohn

Page 78: Electric Vehicle Life Cycle Analysis By

2001 and 2003 consumer scenarios. The following table shows how consumers'

willingness to pay for EVs compares to the calculated cost of EVs:

Table 11. Comparison of calculated cost to price consumersare willing to pay for electric vehicles

price consumers are willing to Annual marketyear pay as compared to calculated cost** loss per vehicle losst

conventional vehicle* (billions/year)

1998 10% premium to same price 372% premium $26,755-27,777 $2.6 to $2.8

2001 same price to 10% discount 234% premium $13,726-14,748 $3.4 to $3.7

2003 10% discount to 90% discount 153% premium $6,423-14,599 $3.2 to $7.3

* from Section 1.1.3.2.** as compared to the subcompact gasoline vehicle which is calculated to cost $10,220

t Assuming a total regulated market of 5 million cars, with 2%, 5%, and 10% electric in2001, 2003, 2005, respectively.

The above comparisons do not include indirect costs involved in selling a vehicle,

such as marketing, corporate overhead, or profit. These additional expenses apply to both

conventional vehicles and electric vehicles alike.

Annual market loss is calculated by multiplying the loss per vehicle times the total

market size for electric vehicles. Market size is assumed to be 2%, 5%, or 10% of the 5

million new vehicles sold annually in California and the Northeast states. Using the lower

bound of this loss estimate, a total of $16.8 billion will be lost on electric vehicles from

1998 through 2003 if the California regulations are adopted in both California and the

Northeast states in their current form. This loss will be paid by consumers either through

higher prices of other vehicles or higher taxes or both.

It is ironic that despite optimistic improvements in EV technology and cost, losses

rise rather than fall. This is due entirely to the fact that the CARB regulations call for

exponential expansion of the EV market.

Electric Vehicle Policy Analysis 78 Russell Cohn

Page 79: Electric Vehicle Life Cycle Analysis By

ULEVs, in contrast, are calculated to cost only about $500 more than conventional

gasoline vehicles. Assuming consumers are willing to pay no more for ULEVs than other

gasoline vehicles, a loss of $500 per vehicle will result. If the entire California and

Northeast market of 5 million new vehicles annually were ULEVs, a loss of $500 x 5

million = $2.5 billion would result, which is less than the estimated annually loss for EVs

under any scenario.

The emissions results presented in Chapter 4 raise the issue of valuation discussed

in Section 2.2. There is no "clear winner" in the sense that none of the three vehicles

outperforms the other two in all emissions categories. Nor is there a single vehicle that is

outperformed by another in all emissions categories. EVs, while producing less of the

smog creating agents (CO, NOx, and hydrocarbons) produce more of the one emission

known to contribute to acid rain (SOx). ULEVs, while producing less of the smog

creating and acid rain related emissions, emit more CO2 which is thought to add to global

warming. Thus it is impossible to conclude that any vehicle choice is inferior or superior

to any other on the basis of emissions without some implicit assumption about the relative

importance or value of one emission category to another. As discussed in Section 2.2, no

consensus has been reached on such a value system.

The emissions models do not address the regional differences in emissions. Both

gasoline vehicles and ULEVs pollute at the vehicle location, while EV emissions are

created only at the power generation location which is sometimes far from the urban

environment most affected by air quality problems. It is possible that although EVs won't

reduce overall emission levels, they will at least transfer emission out of urban areas and

into areas with fewer inhabitants. However, there is even some doubt that EVs will

Electric Vehicle Policy Analysis 79 Russell Cohn

Page 80: Electric Vehicle Life Cycle Analysis By

improve urban air quality. Other researchers, using the federal Mobile5 emissions model,

have been unable to show that the introduction of EVs, in compliance with California's

mandates, will improve the overall emission of the automotive fleet.5 9

The life cycle energy models of the previous chapter indicate that EVs will use

roughly 15% less energy than either conventional gasoline vehicles or ULEVs. However,

EVs will probably not offer air conditioners due to power limitations. Perhaps the same

energy savings could be achieved in regular gasoline vehicles by removing the air

conditioners.

Landfill presents a far more troubling problem. If EVs are made in the pessimistic

or medium scenario, they will eventually contribute 367% more ASR to landfills than

conventional vehicles. At best, this will result in a heightened burden on existing landfills

and the communities and habitats that surround them. At worse, the increase in ASR may

force auto shredders out of business and devastate the current automotive recycling

infrastructure. However, if EVs are made with all aluminum bodies, as in the optimistic

case, then there will be little added ASR as compared to conventional vehicles.

