empirical gas laws - modern states – freshman year …€™ law (continued) • this equation...

45
Empirical Gas Laws Early experiments conducted to understand the relationship between P, V and T (and number of moles n) Results were based purely on observation No theoretical understanding of what was taking place Systematic variation of one variable while measuring another, keeping the remaining variables fixed

Upload: lenhan

Post on 02-May-2018

215 views

Category:

Documents


2 download

TRANSCRIPT

EmpiricalGasLaws

• EarlyexperimentsconductedtounderstandtherelationshipbetweenP,VandT(andnumberofmolesn)

• Resultswerebasedpurelyonobservation– Notheoreticalunderstandingofwhatwastakingplace

• Systematicvariationofonevariablewhilemeasuringanother,keepingtheremainingvariablesfixed

Boyle’sLaw(1662)

• Foraclosedsystem(i.e.nogascanenterorleave)undergoinganisothermalprocess(constantT),thereisaninverserelationshipbetweenthepressureandvolumeofagas(regardlessoftheidentityofthegas)

Vα 1/P• Toturnthisintoanequality,introduceaconstantofproportionality(a)à V=a/P,orPV=a

• SincetheproductofPVisequaltoaconstant,itmustUNIVERSALLY(forallvaluesofPandV)beequaltothesameconstant

P1V1 =P2V2

Boyle’sLaw• Thereisaninverse relationship

betweenPandV(isothermal, closedsystem)

https://en.wikipedia.org/wiki/Boyle%27s_law

Charles’Law(1787)

• Foraclosedsystemundergoinganisobaricprocess(constantP),thereisadirectrelationshipbetweenthevolumeandtemperatureofagas.

Vα T

• Proceedinginasimilarfashionasbefore,wecansaythatV=bT(theconstantneednotthesameasthatofBoyle’sLaw!)andthereforeV/T=b

Charles’Law(continued)

• ThisequationpresumesaplotofVvsTwouldgiveastraightlinewithaslopeofbanday-interceptof0(i.e.equationgoesthrough theorigin).

• Howevertheexperimentaldatadidhaveanintercept!• LordKelvin(1848)decided toextrapolatethedatatoseewhereitwouldcrossthe

x-axis(T)– Regardlessofthenatureofthegas,thedataalwayswouldyieldthesamevalue:-273.15oC

– Thereforetomakeitgothrough zero,justadd273.15toeachpoint!• ThisestablishedtheKelvin(absolute) scale

Absolutetemperature(Kelvin)

• Theestablishmentofanabsolutetemperaturescalewasbasedonexperiments

http://chemed.chem.purdue.edu/genchem/history/charleslaw.html

Gay-Lussac’sLaw(1809)

• Foraclosedsystemundergoinganisochoricprocess(constantV),thereisadirectrelationshipbetweenthepressureandtemperatureofagas

• Pα T• OrproceedingasforCharles’Law,P/T=c

• Inthisrelation,wealsomustuseabsolutetemperature

http://www.meritnation.com/ask-answer/question/what-is-gay-lussacs-law-need-help/science/1780970

Avogadro’sLaw(1811)

• Foranopensystem(massisallowedtobetransferredinorout),thevolumeofgasisdirectlyproportionaltotheamountofgaspresent(givenisothermalandisobaricconditions)

Vα n

• MathematicallythiscanbewrittenasV=dn(yetanotherconstant)

Avogadro’sLaw(continued)

• SincetheTandPmustbeconstant,itwouldbeusefultodefineareferencestate(TandP)sothatgasescanbecomparedtoeachother

• STP(standardtemperatureandpressure)– T=0oCandP=1atm

• Standardstate– T=25oCandP=1bar

CombinedGasLaw(?)

• Itwouldappearthatalltherelationshipscanbecombinedintooneequation.Forexample,volumeisseentobeinverselyproportionaltopressure,directlyproportionaltothetemperatureanddirectlyproportionaltothenumberofmolesofgas.Therefore

Vα nT/P• Or• Thiswilleventuallyleadtotheideal(perfect)gaslaw,PV=nRT,aswell.

