electron momentum corrections for e1-f for w> 2 gevgohn/gohn_p_cor.pdf · electron momentum...

15
Electron Momentum Corrections for E1-F for W> 2 GeV Wes Gohn October 8, 2009

Upload: vuongcong

Post on 09-Jan-2019

213 views

Category:

Documents


0 download

TRANSCRIPT

Electron Momentum

Corrections for E1-F for W > 2

GeV

Wes Gohn

October 8, 2009

Motivation:My analysis is for Semi-inclusive pion electroproduction requiringW > 2 and Q2 > 1. The momentum correction must be based ona reaction covering a similar phase space to the analysis.

The standard method of doing momentum corrections relies onelastic events, which cover a very small kinematic space. Bethe-Heitler events share much of the SIDIS kinematic phase space.

0.5 1 1.5 2 2.5 3

2

4

62Q

W

vs W, elastic2Q

0.5 1 1.5 2 2.5 3

2

4

62Q

W

vs W, Bethe-Heitler2Q

0.5 1 1.5 2 2.5 3

2

4

62Q

W

vs W, SIDIS2Q

1 2 3 4 510

20

30

40

50

60eθ

ep

, elastice

vs peθ

1 2 3 4 510

20

30

40

50

60eθ

ep

, Bethe-Heitlere

vs peθ

1 2 3 4 510

20

30

40

50

60eθ

ep

, SIDISe

vs peθ

0 100 200 3001520253035404550

, elastice

φ vs eθ

0 100 200 3001520253035404550

, Bethe-Heitlere

φ vs eθ

0 100 200 3001520253035404550

, SIDISe

φ vs eθ

Left: Q2 vs W for Elastic events, which are only between the two redlines (top), Bethe-Heitler (middle), and Semi-inclusive π+ events,which are only for Q2 > 1 and W > 2, as illustrated by the twored lines (bottom). Center: θe vs pe for Elastic (top), Bethe-Heitler (middle), and Semi-inclusive π+ (bottom). Right: θe vs φefor elastic events (top), Bethe-Heitler events (middle), and SIDISevents (bottom).

1

• Momentum correction for electron was performed for W > 2GeV using Bethe-Heitler events.

• An energy loss correction was first applied to the protons usingthe eloss program.

• Bethe-Heitler events identified using a cut on ∆φ < 1.5σ(∆φ = φe − φP) and the point where θγ drops by a factorof e for events passing the previous cut.

• Correction performed in each bin by fitting ∆pp

vs φe with a

linear function.

∆p = pmeasured − pcalc

Pcalc =P ′

1 + P ′(1−cosθe)MP

with

P ′ =MP

1− cosθe(cosθe +

cosθPsinθe

sinθP − 1)

Variable Bin Size Number of Bins RangeW 0.1 GeV 10 2.0GeV < W < 3.0GeVθe 5o 6 15o < θe < 45o

φe 4o 15 −30o < φe < 30o

Binning for Bethe-Heitler events. Binning is performed in eachsector.

2

Testing the technique on elastic events.To test the procedure, we perform the correction for elastic eventsat low W.

Fit with ∆pp

(φ) = A+Bφ+ Cφ2.

-30 -20 -10 0 10 20 30

-0.04

-0.02

0

0.02

0.04

, elastic events, with correction functionφp/p vs ∆pp∆

φ

=2θSector 6, n

-30 -20 -10 0 10 20 30-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05 , correctedφp/p vs ∆pp∆

φ

0.6 0.7 0.8 0.9 1 1.1 1.20

2000

4000

6000

8000 <20θ15<W, Sector 6

W[GeV]

0.6 0.7 0.8 0.9 1 1.1 1.20

1000

2000

3000

4000

5000<25θ20<

W, Sector 6

W[GeV]

0.6 0.7 0.8 0.9 1 1.1 1.20

500

1000

1500 <30θ25<W, Sector 6

W[GeV]

0.6 0.7 0.8 0.9 1 1.1 1.20

100

200

300

400

500 <35θ30<W, Sector 6

W[GeV]

0.6 0.7 0.8 0.9 1 1.1 1.2020406080

100120

<40θ35<W, Sector 6

W[GeV]

0.6 0.7 0.8 0.9 1 1.1 1.20102030405060 <45θ40<

W, Sector 6

W[GeV]

Uncorrected electron.