5.2. Fleet analysis

The results and discussions up to this point have focused entirely on comparisons

between single vehicles. One EV, for example, is compared to one ULEV. However,

since EVs and ULEVs have different costs, a comparison of equal expenditures is more

insightful. A comparison of fleets takes into account the possibility that EVs or ULEVs

may be present in different numbers. The table below presents the life cycle results for

four possible fleet compositions. The first fleet is composed entirely of conventional

Electric Vehicle Policy Analysis 80 Russell Cohn

Page 81: Electric Vehicle Life Cycle Analysis By

gasoline vehicles as they exist today. The second fleet contains 10% electric vehicles and

90%c conventional vehicles, and it is assumed that these vehicles are of the optimistic

scenario. The third fleet contains 50% ULEVs and 50% conventional vehicles, while the

last fleet is composed entirely of ULEVs.

Electric Vehicle Policy Analysis 81 Russell Cohn

Page 82: Electric Vehicle Life Cycle Analysis By

Table 12. Life cycle fleet analysis.

conventional

10% EV

50% ULEV

100% ULEV

cost

$bn

48

49.9 to56.3

48.8

49.5

The fully conventional fleet has a lower

although it is undesirable in all other categories.

total cost

The range

and energy consumption,

in costs of EVs, as noted

earlier, is due to uncertainty regarding the price consumers are willing to pay for EVs.

The ULEV fleets, in comparison to the EV fleet, produce more CO2, although the ULEV

fleets are more desirable in all other categories. The following table compares ULEV

fleet life cycle outputs to those of the EV fleet. These results were obtained by

subtraction of ULEV results from EV results from the table above.

Table 13. Life cycle fleet comparison of two ULEVs fleets to a

50% ULEV

100% ULEV

cost

$bn

1.1 to7.5

0.4 to6.8

energy

1012

BTUs

39

15

CO 2

milliontons

-4.41

-5.33

HC

thoustons

12.59

28.68

NOx

thoustons

26.11

60.89

CO

thoustons

44.3

118.1

PM

thoustons

1.86

1.86

10% EV fleet.

thoustons

2.74

2.74

land-fill

thoustons

62.55

62.55

Electric Vehicle Policy Analysis

energy

1012

BTUs

1,053

1,116

1,077

1,101

CO 2

milliontons

36.3

32.8

37.2

38.1

HC

000tons

35.7

32.2

19.6

3.5

NOx

000tons

88

79

53

18

CO

000tons

296

266

222

148

PM

000tons

0.37

2.23

0.37

0.37

SO 2

000tons

2.14

4.87

2.14

2.14

land-fill

000tons

216

279

216

216

. .__

. ..

..

.

S02

82 Russell Cohn

Page 83: Electric Vehicle Life Cycle Analysis By

The fleet composed of 100% ULEVs costs from 0.4 to 6.8 billion dollars less than

a fleet composed of 10% EVs. This same fleet produces less of every emissions except

for CO2. Even a fleet composed of only 50% ULEVs (with the remaining 50%

conventional gasoline vehicles) outperforms the EV fleet in every category except for

CO 2.

Electric Vehicle Policy Analysis 83 Russell Cohn

Page 84: Electric Vehicle Life Cycle Analysis By

CHAPTER 6. CONCLUSIONS

Electric vehicles hold great promise in reducing the environmental impact

associated with transportation. However, their cost remains substantially higher than

conventional vehicles and ULEVs. The higher cost is primarily due to battery cost, the

cost of high power electronics, and the cost of light weight vehicle construction. And

because of their limited range and convenience, EVs must be priced below comparable

gasoline if manufacturers are to sell enough of them to meet California's 2001 and 2003

fleet sales mandates. While it is entirely possible that future technology and production

experience will improve EV cost and range, there is no clear evidence of such advances,

despite decades of research and billions of dollars spent on research and development.

The analysis presented in this report indicates that EVs will result in a $6,400 to

$28,000 loss per vehicle. Optimistic assumptions are made regarding EV cost and

performance in the coming years. This loss must be paid by vehicle manufacturers or by

government agencies in the form of subsidies. In either case, consumers will bear the

ultimate burden of the loss either through higher prices of other vehicles or higher taxes.

