ene 325 electromagnetic fields and waves lecture 10 time-varying fields and maxwell’s equations

20
ENE 325 ENE 325 Electromagnetic Electromagnetic Fields and Waves Fields and Waves Lecture 10 Lecture 10 Time-Varying Fields Time-Varying Fields and Maxwell’s Equations and Maxwell’s Equations

Upload: gary-semper

Post on 15-Dec-2015

268 views

Category:

Documents


12 download

TRANSCRIPT

Page 1: ENE 325 Electromagnetic Fields and Waves Lecture 10 Time-Varying Fields and Maxwell’s Equations

ENE 325ENE 325Electromagnetic Electromagnetic Fields and WavesFields and Waves

Lecture 10Lecture 10 Time-Varying Fields Time-Varying Fields and Maxwell’s Equationsand Maxwell’s Equations

Page 2: ENE 325 Electromagnetic Fields and Waves Lecture 10 Time-Varying Fields and Maxwell’s Equations

Magnetic boundary conditions B

1n = B2n

and Inductance and mutual inductance

self inductance L is defined as the ratio of flux link age to the current generating the flux,

henrys or Wb/A.

mutual inductance M , where M12

= M21

.

ReviewReview

totalNL

I

2 1212

1

1 2121

2

NM

I

NM

I

1 2 12 .nH H a K

������������������������������������������

Page 3: ENE 325 Electromagnetic Fields and Waves Lecture 10 Time-Varying Fields and Maxwell’s Equations

- Time Varying fields and Max- Time Varying fields and Max well’s equations well’s equations

Concept The electric field E is produced by the c

hange in the magnetic field B. The magnetic field B is produced by the

change in the electric field E.

Page 4: ENE 325 Electromagnetic Fields and Waves Lecture 10 Time-Varying Fields and Maxwell’s Equations

Faraday’s law Faraday’s lawd

emfdt

V

where emf = electromotive force that may establish a current in a suitable closed circuit and is a voltage that arises

from conductors moving in static or changing magnetic fields.

is arisen from

1. the change of flux in a closed path 2. the moving closed path in a stationary magnetic field 3. both 1 and 2 For the N number of loops, v.

d

dt

demf N

dt

d

dt

Page 5: ENE 325 Electromagnetic Fields and Waves Lecture 10 Time-Varying Fields and Maxwell’s Equations

emf in the closed loop is emf in the closed loop is not zeronot zero

0S

demf E dL B dS

dt

��������������������������������������������������������

a) direction of the induced current b) emf

Page 6: ENE 325 Electromagnetic Fields and Waves Lecture 10 Time-Varying Fields and Maxwell’s Equations

Changing flux in a stationar Changing flux in a stationar y path (transformer y path (transformer emfemf))

From ,S

demf E dL B dS

dt

��������������������������������������������������������

apply Stokes’ theorem,

( )S S

BE dS dS

t

��������������������������������������������������������

( )B

E dS dSt

��������������������������������������������������������

( ) .B

Et

����������������������������

So we have 1st Maxwell’s equation

Page 7: ENE 325 Electromagnetic Fields and Waves Lecture 10 Time-Varying Fields and Maxwell’s Equations

TransformerTransformer To transform AC voltages and currents between

a pair of windings in magnetic circuits

1 1 2 2N i N i

With Faraday’s law, we have

1 1 2 2, .d d

v N v Ndt dt

22 1

1

.N

v vN

d

dt

Since the term is the same for both voltages, so we get

Page 8: ENE 325 Electromagnetic Fields and Waves Lecture 10 Time-Varying Fields and Maxwell’s Equations

Ex1Ex1 Assume , prove the Assume , prove the 11stst Maxwell’s equation. Maxwell’s equation.

ktzoB B e a

��������������

r

z

Page 9: ENE 325 Electromagnetic Fields and Waves Lecture 10 Time-Varying Fields and Maxwell’s Equations

Changing flux in a moving Changing flux in a moving closed path (1)closed path (1) a conductor moves in a uniform magnetic field.