Corrected electron

Both plots have the energy loss correction applied for protons.Sector mean W uncorrected σW uncorrected Mean W corrected σW corrected

1 0.974 0.056 0.939 0.0422 0.957 0.052 0.938 0.0453 0.959 0.054 0.938 0.0434 0.955 0.044 0.939 0.0415 0.941 0.046 0.940 0.0406 0.917 0.063 0.939 0.052

3

Bethe-Heitler Event Selection∆φ cut. The example shows each W bin for a single bin in φ andθ.

170 175 180 185 1900

100

200

300

400

500

600

φ∆

Sector 22.0 < W < 2.1

o < 25θ < o20

170 175 180 185 1900100200

300400

500600

700

φ∆

Sector 22.1 < W < 2.2

o < 25θ < o20

170 175 180 185 1900100200300400500600700800900

φ∆

Sector 22.2 < W < 2.3

o < 25θ < o20

170 175 180 185 1900

200

400

600

800

1000

φ∆

Sector 22.3 < W < 2.4

o < 25θ < o20

170 175 180 185 1900

200400

600

800

1000

1200

1400

φ∆

Sector 22.4 < W < 2.5

o < 25θ < o20

170 175 180 185 1900200400600800

10001200140016001800

φ∆

Sector 22.5 < W < 2.6

o < 25θ < o20

170 175 180 185 1900200400600800

100012001400160018002000

φ∆

Sector 22.6 < W < 2.7

o < 25θ < o20

170 175 180 185 1900200400600800

1000120014001600

φ∆

Sector 22.7 < W < 2.8

o < 25θ < o20

170 175 180 185 1900200400600800

1000120014001600180020002200

φ∆

Sector 22.8 < W < 2.9

o < 25θ < o20

170 175 180 185 1900

100

200

300

400

500

600

φ∆

Sector 22.9 < W < 3.0

o < 25θ < o20

∆φ = φe − φp

1.5σ cut around ∆φ peak. The blue histograms illustrate ∆φ pass-ing the θγ cut.

4

Bethe-Heitler Event Selectionθγ cut. The example shows each W bin for a single bin in φ and θ.

0 0.5 1 1.5 20

10

20

30

40

50

γθ

Sector 22.0 < W < 2.1

o < 25eθ < o20

0 0.5 1 1.5 2010203040506070

γθ

Sector 22.1 < W < 2.2

o < 25eθ < o20

0 0.5 1 1.5 2020406080

100120

γθ

Sector 22.2 < W < 2.3

o < 25eθ < o20

0 0.5 1 1.5 2020406080

100120140160180200220

γθ

Sector 22.3 < W < 2.4

o < 25eθ < o20

0 0.5 1 1.5 2050

100150200250300350

γθ

Sector 22.4 < W < 2.5

o < 25eθ < o20

0 0.5 1 1.5 20100200300400500600

γθ

Sector 22.5 < W < 2.6

o < 25eθ < o20

0 0.5 1 1.5 20

200

400600

800

1000

γθ

Sector 22.6 < W < 2.7

o < 25eθ < o20

0 0.5 1 1.5 20200400600800

1000120014001600

γθ

Sector 22.7 < W < 2.8

o < 25eθ < o20

0 0.5 1 1.5 20200400600800

100012001400

γθ

Sector 22.8 < W < 2.9

o < 25eθ < o20

0 0.5 1 1.5 20

500

1000

1500

2000

2500

γθ

Sector 22.9 < W < 3.0

o < 25eθ < o20

θγ is cut where the value drops by a factor of e from the maximum.The blue histograms illustrate θγ passing the ∆φ cut.

5

Example of fits to determine correction function.

Fit with ∆pp

(φ) = A+Bφ.