The wide range of the calculated loss is due to the uncertainty of how much consumers

will be willing to pay for EV.

ULEVs, in contrast, will cost only $500 more than conventional vehicles on a unit

basis. Given the wide disparity in cost, more ULEVs than EVs can be produced and sold

for the same dollar loss. In fact, it is estimated that the cost of California's EV regulations

of 2% of sales in 1998, 5% of sales in 2001, and 10% of sales in 2003 would be slightly

Electric Vehicle Policy Analysis 84 Russell Cohn

Page 85: Electric Vehicle Life Cycle Analysis By

more expensive than a mandate which requires that 100% of vehicles produced to meet

ULEV specifications.

A fleet composed entirely of ULEVs is in many ways more desirable to a fleet

composed of 10% EVs. All environmental attributes, with the notable exception of CO2,

are reduced with a ULEV only fleet. Even a fleet of only 50% ULEVs yields the same

result.

ULEVs will never eliminate emissions entirely. However, the same must be said

of EVs due to power plant emissions. ULEVs, however, are so much less expensive that

they can replace the entire new sales fleet for less than the cost of selling a small number

of EVs. While EVs may have seemed like an ideal solution to environmental problems, it

is clear that their higher cost is a significant obstacle to their large scale adoption. For this

reason, policy makers should consider alternative approaches, such as ULEVs, before

committing large sums of money to a strategy which may not result in significant savings

in energy consumption and emissions production.

Continued research in battery technology may some day produce the breakthrough

necessary for EVs to compete successfully on the market. For this reason, further

research is of course desirable. However, it is clear that the production of a feasible and

environmentally beneficially electric vehicle is remains an elusive endeavor as compared

to alternatives which rely on established technology.

Electric Vehicle Policy Analysis 85 Russell Cohn

Page 86: Electric Vehicle Life Cycle Analysis By

CHAPTER 7. FUTURE WORK

While this report demonstrates that ULEVs provide substantial and undeniable

benefits over EVs, a great deal of uncertainty remains in the more general area of vehicle

policy analysis. One area of research remains of vital importance in understanding the

impact of future vehicle emissions reduction policies. The impact of emissions on air,

people, and wildlife deserves far more attention, as it is the only area which is not well

documented.

While less of a harmful substance is of course preferable to more, the extent of the

benefit is unknown. Future policy choices may be less distinct in that their emissions

rates may be roughly comparable. As more and more optimal approaches are

investigated, it is likely that the results will become more and more competitive. At such

a time it will be very difficult to make optimal decisions using the simple assumptions and

methodologies presented here.

Models such as Mobile5 and EMFAC7 attempt to model the emissions created by

a number of vehicle fleets. However, these models fail to incorporate important activities

such as power plant energy production, vehicle production, and recycling. Furthermore,

the models give no insight into the ways in which the emissions interact with each other,

with other elements of nature, and with people. Further research in this area will no doubt

clarify the environmental impact of vehicle emissions.

Electric Vehicle Policy Analysis 86 Russell Cohn

Page 87: Electric Vehicle Life Cycle Analysis By

APPENDIX

Electric Vehicle Policy Analysis 87 Russell Cohn

Page 88: Electric Vehicle Life Cycle Analysis By

ELECTRIC VEHICLE COST MODEL: Body OnlyMaterials Systems Laboratory Russell Cohn 1994

Annual Production Vo 20 (000)/yr

pg part nameB door inner panels (combined left & ri!C door outer panels (combined left & ri,D hood outerE deck lid outer

48 other SMC partsF rocker covers (combined left & night)G quarter panels (combined left & rightH front fasciaI fenders (combined left & right)

5 other injection moldingsJ door rings (combined left & right)K dash panel

62 other stampingsL tunnel torque boxesM rocker inners (combined left & right)