.

o od dy

emf B w B vwdt dt

The sign of emf determines the direction of the induced current.

0 0

. ���������������������������� y w

z zo oB dS B a dxdya B yw

Page 10: ENE 325 Electromagnetic Fields and Waves Lecture 10 Time-Varying Fields and Maxwell’s Equations

Changing flux in a moving Changing flux in a moving closed path (2)closed path (2) Examine in a different point of view

So we get V.( )emf v B dL �������������������������� ��

z

y

x

Byva

w

Page 11: ENE 325 Electromagnetic Fields and Waves Lecture 10 Time-Varying Fields and Maxwell’s Equations

Changing flux in a moving Changing flux in a moving closed path (3)closed path (3) Combing both effects yields

( ) .S

d Bemf E dL dS v B dL

dt t

��������������������������������������������������������������������������������������������������

Page 12: ENE 325 Electromagnetic Fields and Waves Lecture 10 Time-Varying Fields and Maxwell’s Equations

Ex2Ex2 Let Let mT, fi mT, findnd

66cos10 sin 0.01 zB t xa��������������

a) flux passing through the surface z = 0, 0 < x < 20 m, and 0 < y < 3 m at t = 1 S.

b) value of closed line integral around the surface specified above at t = 1 S.

Page 13: ENE 325 Electromagnetic Fields and Waves Lecture 10 Time-Varying Fields and Maxwell’s Equations

3Ex3Ex A moving conductor is located A moving conductor is located on the conducting rail as shown at t on the conducting rail as shown at t

ime ime t = t =0,0,

a) find emf when the conductor is at rest at x = 0.05 m and T.40.3sin10 zB ta

��������������

z

y

x

B

0.05

Page 14: ENE 325 Electromagnetic Fields and Waves Lecture 10 Time-Varying Fields and Maxwell’s Equations

b) find emf when the conductor is moving with the s peed m/s.150 xv a

Page 15: ENE 325 Electromagnetic Fields and Waves Lecture 10 Time-Varying Fields and Maxwell’s Equations

Displacement current Displacement current (1)(1)

The next Maxwell’s equation can be found in term - s of time changing electric field

From a steady magnetic field,

H J ����������������������������

0.H J ����������������������������

From the equation of continuity,

vJt

r

��������������

therefore 0.v

t

r

this is impossible!

Page 16: ENE 325 Electromagnetic Fields and Waves Lecture 10 Time-Varying Fields and Maxwell’s Equations

Displacement current Displacement current (2)(2)

Another term must be added to make the equation valid.

.dH J J ������������������������������������������

2nd Maxwell’s equation

In a non-conductive medium, 0.J ��������������

Page 17: ENE 325 Electromagnetic Fields and Waves Lecture 10 Time-Varying Fields and Maxwell’s Equations

Displacement current Displacement current (3)(3) We can show the displacement current as

The more general Ampere’s circuital law:

.dds s

DI J dS dS

t

��������������������������������������������������������

dH dL I I ����������������������������

Page 18: ENE 325 Electromagnetic Fields and Waves Lecture 10 Time-Varying Fields and Maxwell’s Equations

Where is the displacement c Where is the displacement c urrent from? urrent from?

Consider a simple current loop, let emf = Vocost

Page 19: ENE 325 Electromagnetic Fields and Waves Lecture 10 Time-Varying Fields and Maxwell’s Equations

4Ex4Ex Determine the magnitude Determine the magnitude of for the following situation of for the following situation

s:s:a) in the air near the antenna that radiates

V/m.

dJ��������������

880cos(6.277 10 2.092 ) zE t y a ��������������

Page 20: ENE 325 Electromagnetic Fields and Waves Lecture 10 Time-Varying Fields and Maxwell’s Equations

b) 100a pair of cm2 aaaa aaaaaa aaaaaaaaa aa a 10. mm thick layer of lossy dielectric characteri

zed by r = 50and 10 10-4 aaaaa aaa a/ ol t age across pl at es V(t) 102= . cos( 103ta aa