KineticMolecularTheory

• Providesatheoreticalexplanationforthebehaviorofgases• KMTissimplyamodel– itisnotaperfectdescriptionofreality– Goodenough!(ifnotwewillfixitlater)

PostulatesoftheKMT

• Agasiscomposedofparticles(moleculesoratoms)thatareperfectspheres

• Gasparticlesareinconstant,randommotion• Gasparticlesmoveinstraightlines(i.e.notaccelerating)• Gasparticlesareveryfarapart– Vgas <<Vcontainer (mostofagasisemptyspace)

• Thetemperature isproportionaltotheaveragekineticenergyofthemotion

MorepostulatesoftheKMT

• Gasparticlesmoveindependently ofeachother– Thepositionandmomentumofoneparticlearenotaffectedbytheposition/momentumofanother.

– Therearenoforcesofattractionorrepulsionbetweenparticles• Eventuallygasparticleswillcollide.– Collisionswithotherparticleswillbeperfectlyelastic– Collisionswiththewallsofthecontainerwillresultinpressure.

ApplicationsoftheIdealGasLaw

• Determinationofthemolarmassofagas• SincePV=nRTwecansaythatn=PV/RT• Wecanalsosaythatthenumberofmolesisgivenbyn=m/M• SettingtheseexpressionsequaltoeachotheryieldsPV/RT=m/M,whichcanberearrangedtosolveforthemolarmass:

ApplicationsoftheIdealGasLaw

• Determinationofthedensityofagas• Let’susethefactthatρ =m/VandrearrangetheidealgaslawtoyieldV=nRT/P

• Combiningthiswithn=m/Manddoingsomealgebragives

Whatisamole?

• Smallfurryanimal

• Facialblemish

Whatisamole?

• Amolerepresentthenumberof“particles”(elementaryentities)presentinasample.

• Avogadro’sNumber(NA)– 6.022X1023 /mol

• Themolecanalsoberelatedtomass– n=m/M– n=#ofmoles– m=mass–M=molarmass(orformulamassoratomicmass)

Molecularvelocities

• TheKMTcanbeusedtocalculatetheroot-mean-squarevelocity

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0 500 1000 1500 2000 2500

Freq

uency

Velocity(m/s)

Maxwell-BoltzmannDistributionofCO2 atVariousTemperatures

Realgases

• Thereareanumberofreasonswhytheidealgaslawmightbreakdown–Molecularforces• Attractiveandrepulsiveforcesdoexist,andmaybesubstantial(i.e.polarmolecules)

– Conditions• Underextremecasesof“high”pressureand/or“low”temperaturegasesstarttobehavemorelikecondensed phases(liquids andsolids)andintermolecular forcescannotbeignored

vanderWaalsequation

• Firstaccountforthefinitevolumethatagasmoleculeoccupies– Và V-nb

• Sincethiswilldecreasethevolume“available”forthemoleculestocollide, theyshouldcollidemoreoften.Thiswillmeanthatthepressureshould increase.

• Mathematicallyacollisionisdefinedastwoparticlesinthesameplaceatthesametime.Wecanthinkofthe“particledensity”asbeingn/V.Thusthenumber ofcollisionshouldbeproportional to(n/V)(n/V) =n2/V2

– Pà P+an2/V2

vanderWaalsequation

• Puttingallofthistogetherleadsto

or

wherev=V/n.visknownasthespecificvolume,ormolarvolume.