-20 -15 -10 -5 0 5 10 15 20-0.015

-0.01

-0.005

0

0.005

0.01

0.015 2.00 < W < 2.10pp∆

φ -20 -15 -10 -5 0 5 10 15 20-0.015

-0.01

-0.005

0

0.005

0.01

0.015 2.10 < W < 2.20pp∆

φ

-20 -15 -10 -5 0 5 10 15 20-0.015

-0.01

-0.005

0

0.005

0.01

0.015 2.20 < W < 2.30pp∆

φ -20 -15 -10 -5 0 5 10 15 20-0.015

-0.01

-0.005

0

0.005

0.01

0.015 2.30 < W < 2.40pp∆

φ

-20 -15 -10 -5 0 5 10 15 20-0.015

-0.01

-0.005

0

0.005

0.01

0.015 2.40 < W < 2.50pp∆

φ -20 -15 -10 -5 0 5 10 15 20-0.015

-0.01

-0.005

0

0.005

0.01

0.015 2.50 < W < 2.60pp∆

φ

-20 -15 -10 -5 0 5 10 15 20-0.015

-0.01

-0.005

0

0.005

0.01

0.015 2.60 < W < 2.70pp∆

φ -20 -15 -10 -5 0 5 10 15 20-0.015

-0.01

-0.005

0

0.005

0.01

0.015 2.70 < W < 2.80pp∆

φ

-20 -15 -10 -5 0 5 10 15 20-0.015

-0.01

-0.005

0

0.005

0.01

0.015 2.80 < W < 2.90pp∆

φ -20 -15 -10 -5 0 5 10 15 20-0.015

-0.01

-0.005

0

0.005

0.01

0.015 2.90 < W < 3.00pp∆

φ

Sector 2, 20o < θe < 25o

6

Mean of Bethe-Heitler Missing Mass vs. W. Black (circles) showdata with the proton energy loss correction applied, but no mo-mentum correction. Red (squares) show the missing mass afterapplying my correction for electrons. Blue (triangles) show themissing mass after Marco’s correction.

Sector 1.

W [GeV]2 2.2 2.4 2.6 2.8 3

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

vs. W2MMo<20eθ<o15

W [GeV]2 2.2 2.4 2.6 2.8 3

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

vs. W2MMo<25eθ<o20

W [GeV]2 2.2 2.4 2.6 2.8 3

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

vs. W2MMo<30eθ<o25

W [GeV]2 2.2 2.4 2.6 2.8 3

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

vs. W2MMo<35eθ<o30

W [GeV]2 2.2 2.4 2.6 2.8 3

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

vs. W2MMo<40eθ<o35

W [GeV]2 2.2 2.4 2.6 2.8 3

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

vs. W2MMo<45eθ<o40

7

Sector 2.

W [GeV]2 2.2 2.4 2.6 2.8 3

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

vs. W2MMo<20eθ<o15

W [GeV]2 2.2 2.4 2.6 2.8 3

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

vs. W2MMo<25eθ<o20

W [GeV]2 2.2 2.4 2.6 2.8 3

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

vs. W2MMo<30eθ<o25

W [GeV]2 2.2 2.4 2.6 2.8 3

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

vs. W2MMo<35eθ<o30

W [GeV]2 2.2 2.4 2.6 2.8 3

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

vs. W2MMo<40eθ<o35

W [GeV]2 2.2 2.4 2.6 2.8 3

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

vs. W2MMo<45eθ<o40

Sector 3.

W [GeV]2 2.2 2.4 2.6 2.8 3

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

vs. W2MMo<20eθ<o15

W [GeV]2 2.2 2.4 2.6 2.8 3

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

vs. W2MMo<25eθ<o20

W [GeV]2 2.2 2.4 2.6 2.8 3

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

vs. W2MMo<30eθ<o25

W [GeV]2 2.2 2.4 2.6 2.8 3

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

vs. W2MMo<35eθ<o30

W [GeV]2 2.2 2.4 2.6 2.8 3

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

vs. W2MMo<40eθ<o35

W [GeV]2 2.2 2.4 2.6 2.8 3

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

vs. W2MMo<45eθ<o40

8

Sector 4.

W [GeV]2 2.2 2.4 2.6 2.8 3

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

vs. W2MMo<20eθ<o15

W [GeV]2 2.2 2.4 2.6 2.8 3

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

vs. W2MMo<25eθ<o20

W [GeV]2 2.2 2.4 2.6 2.8 3

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

vs. W2MMo<30eθ<o25

W [GeV]2 2.2 2.4 2.6 2.8 3

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

vs. W2MMo<35eθ<o30

W [GeV]2 2.2 2.4 2.6 2.8 3

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

vs. W2MMo<40eθ<o35

W [GeV]2 2.2 2.4 2.6 2.8 3

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

vs. W2MMo<45eθ<o40

Sector 5.

