em2_20

Upload: idhil-andi

Post on 05-Apr-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/31/2019 EM2_20

    1/38

    Lecture 3 continuation from Wednesday

  • 7/31/2019 EM2_20

    2/38

    Dynamical Matrix -

    Conduction electrons

    Importance of el-ph

    Matrix elements

  • 7/31/2019 EM2_20

    3/38

    G. L. Zhao and B. N. Harmon, Phys. Rev. B45, 2818 (1991)

    NiAl

    Exp.

    Thy

    Confirmed by

    H. Chou and S.M.Shapiro

    Phys. Rev. B48, 16088

    (1993)

    50-50 compound

  • 7/31/2019 EM2_20

    4/38

    b- phaseNi0.625 Al0.375

    T = 0 KTheory

    (using rigid band

    approximation)

    G. L. Zhao and B. N. Harmon, Phys. Rev. B45, 2818 (1992)

  • 7/31/2019 EM2_20

    5/38

    Solid lines are theory, with a

    fictitious temperature of 1000 K to

    account for thermal and alloydisorder.

    Symbols are experiment at RT, and

    dashed line is experiment at 85 K.

    S.M. Shapiro, Mat.Sci. Forum 56-58, 33 (1990)

    and

    S.M. Shapiro, B.X. Yand, G. Shirane, Y. Noda, and

    L.E. Tanner, Phys. Rev. Lett. 62, 1298 (1989)

    Ni0.625 Al0.375

  • 7/31/2019 EM2_20

    6/38

    Xiangyang Huang, Claudia Bungaro, Vitaliy Godlevsky, and Karin M. Rabe

    Phys. Rev. 65, 014108 (2001).

    NiTi B2 T=0K

    Unstable

    phonons

    Electronic

    structure -

    force constants

    Many Phonon is Bzone are imaginary!!!(all first principlesnot a surprise perhaps, at this is for T=0)

  • 7/31/2019 EM2_20

    7/38

    Problem with first principles (T=0) calculation of the bcc structure:It is unstable if the temperature effect is not included, as we saw

    Can be stabilized by non-linear phonon couplings: 3 & 4 order (T=0 OK)Ye, Chen, Ho, Harmon and Lindgrd, PRL, 58, 1769 (1987)

    A new way is presented above:By allowing atoms to be displaced from the (average) bcc positionsSelf-consistently calculate forces and mean-square displacementsin a 4x4x4 times larger super cell than the uinit one until convergence.Frozen glassy-like structure?This nicely illustrates the bcc problem by a direct FP calculation

  • 7/31/2019 EM2_20

    8/38

    Calculated phonon spectra

    T>TM

    !N T=0 !N

    Imaginary

    Takes into account the temperature! Compare to T=0 calculations.

  • 7/31/2019 EM2_20

    9/38

    Energy paths through the landscape

    The Na story

    Total energy calculation for structuralphase transformations

    Y.Y. Ye, C.-T. Chan, K.-M. Ho and B. N. Harmon

    The International Journal of Supercomputer Applications,

    Volume 4, No. 3 Fall 1990, pp. 111-121.

  • 7/31/2019 EM2_20

    10/38

    bcc

    hcp

    9R

    Na - precise total energy calculations

  • 7/31/2019 EM2_20

    11/38

    The bcc-hcp transition

    requires

    1. A shuffle of atomic planescorresponding to a T1 N-

    point phonon, and

    2. A shear (Bain strain) that

    changes the basal plane

    angle from 109.47o to 120o.

  • 7/31/2019 EM2_20

    12/38

    bcc hcp

    The minimum energy

    path displays some

    interesting physics.

  • 7/31/2019 EM2_20

    13/38

    9R has slightly

    lower barrier and

    slightly lower totalenergy compared

    to the hcp phase.

    bcc

  • 7/31/2019 EM2_20

    14/38

    TMS March 10, 2008

    X-Ray Magnetic Circular Dichroism (XMCD)

    For

    Rare Earth Magnetic Materials

    Toward a Quantitative Analysis

    Bruce Harmon

  • 7/31/2019 EM2_20

    15/38

    TMS March 10, 2008

    First, a big thanks!

    To

    Karl Gschneidner

  • 7/31/2019 EM2_20

    16/38

    TMS March 10, 2008

    5dEF

    RCPLCP

    2p3/2

    2p1/2

    XRESXMCD

    XRES and XMCD

    L3

    L2

  • 7/31/2019 EM2_20

    17/38

    TMS March 10, 2008

    Good Features of XMCD

    for magnetism studies

    1. Element specific(tune beam to core energy)

    2. ~ Orbital specific(dipole selection rule)

    3. No nuclear absorption(sometimes problem for neutrons)

  • 7/31/2019 EM2_20

    18/38

    TMS March 10, 2008

    History

    Magnetic x-ray dichroism in gadolinium metal

    P. Carra, B. N. Harmon, B. T. Thole, M. Altarelli, and G. A. Sawatzky

    Phys. Rev. Lett. 66, 2495-2498 (1991)

    L2 L3

    G. Schtz, et. al., Z. Phys. B 73, 67 (1988).

    THEORY

    EXPERIMENTL2 L3

  • 7/31/2019 EM2_20

    19/38

    TMS March 10, 2008

  • 7/31/2019 EM2_20

    20/38

    TMS March 10, 2008

    OrbitalXMCD SUM RULES

    Spin

    where X-ray circular dichroism and local magnetic fieldsP. Carra, B. T. Thole, M. Altarelli, and X. WangPhys. Rev. Lett. 70, 694-697 (1993)

    X-ray circular dichroism as a probe of orbital magnetization

    B. T. Thole, P. Carra, F. Sette, and G. van der LaanPhys. Rev. Lett. 68, 1943-1946 (1992)

    Limitation of the Magnetic-Circular-Dichroism Spin Sum Rule for Transition Metals andImportance of the Magnetic Dipole Term

    R. Wu and A. J. Freeman

    Phys. Rev. Lett. 73, 1994-1997 (1994)

  • 7/31/2019 EM2_20

    21/38

    TMS March 10, 2008

    The Sum Rules work wonderfully for 3d-transition metals!