Itisimportanttonotethattheconstants(aandb)aredifferentforeachsubstance.

vanderWaalsequationSubstance a(L2atm/mol) b (L/mol)

He 0.0341 0.02370

Ar 1.34 0.0322

H2 0.244 0.0266

O2 1.36 0.0318

CO2 3.59 0.0427

CCl4 20.4 0.1383

• Typicallycorrectionsare“small”butcanimproveagreement– v=22.4L/molforidealgasatSTPsob/vis<<1

• Correctionstendtobelargerforlargermolecules,aswellasforpolarmolecules

Acomparisonofthethreemainphasesofmatter

• Gases,liquidsandsolidsdifferfromeachotherintherelativemagnitudesofinter- andintramolecularforces

Phase

Volume Shape Compressibility Fluidity

Gas Indefinite Indefinite High HighLiquid

Definite Indefinite Low High

Solid Definite Definite Low Low

Phasediagrams

• Graphicalrepresentationofthestatesofmatterasafunctionoftemperatureandpressure

http://serc.carleton.edu/research_education/equilibria/phaserule.html

CriticalPoints

• CriticalTemperature(Tc)– highesttemperaturethatliquidandgascanexistasdistinctphases– Aliquidcanbeproducedbysimplyincreasingthepressureofthegas

• CriticalPressure(Pc)– highestpressurethatliquidandgascanexistasdistinctphases– Aliquidcanbeproducedbysimplydecreasingthetemperatureofthegas

• Beyondthecriticalpoint,supercriticalfluidexists

CriticalPoint– inpictures

• Phaseboundarydisappears,sothetwophasesareindistinguishable

http://www.rsc.org/Education/EiC/issues/2008November/SupercriticalProcessing.asp

TriplePoint• Foraonecomponentsystem,thereexistsaunique temperatureandpressurewhereallthreephasescoexistatequilibrium

• Itisaphysicalpropertyofthesubstanceandcan’tbevaried!

• Ex.H2OT=0.0098oCandP=4.58mmHg

http://www.maniacworld.com/water-at-triple-point.html

Solids

• Mostdifficultphasetomodelbecauseparticles(ions,atoms,molecules)areinveryclosecontact– Strongestintermolecularforces

• Amorphous – disorganizedclusterswithnolong-rangeorder• Crystalline – highlyorderedlattice-likeassemblies

TypesofCrystallineSolids

• Molecular– Nonpolar– Polar– H-bonded

• Networkcovalent• Ionic• Metallic

Crystallattices

• 14different types• Lengths(a,b,c)• Angles(α,β,γ)• Differenttypesofsymmetry• Cubichasthegreatestdegreeofsymmetry(a=b=c,α=β=γ=90o)

http://blogs.agu.org/georneys/2011/09/15/geology-word-of-the-week-p-is-for-pleochroism/

CubicArrangements

• Simplecubiccell– Hasitsconstituentsonlyattheedges(corners)ofacube

• Body-centeredcubic(bcc)– Hasanadditional constituentatthecenterofthecube

• Face-centeredcubic(fcc)– Hasanadditional constituentatthecenterofeachfaceofthecube

http://martine.people.cofc.edu/111Lectweek14.htm

TypesofsolutionsSolute Solvent SolutionPhase ExamplesGas Gas Gas Air,naturalgasGas Liquid Liquid Club soda(CO2 inH2O),artificialblood (O2 in

perfluorodecalin)Liquid Liquid Liquid VodkaSolid Liquid Liquid SalineGas Solid Solid H2/PdSolid Solid Solid 14-karatgold(AginAu)

Energetics ofsolutionformation

• 1)Puresolventà separatedsolventmolecules– ΔH1>0becauseintermolecularforcesarebeingbroken

• 2)Puresolventà separatedsolutemolecules– ΔH2>0becauseintermolecularforcesarebeingbroken

• 3)Separatedsolventandsolutemoleculesà solution– ΔH3<0becauseintermolecularforcesarebeingformed

ΔHsolution=ΔH1+ΔH2+ΔH3

Whatitmeanstobeideal

• Forcondensedphases,weknowthatthereareintermolecularforces,whichmaybefairlysignificant.Consideringthecaseofjusttwodifferent typesofmoleculesinasolution(AandB),therearereallythree typesofinteractions:A-A,A-BandB-B.

• Ifthesolutionisideal,thenthemagnitudesoftheseinteractionsareallequal– i.e.itdoesn’treallymatterwhoyourneighboris!