W [GeV]2 2.2 2.4 2.6 2.8 3

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

vs. W2MMo<20eθ<o15

W [GeV]2 2.2 2.4 2.6 2.8 3

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

vs. W2MMo<25eθ<o20

W [GeV]2 2.2 2.4 2.6 2.8 3

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

vs. W2MMo<30eθ<o25

W [GeV]2 2.2 2.4 2.6 2.8 3

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

vs. W2MMo<35eθ<o30

W [GeV]2 2.2 2.4 2.6 2.8 3

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

vs. W2MMo<40eθ<o35

W [GeV]2 2.2 2.4 2.6 2.8 3

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

vs. W2MMo<45eθ<o40

9

Sector 6.

W [GeV]2 2.2 2.4 2.6 2.8 3

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

vs. W2MMo<20eθ<o15

W [GeV]2 2.2 2.4 2.6 2.8 3

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

vs. W2MMo<25eθ<o20

W [GeV]2 2.2 2.4 2.6 2.8 3

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

vs. W2MMo<30eθ<o25

W [GeV]2 2.2 2.4 2.6 2.8 3

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

vs. W2MMo<35eθ<o30

W [GeV]2 2.2 2.4 2.6 2.8 3

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

vs. W2MMo<40eθ<o35

W [GeV]2 2.2 2.4 2.6 2.8 3

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

vs. W2MMo<45eθ<o40

Sector Mean, No Correction σ, No Correction Mean, My Correction σ, My Correction Mean, Marco’s Correction σ, Marco’s Correction1 0.0022 0.0199 -0.0006 0.0194 -0.0018 0.01942 0.0022 0.0196 0.0002 0.0191 -0.0006 0.01923 0.0016 0.0198 -0.0010 0.0196 -0.0018 0.01994 0.0018 0.0198 -0.0005 0.0195 -0.0032 0.01975 -0.0004 0.0197 -0.0007 0.0195 -0.0034 0.01956 -0.0013 0.0199 -0.0007 0.0198 -0.0010 0.0197

10

Missing Mass from ep→ eπ+XThe top set of plots show data with no electron momentum correc-tion, and the bottom six plots show data with my electron momen-tum correction applied. Both sets have the energy loss correctionapplied for π+.

Entries 1291159

0.6 0.7 0.8 0.9 1 1.1 1.20

2000

4000

6000

8000

10000

12000

Entries 1291159

mean = 0.947

= 0.027σ

sector 1

Missing Mass [GeV]

, uncorrectedXM Entries 985941

0.6 0.7 0.8 0.9 1 1.1 1.20

2000

4000

6000

8000

10000

12000

Entries 985941

mean = 0.944

= 0.023σ

sector 2

Missing Mass [GeV]

, uncorrectedXM Entries 1069238

0.6 0.7 0.8 0.9 1 1.1 1.20

2000

4000

6000

8000

10000

Entries 1069238

mean = 0.940

= 0.025σ

sector 3

Missing Mass [GeV]

, uncorrectedXM

Entries 929193

0.6 0.7 0.8 0.9 1 1.1 1.20

2000

4000

6000

8000

10000

12000

Entries 929193

mean = 0.952

= 0.023σ

sector 4

Missing Mass [GeV]

, uncorrectedXM Entries 1013756

0.6 0.7 0.8 0.9 1 1.1 1.20

5000

10000

15000

Entries 1013756

mean = 0.939

= 0.023σ

sector 5

Missing Mass [GeV]

, uncorrectedXM Entries 990350

0.6 0.7 0.8 0.9 1 1.1 1.20

2000

4000

6000

8000

10000

Entries 990350

mean = 0.925

= 0.032σ

sector 6

Missing Mass [GeV]

, uncorrectedXM

Entries 1291159

0.6 0.7 0.8 0.9 1 1.1 1.20

5000

10000

15000

Entries 1291159

mean = 0.946

= 0.023σ

sector 1

Missing Mass [GeV]

, correctedXM Entries 985941

0.6 0.7 0.8 0.9 1 1.1 1.20

2000

4000

6000

8000

10000

12000

Entries 985941

mean = 0.940

= 0.022σ

sector 2

Missing Mass [GeV]

, correctedXM Entries 1069238

0.6 0.7 0.8 0.9 1 1.1 1.20

2000

4000

6000

8000

10000

12000

Entries 1069238

mean = 0.940

= 0.024σ

sector 3

Missing Mass [GeV]

, correctedXM

Entries 929193

0.6 0.7 0.8 0.9 1 1.1 1.20

2000

4000

6000

8000

10000

12000

Entries 929193

mean = 0.950

= 0.023σ

sector 4

Missing Mass [GeV]

