energy and momentum corrections and update on toroidal

23
Energy and Momentum Corrections and Update on Toroidal Preconditioning Carl Sovinec University of Wisconsin-Madison NIMROD Team Meeting August 21-23, 2019 Madison, Wisconsin

Upload: others

Post on 03-Feb-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

EnergyandMomentumCorrectionsandUpdateonToroidalPreconditioning

CarlSovinecUniversityofWisconsin-Madison

NIMRODTeamMeetingAugust21-23,2019Madison,Wisconsin

Outline•  Particlediffusioncorrections*

–  Single-temperaturesystem–  SeparateTiandTesystem–  Two-fluid–  Recommendations–  Implementation

•  Toroidalpreconditioning–  1Dtoroidalsolves–  Otherideas

•  ConclusionsandDiscussion

*Additionaldetailsarepostedoncptc.wisc.edu,reportUW-CPTC19-2.

Particlediffusion:Artificialdiffusioninthecontinuityequationcanaffectconservationproperties.•  Thestandardmomentumdensityequation,

∂∂t

ρV( )+∇⋅ ρVV( ) = J ×B−∇p−∇⋅Π

,leadsto

∂∂t

ρV( )+∇⋅ ρVV − 1µ0BB+ I p+ B

2

2µ0

⎝⎜⎜

⎠⎟⎟+Π

⎢⎢

⎥⎥= 0

•  Subtractingcenter-of-mass(COM)Vtimesthemodifiedcontinuityeqn.,

∂∂tn+∇⋅ nV −D∇n( ) = 0

ρ∂∂tV + ρV ⋅∇V = J ×B−∇p−∇⋅Π−V∇⋅ D∇ρ( )

isequivalent*totheconservativeform

*Thisassumes.∇⋅B = 0additionalterm

Artificialdiffusionalsoaffectsenergydensity.•  Thestandardspecies(s)temperatureevolutionequationis

•  WhenKPRADisnotused,NIMROD’ssingle-Tequationisformedasanionequation,.

•  Electrontemperatureisupdatedas,fe=pe_frac.

•  Totalthermalenergydensityis

•  Consideringmodifiedcontinuityforthermalandkineticenergydensities,

∂∂tnsTsγ −1

⎜⎜

⎟⎟+∇⋅

nsTsγ −1

Vs⎛

⎝⎜

⎠⎟= −ps∇⋅Vs −∇⋅qs +Qs

ni = n ZeffTe =

feZeff 1− fe( )

T

neTeγ −1

+niTγ −1

⇒nT

Zeff γ −1( )fe

1− fe( )+1

⎣⎢⎢

⎦⎥⎥=niTγ −1( )

1fi

ni∂∂tT + niV ⋅∇T = − γ −1( ) niT∇⋅V +∇⋅q −Q( )+

fimV2 γ −1( )2

−TZeff

⎜⎜

⎟⎟∇ ⋅ D∇n( )

additionaltermQ = fi ηJ2 −Π:∇V( )

∂∂t

ρV 2

2+n

γ −1TiZeff

+Te⎛

⎝⎜⎜

⎠⎟⎟+B2

2µ0

⎢⎢

⎥⎥

+∇⋅ρV 2

2V + γnTs

Zs γ −1( )V +

gsneJ

⎝⎜

⎠⎟

s∑ +Π⋅V +qi +qe +

1µ0E×B

⎣⎢⎢

⎦⎥⎥

= −V ⋅∇p+ V +gsneJ

⎝⎜

⎠⎟⋅∇

nTsZs

⎝⎜⎜

⎠⎟⎟

s∑ +Π:∇V −V

2

2∇⋅ D∇ρ( ) −ηJ 2 + ghn J ⋅∇pe +Qi +Qe

FurtherconsiderationisneededforseparateTiandTeequations.

•  Formally,speciesflowvelocitiesare:

•  EnergydensityevolutionwithforHall-MHD,butbeforeincludingtheKEdensitycorrectionis

Vs = V +gsneJ rm ≡

Zeff memi

<<1gs ≡

rm1+ rm

, s = i

−1

1+ rm, s = e

⎪⎪

⎪⎪

gh =1− rme 1+ rm( )

E =ηJ −V ×B+ghnJ ×B−∇pe( )

RecommendationsforMHDandHall-MHD

1.  WhenevolvingseparatetemperatureswithMHD,setVsinthetemperatureequationstoV.•  Thisisequivalenttosettinggsto0.•  JakeK.andNateFerrarohadpointed-thisout,previously.

