electronic supporting information the peculiarities ...electronic supporting information the...

19
ELECTRONIC SUPPORTING INFORMATION The peculiarities of complex formation and energy transfer processes in lanthanide complexes with 2-(tosylamino)benzylidene-N-benzoylhydrazone Anton D. Kovalenko a , Ivan S. Bushmarinov b , Anatolii S. Burlov c , Leonid S. Lepnev d , Elena G. Ilina e , and Valentina V. Utochnikova a,d a M. V. Lomonosov Moscow State University Leninskiye Gory 1-3, Moscow, Russian Federation 119991 b A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences, Vavilova St. 28, Moscow, Russian Federation 119991 c Institute of Physical and Organic Chemistry Southern Federal University, Stachki Ave. 194/2, Rostov-on-Don, Russian Federation 344090 d P. N. Lebedev Physical Institute, Russian Academy of Sciences Leninskiy Prospekt 53, Moscow, Russian Federation 119991 e Altai State University 61 Lenina, Barnaul, Russian Federation 656049 Abstract: Depending on the local excess of lanthanide ion (Ln = Lu, Yb, Er, Dy, Tb, Gd, Eu, Nd) or 2-(tosylamino)-benzylidene-N-benzoylhydrazone (H 2 L), lanthanide complexes, containing either mono-deprotonated ligand (Ln(HL) 2 X, X = Cl, NO 3 ) or both mono- and dideprotonated ligands (Ln(L)(HL)) were preparatively obtained. The crystal structures of Lu(HL) 2 Cl, Yb(L)(HL)(H 2 O) 2 , Yb(L)(HL)(EtOH) 2 (H 2 O) and Er(L)(HL), determined by single crystal diffraction data or from powder diffraction data using Rietveld refinement, have shown the surprising resemblance. The studying of luminescence temperature dependence of Eu(HL) 2 Cl and Eu(L)(HL) showed that europium luminescence is quenched by thermally-activated 5 D 0 →T 1 energy transfer. The luminescent thermometers based on these complexes demonstrated the sensitivity up to 7.7% at 85K which is the highest value above liquid-nitrogen temperatures obtained to date. Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Upload: others

Post on 03-Feb-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • ELECTRONIC SUPPORTING INFORMATION

    The peculiarities of complex formation and energy transfer

    processes in lanthanide complexes with

    2-(tosylamino)benzylidene-N-benzoylhydrazone

    Anton D. Kovalenkoa, Ivan S. Bushmarinovb, Anatolii S. Burlovc,

    Leonid S. Lepnevd, Elena G. Ilinae, and Valentina V. Utochnikovaa,d

    a M. V. Lomonosov Moscow State University

    Leninskiye Gory 1-3, Moscow, Russian Federation 119991

    b A. N. Nesmeyanov Institute of Organoelement Compounds

    Russian Academy of Sciences, Vavilova St. 28, Moscow, Russian Federation

    119991

    c Institute of Physical and Organic Chemistry

    Southern Federal University, Stachki Ave. 194/2, Rostov-on-Don, Russian

    Federation 344090

    d P. N. Lebedev Physical Institute, Russian Academy of Sciences

    Leninskiy Prospekt 53, Moscow, Russian Federation 119991

    e Altai State University

    61 Lenina, Barnaul, Russian Federation 656049

    Abstract: Depending on the local excess of lanthanide ion (Ln = Lu, Yb, Er, Dy,

    Tb, Gd, Eu, Nd) or 2-(tosylamino)-benzylidene-N-benzoylhydrazone (H2L),

    lanthanide complexes, containing either mono-deprotonated ligand (Ln(HL)2X, X

    = Cl, NO3) or both mono- and dideprotonated ligands (Ln(L)(HL)) were

    preparatively obtained. The crystal structures of Lu(HL)2Cl, Yb(L)(HL)(H2O)2,

    Yb(L)(HL)(EtOH)2(H2O) and Er(L)(HL), determined by single crystal diffraction

    data or from powder diffraction data using Rietveld refinement, have shown the

    surprising resemblance. The studying of luminescence temperature dependence of

    Eu(HL)2Cl and Eu(L)(HL) showed that europium luminescence is quenched by

    thermally-activated 5D0→T1 energy transfer. The luminescent thermometers based

    on these complexes demonstrated the sensitivity up to 7.7% at 85K which is the

    highest value above liquid-nitrogen temperatures obtained to date.

