end tidal co2 and transcutaneous monitoring

79
1.End tidal carbon dioxide analysis 2.Transcutaneous and carbon dioxide monitors

Upload: dranest87

Post on 15-Jul-2015

254 views

Category:

Health & Medicine


0 download

TRANSCRIPT

Page 1: End tidal co2 and transcutaneous monitoring

1.End tidal carbon dioxide analysis

2.Transcutaneous and carbon dioxide monitors

Page 2: End tidal co2 and transcutaneous monitoring

Introduction

• Capnometry refers to the measurement and quantification of inhaled or exhaled CO2

concentrations at the airway opening.

• Capnography, however, refers not only to the method of CO2 measurement, but also to its graphic display as a function of time or volume.

Page 3: End tidal co2 and transcutaneous monitoring

PHYSIOLOGY OF CAPNOMETRY

Page 4: End tidal co2 and transcutaneous monitoring

Oxygenation and Ventilation

Oxygenation

(oximetry)

Cellular

Metabolism

Ventilation

(capnography)

CO2

O2

Page 5: End tidal co2 and transcutaneous monitoring

Oxygenation and Ventilation

• Oxygenation

– Oxygen for metabolism

– SpO2 measures % of O2 in RBC

– Reflects change in oxygenation within 5 minutes

• Ventilation

– Carbon dioxide from metabolism

– EtCO2 measures exhaled CO2 at point of exit

– Reflects change in ventilation within 10 seconds

Page 6: End tidal co2 and transcutaneous monitoring

CO2 transport

Page 7: End tidal co2 and transcutaneous monitoring

End-tidal CO2 (EtCO2)

• Reflects changes in

– Ventilation - movement of air in and out of the lungs

– Diffusion - exchange of gases between the air-filled alveoli and the pulmonary circulation

– Perfusion - circulation of blood

Page 8: End tidal co2 and transcutaneous monitoring

End-tidal CO2 (EtCO2)

r r Oxygen

O

2CO2

O

2

VeinA te y

Ventilation

Perfusion

Pulmonary Blood Flow

Right

Ventricle

Left

Atrium

Page 9: End tidal co2 and transcutaneous monitoring

End-tidal CO2 (EtCO2)

• Monitors changes in – Ventilation - asthma, COPD, airway

edema, foreign body, stroke

– Diffusion - pulmonary edema, alveolar damage, CO poisoning, smoke inhalation

– Perfusion - shock, pulmonary embolus, cardiac arrest, severe dysrhythmias

Page 10: End tidal co2 and transcutaneous monitoring
Page 11: End tidal co2 and transcutaneous monitoring

PRINCIPLES OF CAPNOGRAPHY

Page 12: End tidal co2 and transcutaneous monitoring

BEER-LAMBERT LAW

Page 13: End tidal co2 and transcutaneous monitoring

Types of sensors

Solid state CO2 sensors

Chopper wheel CO2 sensor

Page 14: End tidal co2 and transcutaneous monitoring

Sidestream vs Mainstream Capnometry

Sidestream/ Diverging• CO2 sensor located away from the

airway gases to be measured.• Incorporate a pump or

compressor.• Tubing length- 6 ft• Gas withdrawal rate 30-

500ml/min• Lost gas volume needs to be

considered in closed circuit anesthesia.

• Gases must pass through various water traps and filters.

• Transport delay time• Associated RISE TIME

Mainstream/ Non- diverting• Sample cell placed directly in the

patients breathing circuit.

• Inspiratory and expiratory gases pass directly through the IR path

• Increase in dead space and is heavy

• Sample cell heated to 40 degrees to minimize condensation.

• Increased risk of facial burns.

• Requires daily calibration.

• No delay time

• RISE TIME is faster

Page 15: End tidal co2 and transcutaneous monitoring

Types of capnometers

Page 16: End tidal co2 and transcutaneous monitoring

CAPNOGRAPHY WAVEFORMS

Interpretation of TIME

Page 17: End tidal co2 and transcutaneous monitoring

Capnographic Waveform

• Normal waveform of one respiratory cycle

• Similar to ECG

– Height shows amount of CO2

– Length depicts time

Page 18: End tidal co2 and transcutaneous monitoring

Capnographic Waveform

• Waveforms on screen and printout may differ in duration

– On-screen capnography waveform is condensed to provide adequate information the in 4-second view.