38 other extrusionsN front shock towers (combined left &

2 other castingsO tunnelP 4-bar

53 other foldingsQ Assembly

bodysystem

ght) exteriorght) exterior

exteriorexteriorexteriorexteriorexteriorexteriorexteriorexteriorstructurestructurestructurestructurestructurestructure

right)structurestructurestructurestructurestructureBIW

weightmaterial process (kg)SMC comp mold 13.0SMC comp mold 17.0SMC comp mold 5.8SMC comp mold 3.5SMC comp mold 14.7thermoplasinjection mtol 4.2RRIM injection mtol 7.8RRIM injection mtol 5.4RRIM injection mol 3.8various injection matol 26.8aluminum stamping 9.3aluminum stamping 4.4aluminum stamping 45.3aluminum extrusion 3.7aluminum extrusion 5.1aluminum extrusion 17.2aluminum casting 5.5aluminum casting 1.5aluminum press brake 7.7aluminum press brake 8.1aluminum press brake 16.2AV/plastic weld/bond 226

cost($/unit)$67.65$58.65$23.19$13.91$61.12$18.71$75.88$31.37$30.69

$198.02$390.09$195.76

$1,937.17$16.59$22.87$77.11$24.66

$6.73$35.28$35.55$72.63

$608.42$4,002.04

Russell CohnElectric Vehicle Policy Analysis 88

Page 89: Electric Vehicle Life Cycle Analysis By

ELECTRIC VEHICLE LIFE CYCLE COST ANALYSISMaterials Systems Laboratory Russell Cohn 1994

YearEV Regulated percentagesCalifornia sales (vehicle/yr)North East sales (vehicle/yr)Total regulated market (sales/year)Market share of single producerVolume for single maker/model (/yr)Miles traveled (/yr)Average vehicle life (years)Discount rate

ElectricPessimistic

19982%

2,000,0003,000,0005,000,000

20%20,000

9,50010

10%

Vehicle ScenariosMedium Optimistic

2001 20055% 10%

2,000,000 2.000,0003,000,000 3,000,0005,000,000 5,000,000

20% 20%50,000 100,00010,000 15,000

10 1010% 10%

Body-in-white typeBody-in-white cost (with closures)PaintClimate control systemWheelsTiresSeatsAir bag systemOtherTotal body cost

Specific Cost ($/kwh)Specific energy (wh/kg)Longevity at 80% DoD (cycles)Energy efficiency (miles/kwh)Desired range (miles/recharge)Battery energy storage requirement (kwhBattery weightBattery packs needed per lifeBattery changing costInitial battery costDiscounted cost of additional batteries

TypeMotor cost

Al-plastic$4,002

1,0001,000

800400500400

1,000$9,098

30030

8003

8026.78893.0

$200$8,000

$10,263

AC induction$800

Al-plastic$2,765

900800800350400300

1,000$7,315

20060

10004

10025.04172.0

$200$5,000$3,229

Stamped Al$1,950

800500600300300300500

$5,250

10090

15005

12024.02671.7

$200$2,400$1,159

AC induction AC induction$550 $300

Russell CohnElectric Vehicle Policy Analysis

MarketAssumptions

Body

Batteries

Motor

89

Page 90: Electric Vehicle Life Cycle Analysis By

TypeGear set cost

Low noise/high speed$3,000 $2,800

Electronics Motor controllerDC-DC converterRecharging systemElectric heater switchLube pump inverterBattery controllerCentral controllerHigh voltage cablingWire harness (low voltage only)Total electronics cost

Operation Cost of electricity ($/kwh)Energy consumption (kwh)Nominal energy costDiscounted energy cost

Maintenance

Disposal

TOTALS

Realignment ($/yr)New tires ($)Inspection/diagnostics ($/yr)Discounted maintenance cost

Aluminum scrap priceAluminum weight (Ibs)Nominal aluminum disposal cost (rebate)Landfill tipping fee ($/ton)Landfill weightNominal landfill costNominal disposal cost (rebate)Discounted disposal cost (rebate)

BodyMotorGear setElectronicsInitial batteryAdditional batteriesEnergyMaintenance/disposalTOTAL

Russell CohnElectric Vehicle Policy Analysis

Gear set$2,500

80020050010035

400250

2,000200

$4,285

60015035010035

300150

1,500200

$3,185

0.0625,000$1,500

$948

500150200100

35300

801,000

200$2,365

0.0430,000$1,200

$758

0.0831,667$2,533$1,601

10040020

$986

$0.30324

($97.21)$30305

$4.58($92.63)($35.71)

9,098800

3,0004,2858,000

10,2631,601

950$37,997

100350

20$955

$0.30324

($97.21)$30305

$4.58($92.63)($35.71)

7,315550

2,8003,1855,0003,229

948919

$23,946

100300

20$924

$0.30324

($97.21)$30305

$4.58($92.63)($35.71)