    Electronic Supplementary Material (ESI) for Dalton Transactions.This journal is © The Royal Society of Chemistry 2018

  • Absorption spectroscopy

    Absorption spectra of the lanthanide complexes in DMSO solution were obtained using single-

    beam spectrophotometer SF-2000 (OKB Spectr) (l = 10.0 mm) in the range 250-1000 nm.

    300 400 500 600 700 800 900 1000

    0

    5000

    10000

    15000

    20000

    25000

    30000

    35000

    40000Eu(L)(HL)

    Yb(L)(HL)

    (c

    m-1M

    -1)

    Wavelength (nm)

    Figure 1 Absorption spectrum of Eu(L)(HL) in DMSO

  • Diffuse reflection spectroscopy

    Diffuse refection spectra were recoded using Perkin Elmer LAMBDA 950 spectrometer in the

    range 200 – 1150 nm.

    400 500 600 700 800 900 1000 1100

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    (1-R

    )2

    2R

    Wavelength (nm)

    Yb(HL)2Cl

    Figure 2 The DR spectrum of Yb(HL)2Cl

    400 500 600 700 800 900 1000 1100

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    1,2

    1,4 Yb(L)(HL)

    (1-R

    )2

    2R

    Wavelength (nm)

    Figure 3 The DR spectrum of Yb(L)(HL)

  • 400 600 800

    -0,2

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    Wavelength (nm)

    (Yb-Lu)(L)(HL)

    (Yb-Gd)(L)(HL)

    No

    rma

    lize

    d(1

    -R)2

    2R

    Figure 4 The difference between normalized DR spectra of Yb(L)(HL) and Lu(L)(HL), Gd(L)(HL)

    400 500 600 700 800

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    Wavelength (nm)

    (Yb-Lu)(HL)2Cl

    No

    rma

    lize

    d(1

    -R)2

    2R

    Figure 5 The difference between normalized DR spectra of Yb(HL)2Cl and Lu(HL)2Cl

  • Crystallographic data

    The single crystal measurements were performed on Bruker APEX II (Mo radiation) and Bruker

    APEX II DUO (Cu radiation, microfocus source, used for Yb(L)(HL)(EtOH)2(H2O)) CCD

    diffractometers. All single crystal structures were solved using SHELXT [1] and refined using

    SHELXL [2,3].

    Structure for Er(L)(HL) was determined form powder data. The diffraction pattern was collected

    using Cu Kα1 radiation on a Bruker D8 Advance Vario powder diffractometer equipped with a

    Ge(111) monochromator and a LynxEye 1D silicon strip detector. The powder pattern was

    indexed using the SVD-Index algorithm[4] as implemented in TOPAS 5[5]. The structure was

    solved by Parallel Tempering as implemented in FOX[6] using two rigid bodies with torsions

    allowed to vary, one corresponding to a free ligand and the other consisting of a ligand linked by

    two nitrogen atoms to the metal atom. Further refinement was carried out in TOPAS 5, with

    restraints on all covalent bonds and bond angles between non-metal atoms. A weighting scheme

    by Toraya[7] with e=3.5 was used during refinement for optimal treatment of weaker reflections.

    The refinement was restraint-consistent[8] with half uncertainty window HUW=0.08(4)

    indicating a highly reliable structural model.

    The final refined unit cell parameters and refinement indicators for Er(L)(HL) at K1 = 8 (root

    mean square deviation from restraints on bond lengths of 0.0054 Å) are as follows Ошибка!

    Источник ссылки не найден.: C42H35ErN6O6S2 (M =951.16 g/mol): monoclinic, space group

    P21/c (no. 14), a = 18.8998(3) Å, b = 9.85077(15) Å, c = 25.1072(4) Å, β = 122.4174(9)°, V =

    3945.95(11) Å3, 𝑅𝑤𝑝 = 3.44%, 𝑅𝑤𝑝′ = 5.10 %, 𝑅𝑝 = 3.49%, 𝑅𝑝

    ′ = 4.31 %, RBragg = 2.30%.

    Figure 6 The Rietveld fit for Er(L)(HL).