, correctedXM Entries 1013756

0.6 0.7 0.8 0.9 1 1.1 1.20

5000

10000

15000

Entries 1013756

mean = 0.940

= 0.022σ

sector 5

Missing Mass [GeV]

, correctedXM Entries 990350

0.6 0.7 0.8 0.9 1 1.1 1.20

2000

4000

6000

8000

10000

Entries 990350

mean = 0.925

= 0.032σ

sector 6

Missing Mass [GeV]

, correctedXM

Sector 1 2 3 4 5 6Uncorrected Mean 0.947 0.944 0.940 0.952 0.939 0.925

Corrected Mean 0.946 0.940 0.940 0.950 0.940 0.925Uncorrected σ 0.027 0.023 0.025 0.023 0.023 0.032

Corrected σ 0.023 0.022 0.024 0.023 0.022 0.032

11

Conclusion:Below are histograms showing distributions of W and Q2. Theblack histogram shows each distribution without electron momen-tum correction, and the red line draws the histogram after theelectron momentum correction.

W [GeV]1 1.5 2 2.5 30

5000

10000

15000

20000

25000

30000

35000

40000

45000

X+π e→W, ep

]2 [GeV2Q1 2 3 4 50

10000

20000

30000

40000

50000

60000

70000

X+π e→, ep2Q

• Electron momentum corrections have been performed individ-ually in each bin

• While in many bins they are comparable to Marco’s correction,there are some bins in which this correction gives us Bethe-Heitler missing mass results considerably closer to zero.

• The semi-inclusive missing mass, Q2, and W spectra are notstrongly affected by the correction.

12

Support Slides

13

Missing Mass Fits

-0.1 -0.05 0 0.05 0.10102030405060708090

2θ, Sector 4, n2XBH M

2.00 < W < 2.10=0.014395σ=-0.000314, µ=0.014220σ=-0.000463, µ=0.014249σ=-0.003042, µ

-0.1 -0.05 0 0.05 0.10102030405060708090

2θ, Sector 4, n2XBH M

2.10 < W < 2.20=0.016056σ=-0.000767, µ=0.016056σ=-0.000767, µ=0.015909σ=-0.003669, µ

-0.1 -0.05 0 0.05 0.1020406080

100120140

2θ, Sector 4, n2XBH M

2.20 < W < 2.30=0.017150σ=0.000073, µ=0.017150σ=0.000073, µ=0.017078σ=-0.002982, µ

-0.1 -0.05 0 0.05 0.1020406080

100120140160

2θ, Sector 4, n2XBH M

2.30 < W < 2.40=0.016862σ=0.000619, µ=0.016696σ=-0.000273, µ=0.016834σ=-0.002572, µ

-0.1 -0.05 0 0.05 0.10

50

100

150

200

250 2θ, Sector 4, n2

XBH M

2.40 < W < 2.50=0.017374σ=0.001222, µ=0.017182σ=0.000346, µ=0.017292σ=-0.002070, µ

-0.1 -0.05 0 0.05 0.1050

100150200250300

2θ, Sector 4, n2XBH M

2.50 < W < 2.60=0.017902σ=0.001672, µ=0.017710σ=-0.000629, µ=0.017845σ=-0.001805, µ

-0.1 -0.05 0 0.05 0.1050

100150200250300350400450

2θ, Sector 4, n2XBH M

2.60 < W < 2.70=0.018387σ=0.002532, µ=0.018323σ=-0.000182, µ=0.018339σ=-0.001274, µ

-0.1 -0.05 0 0.05 0.10100200300400500600

2θ, Sector 4, n2XBH M

2.70 < W < 2.80=0.019437σ=0.002907, µ=0.019387σ=-0.000123, µ=0.019434σ=-0.001421, µ

-0.1 -0.05 0 0.05 0.1050

100150200250300350400450

2θ, Sector 4, n2XBH M

2.80 < W < 2.90=0.021281σ=0.003418, µ=0.021266σ=-0.000374, µ=0.021250σ=-0.001996, µ

-0.1 -0.05 0 0.05 0.1020406080

100120140

2θ, Sector 4, n2XBH M

2.90 < W < 3.00=0.023690σ=0.005150, µ=0.023872σ=-0.000813, µ=0.024004σ=-0.002011, µ

14