5,250300

2,5002,3652,4001,159

758888

$15,621

90

Page 91: Electric Vehicle Life Cycle Analysis By

EV MARKET SIZE (thousands of sales per year)

AnnualSales(million)narket

;aliforniaWA + North East\Il US

kIl world

EV Penetration

2%1 20

2 405 100

14 28040 800

5% 10%50 100

100 200250 500700 1,400

2,000 4,000

Russell CohnElectric Vehicle Policy Analysis

100%1,0002,0005,000

14,00040,000

91

Page 92: Electric Vehicle Life Cycle Analysis By

GASOLINE VEHICLE LIFE CYCLE COST ANALYSISMaterials Systems Laboratory Russell Cohn 1994

Vehicle typeStage of developmentLife time (years)Manufacturing costCurb weight (lbs)

Fuel economy (miles/gallon)Longevity (000 miles)Fuel Cost ($/gallon)Nominal fuel costDiscount rateDiscounted fuel cost

Gasoline Vehicle ScenariosSub-compact Compact Mid-sized

1993 1993 199310 10 10

$6,800 $8,400 $10,0001,800 2,400 3,100

40130

$1.10$3,575

10%$2,259

30130

$1.10$4,767

10%$3,011

22130

$1.10$6,500

10%$4,106

Maintenance

Disposal

TOTALS

Avg maint cost ($/year)Nominal maintenance costDiscounted maintenance cost

Aluminum scrap priceAluminum weight (Ibs)Aluminum rebateSteel scrap priceSteel weight (Ibs)Steel rebateLandfill tipping fee ($/ton)Landfill weightLandfill costNominal disposal cost (rebate)Discounted disposal cost (rebate)

ManufacturingFuelMaintenance/disposalTotal

Russell CohnElectric Vehicle Policy Analysis

VehicleData

Fuel

$200$2,000$1,229

$0.30360

$108.00$0.051,350

$67.50$3090

$1.35($174.15)

($67.14)

$6,800$2,259$1,162

$10,220

$300$3,000$1,843

$0.30480

$144.00$0.051,800

$90.00$30120

$1.80($232.20)

($89.52)

$8,400$3,011$1,754

$13,165

$400$4,000$2,458

$0.30620

$186.00$0.052,325

$116.25$30155

$2.33($299.93)($115.63)

$10,000$4,106$2,342

$16,449

92

Page 93: Electric Vehicle Life Cycle Analysis By

ULEV LIFE CYCLE COST ANALYSISMaterials Systems Laboratory Russell Cohn 1994

GasolineVehicle type Sub-compactStage of development 1993Life time (years) 10Non-ULEV manufacturing cost $6,800Added cost (heated catalyst, etc.) 400ULEV manufacturing cost 7,200Curb weight (Ibs) 1,800

Fuel Fuel economy (miles/gallon)Longevity (000 miles)Fuel Cost ($/gallon)Nominal fuel costDiscount rateDiscounted fuel cost

38130

$1.10$3,754

10%$2,371

Vehicle ScenariosCompact Mid-sized

1993 199310 10

$8,400 $10,000400 400

8,800 10,4002,400 3,100

29130

$1.10$5,005

10%$3,162

21130

$1.10$6,825

10%$4,312

Maintenance

Disposal

TOTALS

Avg maint cost ($/year)Nominal maintenance costDiscounted maintenance cost

Aluminum scrap priceAluminum weight (Ibs)Aluminum rebateSteel scrap priceSteel weight (Ibs)Steel rebateLandfill tipping fee ($/ton)Landfill weightLandfill costNominal disposal cost (rebate)Discounted disposal cost (rebate)

ManufacturingFuelMaintenance/disposalTotal

Electric Vehicle Policy Analysis

VehicleData

$200$2,000$1,229

$0.30360

$108.00$0.051,350

$67.50$3090

$1.35($174.15)($67.14)

$7,200$2,371$1,162

$10,733

$300$3,000$1,843

$0.30480

$144.00$0.051,800

$90.00$30120

$1.80($232.20)

($89.52)

$8,800$3,162$1,754

$13,716

$400$4,000$2,458

$0.30620

$186.00$0.052,325

$116.25$30155

$2.33($299.93)($115.63)

$10,400$4,312$2,342

$17,054

93 Russell Cohn

Page 94: Electric Vehicle Life Cycle Analysis By

ELECTRIC VEHICLE LIFE CYCLEMaterials Systems Laboratory

ENERGY ANALYSISRussell Cohn 1994

mass (bs) energy (btu/llb)