  • Table 1. Crystal data and structure refinement for Lu(HL)2Cl, Er(L)(HL), Yb(L)(HL)(C2H5OH)2(H2O), Yb(L)(HL)(H2O)2. Identification code Lu(HL)2Cl Er(L)(HL) Yb(L)(HL)(C2H5OH)2(H2O) Yb(L)(HL)(H2O)2

    Empirical formula C42H36ClN6O6S2Yb C42H35ErN6O6S2 C46H49N6O9S2Yb C42H39N6O8S2Yb

    Formula weight 993.38 951.16 1067.07 992.95

    Temperature/K 120 298 120 100

    Crystal system triclinic monoclynic triclinic triclinic

    Space group P-1 P21/c P-1 P-1

    a/Å 10.6091(7) 18.90072 10.7608(6) 12.530(3)

    b/Å 11.4231(7) 9.851312 12.5093(7) 15.640(3)

    c/Å 17.4138(11) 25.10557 17.4399(10) 22.612(5)

    α/° 87.312(2) 90 77.5710(10) 103.12(3)

    β/° 73.030(2) 122.4146 83.1210(10) 101.74(3)

    γ/° 85.7230(10) 90 75.2430(10) 93.34(3)

    Volume/Å3 2012.1(2) 3946.239 2211.7(2) 4200.2(16)

    Z 2 4 2 4

    ρcalcg/cm3 1.640 1.601 1.602 1.570

    μ/mm-1 2.551 5.368 2.273 5.544

    F(000) 994.0 - 1082.0 1996.0

    Crystal size/mm3 0.21 × 0.2 × 0.15 - 0.13 × 0.12 × 0.1 0.06 × 0.05 × 0.04

    Radiation MoKα (λ = 0.71073) CuKα~1~ (λ = 1.540596) MoKα (λ = 0.71073) CuKα (λ = 1.54178)

    2Θ range for data collection/° 3.576 to 52.742 - 3.788 to 56.562 4.116 to 135.786

    Index ranges -13 ≤ h ≤ 13, -13 ≤ k ≤ 14, -21 ≤ l ≤ 21 - -14 ≤ h ≤ 14, -16 ≤ k ≤ 16, -23 ≤ l ≤ 23 -14 ≤ h ≤ 12, -18 ≤ k ≤ 18, -27 ≤ l ≤ 25

    Reflections collected 20050 - 26258 42661

    Independent reflections 8227 [Rint = 0.0546, Rsigma = 0.0775] - 10988 [Rint = 0.0630, Rsigma = 0.0900] 14318 [Rint = 0.0621, Rsigma = 0.0651]

    Data/restraints/parameters 8227/2/533 - 10988/3/597 14318/160/1121

    Goodness-of-fit on F2 1.045 - 0.984 1.027

    Final R indexes [I>=2σ (I)] R1 = 0.0447, wR2 = 0.0804 - R1 = 0.0431, wR2 = 0.0806 R1 = 0.0620, wR2 = 0.1558

    Final R indexes [all data] R1 = 0.0651, wR2 = 0.0874 - R1 = 0.0618, wR2 = 0.0859 R1 = 0.0929, wR2 = 0.1757

    Largest diff. peak/hole / e Å-3 1.77/-1.14 - 1.55/-1.25 2.36/-0.63

  • Thermal analysis

    Thermal analysis was carried out on a thermoanalyzer STA 409 PC Luxx (NETZSCH,

    Germany) in the temperature range of 20-1000 oC in argon atmosphere, heating rate 10 o/min.

    100 200 300 400 500 600 700 800 900 1000

    0,0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    1,0

    We

    igh

    t lo

    ss

    Temperature (oС)

    Ln2O

    3

    Eu(HL)2(NO

    3)

    Yb(HL)(L)

    Nd(HL)2Cl

    Er(HL)2Cl

    Yb(HL)2Cl

    Figure 7 Thermal analysis of the complexes

  • XRD powder diffraction patterns

    X-ray powder diffraction (XRD) measurements were performed on a Rigaku D/MAX 2500

    diffractometer in the 2θ range 5–80° with Cu Kα radiation (λ = 1.54046 Å) and on a Bruker D8

    Advance diffractometer (Vario geometry) equipped with a Cu Kα1 Ge(111) focusing

    monochromator and a LynxEye one-dimensional position-sensitive detector. The powder X-ray

    diffraction patterns were indexed using TOPAS 5.0 software.