Page 19: End tidal co2 and transcutaneous monitoring

Capnographic Waveform

• Capnograph detects only CO2

from ventilation

• No CO2 present during inspiration

– Baseline is normally zero

A B

C D

E

Baseline

Page 20: End tidal co2 and transcutaneous monitoring

Capnogram Phase IDead Space Ventilation

• Beginning of exhalation

• No CO2 present

• Air from trachea, posterior pharynx, mouth and nose

– No gas exchange occurs there

– Called “dead space”

Page 21: End tidal co2 and transcutaneous monitoring

Deadspace

Page 22: End tidal co2 and transcutaneous monitoring

Capnogram Phase I Baseline

Beginning of exhalation

AB

IBaseline

Page 23: End tidal co2 and transcutaneous monitoring

Capnogram Phase IIAscending Phase

• CO2 from the alveoli begins to reach the upper airway and mix with the dead space air – Causes a rapid rise in the

amount of CO2

• CO2 now present and detected in exhaled air

Alveoli

Page 24: End tidal co2 and transcutaneous monitoring

Capnogram Phase IIAscending Phase

CO2 present and increasing in exhaled air

II

A B

C

Ascending Phase

Early Exhalation

Page 25: End tidal co2 and transcutaneous monitoring

Capnogram Phase IIIAlveolar Plateau

• CO2 rich alveolar gas now constitutes the majority of the exhaled air

• Uniform concentration of CO2 from alveoli to nose/mouth

Page 26: End tidal co2 and transcutaneous monitoring

Capnogram Phase IIIAlveolar Plateau

CO2 exhalation wave plateaus

A B

C D

III

Alveolar Plateau

Page 27: End tidal co2 and transcutaneous monitoring

Capnogram Phase IIIEnd-Tidal

• End of exhalation contains the highest concentration of CO2

– The “end-tidal CO2”

– The number seen on your monitor

• Normal EtCO2 is 35-45mmHg

Page 28: End tidal co2 and transcutaneous monitoring

Capnogram Phase IIIEnd-Tidal

End of the the wave of exhalation

A B

C D End-tidal

Page 29: End tidal co2 and transcutaneous monitoring

Capnogram Phase IVDescending Phase

• Inhalation begins

• Oxygen fills airway

• CO2 level quickly drops to zero

Alveoli

Page 30: End tidal co2 and transcutaneous monitoring

Capnogram Phase IVDescending Phase

Inspiratory downstroke returns to baseline

A B

C D

EIV

Descending Phase

Inhalation

Page 31: End tidal co2 and transcutaneous monitoring

Capnography Waveform

Normal range is 35-45mm Hg (5% vol)

Normal Waveform

45

0

Page 32: End tidal co2 and transcutaneous monitoring

a-A Gradient

r r Alveolus

PaCO2

VeinA te y

Ventilation

Perfusion

arterial to Alveolar Difference for CO2

Right

Ventricle

Left

Atrium

EtCO2

Page 33: End tidal co2 and transcutaneous monitoring
Page 34: End tidal co2 and transcutaneous monitoring
Page 35: End tidal co2 and transcutaneous monitoring

End-tidal CO2 (EtCO2)

• Normal a-A gradient

– 2-5mmHg difference between the EtCO2

and PaCO2 in a patient with healthy lungs

Page 36: End tidal co2 and transcutaneous monitoring

Factors Affecting ETCO2 Levels

Page 37: End tidal co2 and transcutaneous monitoring

45

0

Hyperventilation

RR : EtCO2

45

0

Normal

Hyperventilation

Page 38: End tidal co2 and transcutaneous monitoring

Waveform: Regular Shape, Plateau Below Normal

• Indicates CO2 deficiency

Hyperventilation

Decreased pulmonary perfusion

Hypothermia

Decreased metabolism

• Interventions

Adjust ventilation rate

Evaluate for adequate sedation

Evaluate anxiety

Conserve body heat

Page 39: End tidal co2 and transcutaneous monitoring

Hypoventilation

45

0

45

0

RR : EtCO2

Normal

Hypoventilation

Page 40: End tidal co2 and transcutaneous monitoring

Waveform: Regular Shape, Plateau Above Normal

• Indicates increase in ETCO2

Hypoventilation

Respiratory depressant drugs

Increased metabolism

• Interventions

Adjust ventilation rate

Decrease respiratory depressant drug dosages

Maintain normal body temperature

Page 41: End tidal co2 and transcutaneous monitoring

Bronchospasm Waveform Pattern

• Bronchospasm hampers ventilation– Alveoli unevenly filled on inspiration – Empty asynchronously during expiration– Asynchronous air flow on exhalation dilutes exhaled