2.  WhensolvingtheHall-MHDsystem,usetwo-temperatureevolutionunless•  pe_frac=0or•  theclosureisβ=0.

3.  FortheHall-MHDsystem,setfortheterminOhm’slaw.•  ThisisanO(rm)correction.

4.  SetfortheHall-MHDsystem.•  ThisisalsoanO(rm)correction.

5.  Withseparatetemperatures,putthekinetic-energycorrectionintotheionthermalenergy.

gh = −ge e ∇pe

gi = 0

The“two-fluid”systemincludeselectron-inertiaterms.

•  Atpresent,NIMRODisnotprogrammedconsistentlywrtO(rm)terms.

•  Theadvectivecontribution(seenextslides)wereprogrammedaccordingtoKrall&Trivelpiece’s*generalizedOhm’slaw.

•  PressuretensorsaredefinedrelativetoVandnotVs.

•  Theequationshavefewertermsbutoddimplications.

•  Theadvectivetermsarenotprogrammedinanumericallystableway.

•  Theimplicitleapfrogrequirestime-centeringintheB-advance.

•  Thiscouldbedonebyiteration.

*PrinciplesofPlasmaPhysics,McGraw-Hill(1973).

WeneedKEdensityandflux-densityintermsofVandJ.

•  Kineticenergydensityforelectron-ionplasmais

mini2Vi2 +mene2Ve2 =

min2Zeff

V +rm

ne 1+ rm( )J

⎣⎢⎢

⎦⎥⎥

2

+men2

V − 1ne 1+ rm( )

J⎡

⎣⎢⎢

⎦⎥⎥

2

=ρ2V 2 +

gm12nJ 2

•  Kineticenergyflux-densityis

mini2Vi2Vi +

mene2Ve2Ve =

ρ2V 2V +

gm22n

J 2V + 2V ⋅ JJ +gi + gene

J 2J⎡

⎣⎢

⎦⎥

•  Twoanalyticallyequivalentcoefficientsareusedtodistinguishterms:

gm1 = gm2 =me e2 1+ rm( ) = n ε0ω p

2

Re-derivingfirst-momentequationssetsthestageforenergy.

•  UsingpressuretensorsintermsofVsisconsistentwithourTsequations.

•  Sumspeciesmomentumdensityevolution:

TheNIMRODform,includingartificialparticlediffusivityis

Ps = dvms v −Vs( ) v −Vs( ) fs∫

∂∂t

ρV( )+∇⋅ ρVV + gm2n JJ⎡

⎣⎢

⎦⎥+∇⋅ Pss

∑ − J ×B = 0

ρ∂∂tV +V ⋅∇V

⎝⎜

⎠⎟= J ×B−∇ pi + pe( )− gm2J ⋅∇

Jn⎛

⎝⎜

⎠⎟−∇⋅Π−V∇⋅ D∇ρ( )

notinKT*

*SeeKimuraandMorrison,Onenergyconservationinextendedmagnetohydrodynamics,Phys.Plasmas21,082101(2014).

Ohm’slawisthesecondfirst-momentequation.

•  Sumspecieschargedensityevolution:

•  SolvingforEforelectron-ionplasma:

∂∂tJ +∇⋅ qsnsVsVs

s∑⎛

⎝⎜

⎠⎟+∇⋅

qsmsPs

s∑ −

qs2nsms

Vss∑ ×B =

qs2nsms

Es∑

E = 1ngm1

∂∂tJ + gm2∇⋅ VJ + JV −

1− rm2

neJJ

⎜⎜

⎟⎟

⎢⎢

⎥⎥+1ne∇⋅ giPi + gePe( )−V ×B+ ghn J ×B

Droppingtherm2termandreplacingpressuretensors,

E = 1ngm1

∂∂tJ + gm2∇⋅ VJ + JV −

1neJJ

⎝⎜

⎠⎟

⎣⎢

⎦⎥

+1ne∇⋅ gi piI+Π( )+ ge peI⎡⎣

⎤⎦+ηJ −V ×B+

ghnJ ×B

notinNIMROD

notinNIMROD

Energydensityevolutionfollows.

Therhsshouldbe0forconservation.(Tcorrectionsarealreadyincluded.)