    Figure 8 XRD patterns of Lu(L)(HL)

    Figure 9 XRD patterns of Yb(L)(HL). The sample was not grinned that leaded to the preferential crystals orientations.

    adk205

    807876747270686664626058565452504846444240383634323028262422201816141210864

    12 000

    11 500

    11 000

    10 500

    10 000

    9 500

    9 000

    8 500

    8 000

    7 500

    7 000

    6 500

    6 000

    5 500

    5 000

    4 500

    4 000

    3 500

    3 000

    2 500

    2 000

    1 500

    1 000

    500

    0

    -500

    -1 000

    -1 500

    rest_from_half3 100.00 %

    adk194t

    807876747270686664626058565452504846444240383634323028262422201816141210864

    42 000

    40 000

    38 000

    36 000

    34 000

    32 000

    30 000

    28 000

    26 000

    24 000

    22 000

    20 000

    18 000

    16 000

    14 000

    12 000

    10 000

    8 000

    6 000

    4 000

    2 000

    0

    -2 000

    -4 000

    -6 000

    rest_from_half3 100.00 %

  • Figure 10 XRD patterns of Er(L)(HL)

    Figure 11 XRS patterns of Tb(L)(HL)

    Figure 12 XRD patterns of Gd(L)(HL)

    adk203

    807876747270686664626058565452504846444240383634323028262422201816141210864

    9 500

    9 000

    8 500

    8 000

    7 500

    7 000

    6 500

    6 000

    5 500

    5 000

    4 500

    4 000

    3 500

    3 000

    2 500

    2 000

    1 500

    1 000

    500

    0

    -500

    -1 000

    rest_from_half3 100.00 %

    adk204

    807876747270686664626058565452504846444240383634323028262422201816141210864

    5 200

    5 000

    4 800

    4 600

    4 400

    4 200

    4 000

    3 800

    3 600

    3 400

    3 200

    3 000

    2 800

    2 600

    2 400

    2 200

    2 000

    1 800

    1 600

    1 400

    1 200

    1 000

    800

    600

    400

    200

    0

    -200

    -400

    -600

    -800

    rest_from_half3 100.00 %

    adk199

    807876747270686664626058565452504846444240383634323028262422201816141210864

    5 000

    4 800

    4 600

    4 400

    4 200

    4 000

    3 800

    3 600

    3 400

    3 200

    3 000

    2 800

    2 600

    2 400

    2 200

    2 000

    1 800

    1 600

    1 400

    1 200

    1 000

    800

    600

    400

    200

    0

    -200

    -400

    -600

    -800

    -1 000

    rest_from_half3 100.00 %

  • Figure 13 XRD patterns of Eu(L)(HL)

    Figure 14 XRD patterns of Lu(HL)2Cl

    adk202

    807876747270686664626058565452504846444240383634323028262422201816141210864

    5 000

    4 800

    4 600

    4 400

    4 200

    4 000

    3 800

    3 600

    3 400

    3 200

    3 000

    2 800

    2 600

    2 400

    2 200

    2 000

    1 800

    1 600

    1 400

    1 200

    1 000

    800

    600

    400

    200

    0

    -200

    -400

    -600

    rest_from_half3 100.00 %

    60585654525048464442403836343230282624222018161412108642

    1 000

    950

    900

    850

    800

    750

    700

    650

    600

    550

    500

    450

    400

    350

    300

    250

    200

    150

    100

    50

    0

    -50

    -100

    -150

    -200

    -250

    Structure 100.00 %

  • Figure 15 XRD patterns of Yb(HL)2Cl

    Figure 16 XRS patterns of Er(HL)2Cl. Contains impurities of KCl.

    60585654525048464442403836343230282624222018161412108642

    520

    500

    480

    460

    440

    420

    400

    380

    360

    340

    320

    300

    280

    260

    240

    220

    200

    180

    160

    140

    120

    100

    80

    60

    40

    20

    0

    -20

    -40

    -60

    -80

    -100

    -120

    -140

    Structure 100.00 %

    60585654525048464442403836343230282624222018161412108642

    850

    800

    750

    700

    650

    600

    550

    500

    450

    400

    350

    300

    250

    200

    150

    100

    50

    0

    -50

    -100

    -150

    -200

    Structure 87.03 %

    Sylvine 12.97 %

  • Figure 17 XRD patterns of Tb(HL)2Cl

    Figure 18 XRD patterns of Eu(HL)2Cl

    60585654525048464442403836343230282624222018161412108642

    700

    650

    600

    550

    500

    450

    400

    350

    300

    250

    200

    150

    100

    50

    0

    -50

    -100

    -150

    adk191a

    60585654525048464442403836343230282624222018161412108642

    1 050

    1 000

    950

    900

    850

    800

    750

    700

    650

    600

    550

    500

    450

    400

    350

    300

    250

    200

    150

    100

    50

    0

    -50

    -100

    -150

    hkl_Phase 0.00 %

  • Figure 19 XRD patterns of Nd(HL)2Cl

    80787674727068666462605856545250484644424038363432302826242220181614121086

    560

    540

    520

    500

    480

    460

    440

    420

    400

    380

    360

    340

    320

    300

    280

    260

    240

    220

    200

    180

    160

    140

    120

    100

    80

    60

    40

    20

    0

    -20

    -40

    -60

    -80

    -100

  • Integration of europium luminescence

    550 600 650 700 750

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    5D

    0

    7F

    3

    5D

    0

    7F

    4

    5D

    0

    7F

    1

    Inte

    nsity (

    coun

    ts p

    er

    second

    )

    Wavelength (nm)

    5D

    0

    7F

    2

    Figure 20 The integration of europium luminescence in the luminescence spectra of Eu(HL)2Cl at 167K. The bold curve is

    complex luminescence, the red curve is fitting of the organic luminescence.