AluminumPolyesterPolyureaPolypropylenePolyesterHDPETotals

LeadCopperHDPETotal

AluminumSteelTotal

GlassOther PlasticsAluminumRubberTotal

2731194411

1337

498

9757451

1,100

650125775

38157214128537

147,00048,70048,70052,10047,40047,400

14,20054,50047,400

energy (btu)

40,131,0005,795,3002,142,800

573,100625,680

1,772,76051,040,640

13,845,0004,033,0002,417,400

20,295,400

147,000 95,550,00027,500 3,437,500

98,987,500

23,70042,600

147,00066,100

900,6006,688,200

31,458,0008,460,800

47,507,600

TOTAL.MATERIALS 2,910

Operation Driving energy use (wh/mile)Life time VMT (miles)Charging efficiencyStorage efficiencyTransmission efficiencyTheoretical heat rate (btu/kwh)Actual heat rate (btu/kwh)

Total operation energy (kwh)Total operation energy (BTU)

Recycling Energy consumption (wh/hulk lb)Curb weight (lb)Dismantled component weight (ItHulk weight (lb)Energy per hulk (wh)Energy per hulk (BTU)

217,831,140

200100,000

900/085%95%

3,4139,000

27,520247,678,019

9.352,9101,8751,0359,674

32,890

Materials scrap

AluminumLeadCopperGlassSteel

mass (Ibs)1,137

97574

Electric Vehicle Policy Analysis

Landfill (Ibs)

38125

2,349

Energy savings I(Btu/lb)

(120,000)(14,200)(37,000)(15,000)(10,700)

94

Energy Savings(BTU)

(136,440,000)(13,845,000)

(2,738,000)(570,000)

(1,337,500)(154,930,500)

560.6

BodyMaterials

BatteryMaterials

Drive TrainMaterials

OtherMaterials

Russell Cohn

Page 95: Electric Vehicle Life Cycle Analysis By

TOTALS MaterialsMaterials rebate

Net materialsFuelRecycling

60.35247.68

0.03308.06 MBTU

Electric Vehicle Policy Analysis

214.07(153.73)

Russell Cohn95

Page 96: Electric Vehicle Life Cycle Analysis By

GASOLINE VEHICLE (sub-compact) LIFE CYCLE ENERGY ANALYSISMaterials Systems Laboratory Russell Cohn 1994

VehicleManufacture

Btu37,125,00039,690,000

3,456,0004,759,200

853,20085,883,400

Fuel economy (miles/gal)Longevity (000 miles)BTU/gallonFuel consumption (btu)

Energy consumptionCurb weight (lb)Dismantled weight (lb)Recycling energy (wh)

40100

125,000312,500,000

9.35 wh/hulk lb1,8001,080

10,098

Material scrap

TOTALS

SteelAluminumGlassTotal

75%15%

2%92%

Landfill (Ibs)

MaterialsMaterials rebate

weight1,350

27036

1,656

(btu/lb)(10,700)

(120,000)(15,000)

Btu

(14,445,000)(32,400,000)

(540,000)(47,385,000)

144

85.88(47.39)

Net materialsFuelRecyclingTotal

38.50312.50

0.01351.01 MBTU

Electric Vehicle Policy Analysis

SteelAluminumPolymerRubberGlassTotal

Fuel

75%15%4%4%2%

100%

weight1,350

270727236

1,800

(btwlb)27,500

147,00048,00066,10023,700

Recycling

96 Russell Cohn

Page 97: Electric Vehicle Life Cycle Analysis By

ULEV (sub-compact) LIFE CYCLE ENERGY ANALYSISMaterials Systems Laboratory Russell Cohn 1994

VehicleManufacture Steel

AluminumPolymerRubberGlassTotal

75%15%4%4%2%

100%

weight1,350

270727236

1,800

Fuel Fuel economy (miles/gal)Longevity (000 miles)BTU/gallonFuel consumption (btu)

Recycling Energy consumptionCurb weight (lb)Dismantled weight (lb)Recycling energy (wh)

38.10 5% less than100

125,000328,125,000

9.35 wh/hulk lb1,8001,080

10,098

Material scrapSteelAluminumGlassTotal

75%15%2%

920/0

Landfill (Ibs)