∂∂t

ρV 2

2+gm1J

2

2n+

nγ −1( )

TiZ+Te

⎝⎜

⎠⎟+B2

2µ0

⎢⎢

⎥⎥

+∇⋅ρV 2

2V + gm2 −

gm12

⎝⎜

⎠⎟J 2Vn

+gm2nJV ⋅ J −

gm2J2

2n2J + 1

µ0E×B

⎢⎢

⎥⎥

+∇⋅γnTiZ γ −1( )

V +gineJ

⎝⎜

⎠⎟+

γnTeγ −1( )

V +geneJ

⎝⎜

⎠⎟+Π⋅ V +

giJne

⎝⎜

⎠⎟+qi +qe

⎣⎢⎢

⎦⎥⎥

=Π:∇ V +giJne

⎝⎜

⎠⎟−12mV 2 +

gm1J2

n2

⎜⎜

⎟⎟∇ ⋅ D∇n( )−ηJ 2

− gm1− gm2( )nV ⋅ Jn ×∇×Jn⎛

⎝⎜

⎠⎟+Jn⋅∇Jn

⎣⎢

⎦⎥+Qi +Qe

ConservationthroughO(rm)withthetwo-fluidsystemrequiresthefollowing:

1.  ImplementingtheO(rm)contributiontoCOMVevolution

2.  ImplementingionpressureandstresscontributionsinOhm’slaw

3.  TheO(rm)correctiontoionviscousheating

4.  TheJJterminOhm’slawneedstobeimplemented

5.  Theentireelectronadvectivecontributionneedsiteration

6.  Usinggm1=gm2intwo-fluidcomputations

Theparticlediffusioncorrectionsrequirecomputationofdiv(D*grad(n)).

•  Itisnotdirectlyavailablefromthedensityadvance.

•  Anewmass-matrixsolvegeneratesanexpansionforthisfield.

•  Everythingdescribedabovefollowsforhyper-particlediffusivity,exceptthattherearetwomass-matrixsolves.

Nimuw’sfactorsforextendedMHDtermsarenowcollectedinglobal.

coefhll=ghforJxBcoefgpe=ghforgrad(pe)coefjvi,coefjve=gi,gecoefme1,coefme2=gm1,gm2

•  Recommendedsettingsfordifferentmodelsareimplementedinoneplace,subroutineset_2fl_coefs.

Alarge-amplitudemagneto-acousticwavetestdemonstratestheenergycorrection.

•  WaveisinaperiodicboxandstartsfromasinusoidinVwithamplitudeof.

•  Nonlinearevolutionlosesresolutionovertimeinthe20cubicelementrepresentation.

Totalenergyvs.time.

3cma 10

nd_diff=0

nd_diff=0.01,nocorrection

nd_diff=0.01,corrected

V(z)att=4andatt=7.5.

n(z)att=4andatt=7.5.

Includingviscousdiffusionandthermalconductionreducesmesh-scaleoscillations.

•  Alldiffusivitiesare0.01.

•  Viscousheatingisturnedon.

•  Thereisaslightdriftintotalenergy.

Totalenergyvs.time.

nd_diff=0.01,χ = ν =0

nd_diff=0.01,χ = ν=0.01

V(z)att=4andatt=7.5.

n(z)att=4andatt=7.5.

Toroidalpreconditioning(yetagain):Somethinghastowork.

•  Directsolvesfordiagonal-in-Fourierblocksareinadequatewithsignificanttoroidalvariation.•  Anisotropicthermalconduction•  Magneticevolutionwithplasmasurfacedistortion

•  Anumberofpreviouslydevelopedschemeshavelimitedutility.•  LimitedGauss-Seidel-likeFouriercoupling•  FGMRESalternatingwithdiagonal-in-φsolves

•  Arecentattemptincorporates1Dsolvesoverthetoroidalangle.•  Analogoustooldgl_diagapreconditioner•  Alsosuggestedbysolverexperts

1DsolvesoverFourierharmonicscanbeusedinvariousways.

•  AspartofanadditiveSchwarzpreconditioner•  Averagetheresultswiththeresultsofdiagonal-in-Fourier(DIF)solves.

•  AspartofamultiplicativeSchwarzpreconditioner•  PerformoperationsequentiallywithDIF.•  ForsymmetricsystemswithCG,thestepsneedtobesymmetrized.