    But they do not work for Rare Earth materials!

    Why?

    (Atomic model assumptions breakdown!)

  • 7/31/2019 EM2_20

    22/38

    TMS March 10, 2008

    2p position

    4pr2R2(r) 5d

  • 7/31/2019 EM2_20

    23/38

    TMS March 10, 2008

  • 7/31/2019 EM2_20

    24/38

    TMS March 10, 2008

    Solid State Effects

    5d spin up wave function is contracted by4f-5d exchange interaction

    Spin up Radial Matrix Elements (ME) are largerthan spin down

    Energy dependent ME

    Top of

    d-bands

    EF

    4f

    up2pdown

  • 7/31/2019 EM2_20

    25/38

    TMS March 10, 2008

    Trend of Exchange and S-O Energyof Heavy Rare-Earth 5d States

  • 7/31/2019 EM2_20

    26/38

    TMS March 10, 2008

    0

    2

    4

    6

    8

    10

    RNi2Ge

    2

    Theory - hcp

    LIII

    /LII

    Tb Dy Ho Er TmGd

    Experiment RNi2Ge

    2

    Theory - HCP

    BRANCHINGR

    ATIO

    No-Spin Orbit

    6

    Branching Ratio L3/L2

    Experiment vs. Theory

    J. W. Kim, Y. Lee, D. Wermeille, B. Sieve, L. Tan, S.L. Budko, S. Law, P. C. Canfield, B. N. Harmon,and A. I. GoldmanPhys. Rev. B 72, 064403 (2005)

  • 7/31/2019 EM2_20

    27/38

    TMS March 10, 2008

    (Low T) Orthorhombic Monoclinic (High T)

    Thebreaking of Ge(Si) bonds is responsible for loss of magnetism

    Gd5Si2Ge2

  • 7/31/2019 EM2_20

    28/38

    TMS March 10, 2008

    Gd5Si2Ge2 : XMCD

    * XMCD data at the Ge K and Gd L3 edges.* XMCD signal of Ge K-edge indicates that the Ge 4p states carry

    magnetic polarization.

    D. Haskel et al. PRL 98 247205 (2007)

  • 7/31/2019 EM2_20

    29/38

    TMS March 10, 2008

    Ge2

    Gd

    Si

    Ge1

    Orthorhombic Monoclinic

    ba

    Gd5Si2Ge2:spin density contours

  • 7/31/2019 EM2_20

    30/38

    TMS March 10, 2008

    The Er2

    Fe17

    Story

    J. Chaboy, H. Maruyama, N. Kawamura, and M. Suzuki

    Phys. Rev. B 69, 014427 (2004)

    The Er2Fe17N2.4XMCDspectra were

    taken at roomtemperature and at

    50K. Large spectralchanges, and

    quadrupole features

    observed.

    Er L3 edge

  • 7/31/2019 EM2_20

    31/38

    TMS March 10, 2008

    The Er2Fe17 StoryJ. Chaboy, H. Maruyama, N. Kawamura, and M. Suzuki

    Phys. Rev. B 69, 014427 (2004)

    The Er L2 spectra

    changes sign with

    temperature!

  • 7/31/2019 EM2_20

    32/38

    TMS March 10, 2008

    Calculated L3 for Er2Fe17Yongbin Lee

    with E2 contribution added

  • 7/31/2019 EM2_20

    33/38

    TMS March 10, 2008

    Calculated L2 for Er2Fe17

    with E2 contribution added

  • 7/31/2019 EM2_20

    34/38

    TMS March 10, 2008

    Goldman et. al. L3

    Experiment

    Yongbin

    TheoryEr L3 edge normalized to peak

    -0.08

    -0.06

    -0.04

    -0.02

    0

    0.02

    0.04

    -15 -10 -5 0 5 10 15 20

    Energy (eV)

    NormalizedDic

    hroism(

    topeak)

    T=300K

    T=200K

    T=125K

    T=75K

    Experiment

  • 7/31/2019 EM2_20

    35/38

    TMS March 10, 2008

    Goldman et. al. L2

    Experiment

    Yongbin

    Er L2 edge peak normalized

    -0.015

    -0.01

    -0.005

    0

    0.005

    0.01

    0.015

    0.02

    0.025

    -10 -5 0 5 10 15 20

    Energy (eV)

    NormalizedDichroism(

    toPeak)

    T=300K

    T=200K

    T=125K

    T=75K

  • 7/31/2019 EM2_20

    36/38

    TMS March 10, 2008

    The qualitative agreement leaves

    little doubt the physics is correct,but the quantitative agreement is

    poor!

    New results indicate enhanced

    orbital polarization on Er and also

    possibly on Fe can account for all

    the differences.

  • 7/31/2019 EM2_20

    37/38

    TMS March 10, 2008

    Thank You

  • 7/31/2019 EM2_20

    38/38

    TMS March 10, 2008

    K. Takeda et al.,

    J. Alloys Compd. 281, 50 (1998)