TOTALS MaterialsMaterials rebate

Net materialsFuelRecyclingTotal

weight1,350

27036

1,656

(btu/lb)(10,700)

(120,000)(15,000)

Btu(14,445,000)(32,400,000)

(540,000)(47,385,000)

144

85.88(47.39)

38.50328.13

0.01366.63 MBTU

Electric Vehicle Policy Analysis

(btu/lb)27,500

147,00048,00066,10023,700

_-- - -

Btu37,125,00039,690,000

3,456,0004,759,200

853,20085,883,400

gasoline vehicle

97 Russell Cohn

Page 98: Electric Vehicle Life Cycle Analysis By

LIFECYCLE EMISSIONS MODELSMaterials Systems Laboratory Russell Cohn 1994

Total Life-Cycle Average VMT 128,075

Mining and refining (g)Production (g)Tailpipe Emissions (g/mile)Tailpipe Emissions (total use)Post Use (g)TOTAL

Mining and refining (g)Production (g)Tailpipe Emissions (g/mile)Tailpipe Emissions (total use)Post Use (g)TOTAL

C021,022,930

16,613409.95

52,504,3464,790

53,549,089

C021,022,930

16,613430.45

55,129,5634,790

56,174,327

Steel Taurus (H. Han)HC612

0.4152,511

552,579

NOx1,066

331.00

128,07599

129,274

Ultra Low Emissions THC612

0.045,123

55,191

NOx1,066

330.20

25,61599

26,813

CO80

33.40

435,45511

435,552

PM S02525 3055

7 83

10 8542 3,146

raurus (regulation)CO PM80 5253 7

1.70217,728

11 10217,823 542

S023,055

83

83,146

Weight as percent of Al Taurus:Use energy consumption (kwh)

Mining and refining (g) IProduction (g)Power generation emissions (g/kwhOperation emissions (g) 7Post Use (g)TOTAL 8

C02ICEULEVEV

0.828000

C02,020,238

13,480272.662,634,532

1,930,698,454

53,54956,174

8,698

Zero Emission Vehicle

HC111

20.0361,007

21,122

Summary (kg)HC NOx

52.58 1

5.19 :

1.12

NOx2,003

260.540

15,10840

17,178

292726.8117.18

CO144

20.0471,309

51,461

CO435.55217.82

1.46

PM S0225,066 5,133

6 670.108 1.3673,022 38,273

4 328,098 43,478

PM0.540.54

28.10

S023.153.15

43.48

Electric Vehicle Policy Analysis Russell Cohn98

Page 99: Electric Vehicle Life Cycle Analysis By

REFERENCES

Electric Vehicle Policy Analysis 99 Russell Cohn

Page 100: Electric Vehicle Life Cycle Analysis By

James M. Lents and William J. Kelly, "Clearing the Air in Los Angeles," ScientificAmerican, October 1993, page 32-39.

2 Gregory J. McRae and Armistead G. Russell, "Smog, Supercomputers and Society,"Computers in Physics, May/June, 1990, page 227-232.

3 Health Effects of Ambient Air Pollution, No. 0699, American Lung Association, NewYork, July 1989, pages 46-50.

4 J.M. Hollander, ed., The Energy-Environment Connection, Island Press, Washington,D.C., 1992, pages 50-74.

5 D. J. Wuebbles and J. Edmonds, "A Primer on Greenhouse Gases," DOEINBB-0083,March 1988.

6 "A clean Motor Scooter," The New York Times, January 10, 1994, page D4.

7 E. H. Wakefield, History of the Electric Automobile, Society of Automotive Engineers,Inc., 1994.

8 McRae, et. al.

9 Ibid.

10Gill Andrews Pratt, "EVs: On the Road Again," Technology Review, August/September,1993, page 56.

n "Ford's loss leader: electric vehicles," Automotive News, July 5, 1993, page 11.

'GM Electric-car test puts California rules at risk," Automotive News, October 18, 1993,page 45.

13 Ibid.

14"The electric car's Achilles' axle," The Economist, September 19, 1992, page 101.

'5"Battery and Electric Vehicle Update," Automotive Engineering, September, 1992, page17-25.

'6 Automotive News, July 19, 1993, page 37.

7 Jane Song, Master's Thesis, MIT, May 1993.

'8 Mark DeLuchi, "Hydrogen Fuel-Cell Vehicles," UCD-ITS-RR-92-14, September 1,1992.