    The organic part of luminescence was fitted with B-spline function. The bands of 5D0→7FJ (J =

    1–4) transitions were integrated with the fitted organic luminescence as a baseline (see Figure 20

    as an example) and summarized to give the integrated europium luminescence intensity. The

    same procedure was run for the spectra of Eu(L)(HL) in the range 77-200 K and Eu(HL)2Cl in

    the range 77-240 K, where europium luminesce could still be observed. The integration were

    made using Origin Pro 9.0 software.

  • IR spectroscopy

    IR spectra in the ATR mode were recorded on a spectrometer SpectrumOne (Perkin-Elmer) in

    the region of 400-4000 cm-1.

    3600 3200 2800 1600 1400 1200 1000 800 600

    30

    40

    50

    60

    70

    80

    90

    100

    Tra

    nsm

    issio

    n (

    %)

    Wavenumber (cm-1)

    Lu(HL)2(NO

    3)

    Lu(HL)(L)

    Yb(HL)2Cl

    Er(HL)2Cl

    Figure 21 The IR spectra of the complexes

  • Luminescence spectra with time delay

    Luminescence spectra with time delay were measured using Fluorolog 3 spectrofluorometer.

    450 500 550 600 650 700 750

    0

    1

    T1(L2–

    )S0

    Gd(L)(HL)

    No delay

    Time delay 30 µs

    No

    rma

    lize

    d I

    nte

    nsity

    Wavelength (nm)

    Figure 22 The luminescence spectra of Gd(L)(HL) in powder at 77K without time delay (black) and with 50 µs time delay

    (red)

  • 450 500 550 600 650 700 750

    0

    1 T1(HL–)S

    0

    Norm

    aliz

    ed Inte

    nsity

    Wavelength (nm)

    Gd(HL)2(NO

    3)

    No delay

    Time delay 30 µs

    Figure 23 The luminescence spectra of Gd(HL)2(NO3) in powder at 77K without time delay (black) and with 30 µs time

    delay (red)

  • The coordination environment of lanthanide ion

    a) b) c) d)

    Figure 24 The coordination environment of metal ion in a) Lu(HL)2Cl, b) Er(L)(HL), c) Yb(L)(HL)(EtOH)2(H2O), d)

    Yb(L)(HL)(H2O)2. Oxygen atoms are red, nitrogen atoms are blue.

  • Literature

    1. Sheldrick G.M. SHELXT – Integrated space-group and crystal-structure determination //

    Acta Crystallogr. Sect. A Found. Adv. 2015. Vol. 71, № 1. P. 3–8.

    2. Sheldrick G.M. Crystal structure refinement with SHELXL // Acta Crystallogr. Sect. C

    Struct. Chem. 2015. Vol. 71, № 1. P. 3–8.

    3. Sheldrick G. A short history of SHELX // Acta Crystallogr. Sect. A. 2008. Vol. 64, № 1.

    P. 112–122.

    4. Coelho A.A. Indexing of powder diffraction patterns by iterative use of singular value

    decomposition // J. Appl. Crystallogr. 2003. Vol. 36, № 1. P. 86–95.

    5. Bruker. TOPAS 5.0 User Manual. Karlsruhe, Germany: Bruker AXS GmbH, 2014.

    6. Favre-Nicolin V., Černý R. FOX, `free objects for crystallography’: a modular approach

    to ab initio structure determination from powder diffraction // J. Appl. Crystallogr. 2002.

    Vol. 35, № 6. P. 734–743.

    7. Toraya H. Weighting Scheme for the Minimization Function in Rietveld Refinement // J.

    Appl. Crystallogr. 1998. Vol. 31, № 3. P. 333–343.

    8. Dmitrienko A.O., Bushmarinov I.S. Reliable structural data from Rietveld refinements via

    restraint consistency // J. Appl. Crystallogr. 2015. Vol. 48, № 6. P. 1777–1784.