•  AlternatingwithDIFduringFGMRESsteps

Machineryhasbeendevelopedfor1DFouriersolves.•  Routinesforpackingandunpackingdata

•  Vector-typedatastructuresareused,butallnodesintheelementplanearelumpedintothe%arrarrays.

•  Parallelcommunicationwouldneedtobedeveloped.•  1Dversionsofthematrix-freeKrylovsolves

•  “Matrix-free”avoidsgeneratingdensematrices.•  Ifcomplete1Dsolutionshelp,keepiterating.

•  Matrix-freematrix-vectorproductroutinesthatworkwithpackeddata•  OnlytheroutineforadvancingBwith3Dresistivityhasbeendeveloped.

•  Itiscalledbythe1DKrylovsolves.Reorganizingthesolvertopreconditionthroughanexternalsubroutinecallisprovinghandy.

Theprimarytestcaseperforms3Dmagneticdiffusioninastraightannulus.

•  The0-thorderprofilehasapproximatelyuniformJz.

•  Imposedn=1sinusoidalvariationinTof~60%impliesafactorof8variationinSpitzerη.

•  Onestepofresistivediffusioninduces7%axialvariationinJz.

•  Problemsolvesn=0-2,12x24bilinearmesh.

precon noprec 1DFonly sluonly mult fgmr

iterations 63 57 13 15 19

3DiterationcountsusingGMREStosolvethe3Dmagneticdiffusionproblem.

Isthetoroidalvariationintheteststrongenoughtobenefitfrom1DFouriersolves?

•  SecondcasedoublesvariationinT.•  Upperboundonηlimitsitsvariationtoabout3000.

precon noprec 1DFonly sluonly mult fgmr

iterations 533 137 118 95 114

3DiterationcountsusingGMREStosolvethesecond3Dmagneticdiffusionproblem.

Note:•  1DFouriersolveshavebeentestedincomputationswherepoloidalcouplingisremoved->1outer3Dstep.

•  151Diterationssolvethe1Dproblemstoround-offlevel.•  Performancewithpoly_degree>1issimilar,i.e.disappointing.

Ifchangingthepreconditionerdoesn’thelp,changethematrix.

•  Ifstaticcondensation(matrixpartitioning)canincludetoroidalcoupling,itwouldreducethesizeofthe3Dsystems.

•  Using“1”forgrid-vertexandelement-sidenodes,“2”forelementinteriors,solve:

A11− A12A22−1A21

⎛⎝⎜

⎞⎠⎟x1 = b1− A12A22

−1b2⎛⎝⎜

⎞⎠⎟

•  Fullcondensationsolvestheinterior-interiorcouplingwithineachhigher-orderelement.•  Implementationcouldkeepasamatrixfreeoperationandpossiblyformmatrixelementsforand.

•  UseLAPACKforfactoring?

A11x1A12 , A22 A21

A22

Acompletelymatrix-freeversionteststheconcept.

•  Testproblemissimilartotheonepreviouslydiscussed.•  Annularmeshis6x12;poly_degreeandlphiarevaried.

•  Computationalresultsarewithoutpreconditioning.

matrix full condensed

iterations 100 54

T-variation=60% poly_degree=2 lphi=3

matrix full condensed

iterations 174 68

T-variation=60% poly_degree=3 lphi=3

matrix full condensed

iterations 256 123

T-variation=80% poly_degree=3 lphi=4

ConclusionsandDiscussion•  Includingenergyandmomentumcorrectionsforartificialparticlediffusionis

tractable.

•  Ifthediffusionsmoothsnoisyn,increasesnoiseinT(x).

•  ThermalconductioncankeepT(x)smooth.

•  ConsiderationsforHall-MHD,two-temperature,andtwo-fluidsystemsaresummarizedinUW-CPTC19-2.

•  Newcoefficientshelpkeeptermsconsistent.

•  FurtherimplementationisneededforconservationtoO(rm).

•  Toroidalpreconditioningvia1Dsolvesatnodesdoesnotlookpromising.

•  Staticcondensation,includingtoroidalcouplingispossible.

•  Initialtestingindicatessignificantreductioniniterations.

•  Canacceleratorsmakeitfast?

fimV2 γ −1( )2

−TZeff

⎜⎜

⎟⎟∇ ⋅ D∇n( )