19Robert H. Williams, "The Clean Machine," Technology Review, April, 1994, pages21-30.

20"Ford's loss leader: electric vehicles," Automotive News, July 5, 1993, page 11.2 1 Solectria Corporation, Solectria Force price list, September 21, 1993.22Thomas C. Austin and James M. Lyons, "Cost Effectiveness of the California Low

Emission Vehicle Standards," Society of Automotive Engineers, Technical PaperSeries, February 28, 1994.

Electric Vehicle Policy Analysis 100 Russell Cohn

Page 101: Electric Vehicle Life Cycle Analysis By

23 Ibid.

2 4 Ibid.

2 "Big 3 offer Compromise, Promising Cleaner Cars," The New York Times, December 7,1993, page D3.

26 Edward Byers, Susan Lilly, "Public attitudes toward electric vehicles," CambridgeReports/Research International, May 19, 1993.

27"Zero-Emission Cars Don't Have Zero Emissions, EPA Study Says," The Wall StreetJournal, April 5, 1994, page B1.

28 Bvers, et. al.

2 9 DeLuchi.

30W. Rathje and C. Murphy, Rubbish, Harper Collins, New York, 1992, page 151.

31 The New York Times, April 11, 1993, page A37.32Mary Ann Curran, "Broad-Based Environmental Life Cycle Assessment,"

Environmental Science and Technology, Vol. 27, No. 3, 1993, pages 430-436.

33 McRae, et. al.

34Frank Arnold, "Life Cycle Doesn't Work," The Environmental Forum, September/October, 1993, pages 19-23.

3 5Richard deNeufville, Applied Systems Analysis, McGraw-Hill Publishing Company,1990, p. 360.

36 Robert F. Dyer and Ernest H. Forman, "Group decision support with the AnalyticHierarchy Process," Decision Support Systems, August, 1992, page 99-124.

37 James S. Dyer, "Remarks on the Analytic Hierarchy Process," Management Science,March 1990, pages 249-258.

38 Thomas Saaty, The Analytic Hierarchy Process, McGraw-Hill Book Company, 1980.39James S. Dyer, "Remarks on the Analytic Hierarchy Process," Management Science,

Vol. 26, No. 3, March 1990, pp. 249-258.

40de Neufville, page 364.

41 Kenneth Arrow, Social Choice and Individual Values, Yale University Press, 1963.42 DeLuchi.

43 "Ford's loss leader: electric vehicles," Automotive News, July 5, 1993, page 11.

44Scot Arnold, Economic Modeling of Multi-Sequential Manufacturing Processes: A CaseStudy Analysis of the Automotive Door, PhD. Thesis, MIT, May, 1989.

45Helen Han, The Competitive Position of Alternative Automotive Materials, PhD. Thesis,MIT, May 1994.

Electric Vehicle Policy Analysis 101 Russell Cohn

Page 102: Electric Vehicle Life Cycle Analysis By

'T. R. Curlee, S. Das, C.G. Rizy, S.M. Schexnayder, Recent trends in Automobilerecycling: an energy and economic assessment, Draft Report, Oak Ridge NationalLaboratory, February 1994.

47 Anne-Marie Tillman, Hanrikke Baumann, Elin Eriksson, Tomas Rydberg, Life-Cycleanalyses of selected packaging materials, Chalmers Industriteknik, Goteborg,Sweden, September 1991.

4 8 Han.

49 "Electric Vehicles," IEEE Spectrum, November 1992, Pages 18-24.

50Ibid.

5 1 Curlee, et. al.

52P.F. Chapman, F. Roberts, Metal Resources and Energy, Butterworths, London, 1983,Page 134.

53Tillman, et. al.

5 4"Zero-Emission Cars Don't Have Zero Emissions, EPA Study Says," The Wall StreetJournal, April 5, 1994, page B1.

5 5 Hah.

56"1993 Market Data Book," Automotive News, May 26, 1993.

57 "Makers warm up to hydrocarbon trap," Automotive News, December 6, 1993, page 22.

5 8 'Electric Vehicles," IEEE Spectrum, November 1992, Pages 18-24.59Jonathan W. Fox, John B. Heywood, and Gregory McRae, "Aggregate Vehicle

Emissions Estimates for Evaluating Control Strategies," Society of AutomotiveEngineers, Technical Paper Series, February 28, 1994.

Electric Vehicle Policy Analysis 102 Russell Cohn