CO2

• Alters the ascending phase and plateau– Slower rise in CO2 concentration – Characteristic pattern for bronchospasm– “Shark Fin” shape to waveform

Page 42: End tidal co2 and transcutaneous monitoring

Capnography Waveform Patterns

45

0

Normal

Bronchospasm

45

0

Page 43: End tidal co2 and transcutaneous monitoring

Capnography Waveform Patterns

45

0

Hypoventilation

Normal

45

0

45

0

Bronchospasm

Hyperventilation

45

0

Page 44: End tidal co2 and transcutaneous monitoring

Airway obstruction Cardiogenic oscillations

Curare Cleft Esophageal Intubation

Page 45: End tidal co2 and transcutaneous monitoring

Rebreathing of CO2 Faulty inspiratory valve

Patient with single lung transplant Faulty inspiratory valve

Page 46: End tidal co2 and transcutaneous monitoring

Ruptured/ Leaking ET tube cuff Leak in side stream sample line

Expiratory valve stuck open

Electrical Noise

Page 47: End tidal co2 and transcutaneous monitoring
Page 48: End tidal co2 and transcutaneous monitoring
Page 49: End tidal co2 and transcutaneous monitoring
Page 50: End tidal co2 and transcutaneous monitoring

VOLUME CAPNOGRAM

Page 51: End tidal co2 and transcutaneous monitoring

Volume Capnogram

Page 52: End tidal co2 and transcutaneous monitoring

Acute Bronchospasm

Changes in pulmonary perfusion

Page 53: End tidal co2 and transcutaneous monitoring

Advantages of volume capnogram

• Allows for estimation of the relative contributions of anatomic and alveolar components of Vd.

• More sensitive than the time capnogram in detecting subtle changes in dead space that are caused by alterations in PEEP, pulmonary blood flow, or ventilation heterogeneity.

• Allows for determination of the total mass of CO2 exhaled during a breath and provides for estimation of V˙ CO2.

Page 54: End tidal co2 and transcutaneous monitoring

USES OF CAPNOGRAPHY

Page 55: End tidal co2 and transcutaneous monitoring

Detect ET Tube Displacement

Confirm ET Tube Placement

Page 56: End tidal co2 and transcutaneous monitoring

Capnography in Cardiopulmonary Resuscitation

• Assess chest compressions

• Early detection of ROSC

• Objective data for decision to cease resuscitation

• Use feedback from EtCO2 to depth/rate/force of chest compressions during CPR.

Page 57: End tidal co2 and transcutaneous monitoring

In Laparoscopic Surgeries

1.Non invasive monitor of PaCO2 and can be used to adjust ventilation.2.Detection of accidental intravascular CO2 insufflation.3.Helps to detect complications of CO2 insufflation like pneumothorax.

Page 58: End tidal co2 and transcutaneous monitoring

Optimize Ventilation

• Use capnography to titrate EtCO2 levels in patients sensitive to fluctuations

• Patients with suspected increased intracranial pressure (ICP)

– Head trauma

– Stroke

– Brain tumors

– Brain infections

Page 59: End tidal co2 and transcutaneous monitoring

Optimize Ventilation

• High CO2 levels induce cerebral vasodilatation– Positive: Increases CBF to

counter cerebral hypoxia

– Negative: Increased CBF, increases ICP and may increase brain edema

• Hypoventilation retains CO2

which increases levels

CO2

Page 60: End tidal co2 and transcutaneous monitoring

Optimize Ventilation

• Low CO2 levels lead to cerebral vasoconstriction– Positive: EtCO2 of 25-30mmHG causes a

mild cerebral vasoconstriction which may decrease ICP

– Negative: Decreased ICP but may cause or increase in cerebral hypoxia

• Hyperventilation decreases CO2 levels CO2

Page 61: End tidal co2 and transcutaneous monitoring

The Non-intubated Patient Capnography Applications

• Identify and monitor bronchospasm

– Asthma

– COPD

• Assess and monitor

– Hypoventilation states

– Hyperventilation

– Low-perfusion states

Page 62: End tidal co2 and transcutaneous monitoring

Capnography in Bronchospastic Conditions

• Air trapped due to irregularities in airways

• Uneven emptying of alveolar gas

– Dilutes exhaled CO2

– Slower rise in CO2 concentration during exhalation

Alveoli

Page 63: End tidal co2 and transcutaneous monitoring

Capnography in Bronchospastic Diseases

• Uneven emptying of alveolar gas alters emptying on exhalation

• Produces changes in ascending phase (II) with loss of the sharp upslope

• Alters alveolar plateau (III) producing a “shark fin”