• ΔHsolution =0,ΔVsolution =0

Waystomeasureconcentration

• Relative/qualitativeterms– Diluteorconcentrated

• Solubility– usuallybasedongofsolute/100mLofwater– Unsaturated– undersolubilitylimit– Saturated– atsolubilitylimit– Supersaturated– oversolubilitylimit

Waystomeasureconcentration

• %bymass

– Totalmass=massofsolute+massofsolvent

• %byvolume

– Totalvolume≈volumeofsolute+volumeofsolvent

Waystomeasureconcentration

• Molarity–Mostcommonunitofconcentrationinchemistry

–M=n/V• Molality

– m =n/m– Betterbecausewithmolarity youareunsureoftheactualvolumeofliquidbeingadded

Waystomeasureconcentration

• Normality– Usedalmostexclusivelyforacidsandbases– N=M*E,whereMisthemolarity andEisthe#ofequivalents(#ofH+ thatwilldissociateinanacid,or#ofOH- thatwilldissociateinabase)

– Usefulfortitrations• Molefraction

– Usefulforcolligative properties, chemicalprocesses

Raoult’sLaw

• Consider asolution madeupofsolventA(largepurplespheres) andsoluteB(smallgreenspheres).

• TherateatwhichAleavesthesurface(vaporization)isproportional tohowmanyyouhaveonthesurface,whichisproportional tothemolefraction:r=kxA

• TherateatwhichAcomesback(condensation) isproportional totheconcentrationofthegas,whichisproportional tothepartialpressure:r=k’PA

• Sincethesetworatesmustbethesame:.

Forapureliquid xA=1sok/k’=PA*. Thismeansthat

Idealsolutions

• Anidealsolution isonewhereRaoult’s Lawisobeyed.

• SinceP=PA+PB,andthevaporpressureforaliquid isthesameasthatforagas,foranidealsolutionwecansaythat

• Furthermore, sincexA+xB=1,or

Exampleofanidealsolution

• Solutionstendtobehaveideallywhenthesolvent(A)andsolute(B)are“similar”toeachotherintermsofmolecularstructure,polarity,intermolecularforces,etc.

• Ex.Benzeneandtoluene(methylbenzene)

Colligativeproperties

• Thepresenceofasolutecanaffectthepropertiesofasolution• Thiseffect is(primarily)duetotheamountofsolute(i.e.concentration)butnotnecessarilyonthenatureofthesolute

• Threemaincolligativeproperties:– Boilingpointelevation– Freezingpointdepression– Osmoticpressure

Freezingpointdepressionandboilingpointelevation

• Consider solutions whereonly thesolvent isvolatile,andthesoluteonly dissolves intheliquidphaseofthesolvent

• ΔTf =- iKfm• ΔTb =iKbmi =van’t Hofffactor(i =1foranon-

electrolyte,≈1foraweakelectrolyte,or#ofparticlesforastrongelectrolyte)

Kf =freezing-pointdepression(cryoscopic)constant

Kb =boiling-pointelevation(ebullioscopic)constant

m =molality

https://www.boundless.com/chemistry/solutions/colligative-properties-nonelectrolyte-solutions/freezing-point-depression/

Osmoticpressure

• Osmosis - netflowofsolventmolecules throughasemipermeable membrane– Solventmoleculesgofromasolutionoflowerconcentrationtoasolutionofhigherconcentration(soluteisnotabletopassthrough)

• Osmoticpressure(π)=pressurerequiredtostoposmosis

• π =MRT,whereM=molarity

http://chemistry.tutorvista.com/physical-chemistry/osmotic-pressure.html

Whatitmeanstobenon-ideal

• Intermolecularforcesbetweensoluteandsolventmoleculesarestronger thanotherintermolecularforces– ΔH3>ΔH1+ΔH2

– ΔHsolution <0,ΔVsolution <0• Intermolecularforcesbetweensoluteandsolventmoleculesareweaker thanotherintermolecularforces– ΔH3<ΔH1+ΔH2

– ΔHsolution >0,ΔVsolution >0– Ifforcesaremuchweaker,thenasolutionmaynotformatall!