A B

C D

EII

III

Page 64: End tidal co2 and transcutaneous monitoring

Capnography in Bronchospastic Conditions

AsthmaCase

Initial

After therapy

Page 65: End tidal co2 and transcutaneous monitoring

Capnography in Bronchospastic Conditions

Pathology of COPD

• Progressive

• Partially reversible

• Airways obstructed

– Hyperplasia of mucous glands & smooth muscle

– Excess mucous production

– Some hyper-responsiveness

Page 66: End tidal co2 and transcutaneous monitoring

Capnography in Bronchospastic Conditions

Capnography in COPD

• Arterial CO2 in COPD

– PaCO2 increases as disease progresses

– Requires frequent arterial punctures for ABGs

• Correlating capnograph to patient status

– Ascending phase and plateau are altered by uneven emptying of gases

Page 67: End tidal co2 and transcutaneous monitoring

Capnography in Hypoventilation States

• Altered mental status– Sedation

– Alcohol intoxication

– Drug Ingestion

– Stroke

– CNS infections

– Head injury

• Abnormal breathing

• CO2 retention – EtCO2 >50mmHg

Page 68: End tidal co2 and transcutaneous monitoring

Capnography Applicationson Non-intubated Patients

• New applications now being reported

– Pulmonary emboli

– CHF

– DKAr r O xy g e n

O 2

V e inA te y

Page 69: End tidal co2 and transcutaneous monitoring

PULMONARY EMBOLUS

Page 70: End tidal co2 and transcutaneous monitoring

TRANSCUTANEOUS AND CARBON DIOXIDE MONITORS

Page 71: End tidal co2 and transcutaneous monitoring

• Transcutaneous measurements of PO2 (Ptco2) and Pco2 (Ptcco2) are monitoring methods that aim to provide noninvasive estimates of arterial O2 and CO2, or at least trends associated with these variables.

• Transcutaneous monitoring can be applied when expired gas sampling is limited.

• The measurements are based on the diffusion of O2 and CO2 through the skin.

• Used successfully in neonates and infants

Page 72: End tidal co2 and transcutaneous monitoring

• Applied when expired gas sampling is limited

• Measurements are based on the diffusion of CO2and O2 through the skin.

• Warming is used to facilitate gas diffusion.

• Such an increase in temperature promotes increased O2 and CO2 partial pressure at skin surface.

• Ptco2 is usually lower than PaO2, and Ptcco2 is higher than Paco2.

Page 73: End tidal co2 and transcutaneous monitoring

• A transducer using a pH electrode to measure the Pco2 (Stow-Severinghaus electrode) is used.

• A change in pH is proportional to the logarithm of the Pco2 change. For CO2

monitors

• A temperature correction factor is used to estimate Paco2 from Ptcco2.

Page 74: End tidal co2 and transcutaneous monitoring
Page 75: End tidal co2 and transcutaneous monitoring

Uses of Ptcco2

1. Assess the efficacy of mechanical ventilation in respiratory failure.

2. Laparoscopic surgery with prolonged pneumoperitoneum.

3. Deep sedation for ambulatory hysteroscopy in healthy patient.

4. Weaning from mechanical ventilation after off pump CABG.

Page 76: End tidal co2 and transcutaneous monitoring

Uses of Ptco2

• Detect hyperoxia in neonates

• Adults:

1. Wound management

2. peripheral vascular disease

3. hyperbaric medicine.

Page 77: End tidal co2 and transcutaneous monitoring

Limitations

• Poor cutaneous blood flow

• Frequent calibration

• Slow response time

• Skin burns with prolonged application

Page 78: End tidal co2 and transcutaneous monitoring

References

• Understanding anesthesia equipment, 5th

edition Dorsch and Dorsch

• Miller’s Anesthesia 8th edition

• Care fusion capnography handbook

• www.capnography.org

Page 79: End tidal co2 and transcutaneous monitoring

THANK YOU

THE END