error correction schemes for wireless sensor networks

48
Error Correction Schemes for Wireless Sensor Networks Al-Nharian University/ Info.& Comm. Eng. Dept. 4/19/2015

Upload: abdulkareem-kadhim

Post on 29-Sep-2015

21 views

Category:

Documents


0 download

DESCRIPTION

Schemes of Error Correction arrangements for Wireless Sensor Networks were studied and tested over different wireless channel models

TRANSCRIPT

  • Error Correction Schemes for Wireless

    Sensor Networks

    Al-Nharian University/ Info.& Comm.

    Eng. Dept. 4/19/2015

  • Aim of the Project

    Proposal of error correction schemes that are

    suitable for WSN providing less number of

    packet retransmissions and hence low energy

    when operating over fading channels.

    Al-Nharian University/ Info.& Comm.

    Eng. Dept. 4/19/2015

  • Background and Project task One of the main challenges in the deployment of

    wireless networked sensing applications is ensuring

    reliable sensor data collection and aggregation,

    while satisfying low-cost, low-energy operating

    constraints of such applications

    Since data transmitted over wireless media are vulnerable to corruption by noise, error control

    schemes are necessary to keep the Bit Error Rate

    (BER) low.

    Two basic methods to recover erroneous packets in any network ; Automatic Repeat Request (ARQ), and

    Forward Error Correction (FEC).

    Al-Nharian University/ Info.& Comm. Eng. Dept.

    4/19/2015

  • Outline of Main Research Steps Literature review for both Error Correction Codes and

    Wireless Sensor Networks.

    Study of coding methods for Wireless Sensor Networks applications.

    Analysis and Simulation of the efficient coding methods with possible modification considering

    concatenation, hybrid, and variable code words

    length and packet size.

    WSN Simulation based Implementation of the most promising coding methods.

    Assessments of Results for simulated Schemes

    Writing-up the thesis

    Al-Nharian University/ Info.& Comm.

    Eng. Dept. 4/19/2015

  • System Model Every coding method tested follow the main

    communication system model as shown below;

    Al-Nharian University/ Info.& Comm.

    Eng. Dept.

    Information

    Source

    Demodulator Decoder

    Encoder Modulator

    Comm. Channel

    Information Destination

    u v

    u v

    4/19/2015

  • Assumptions &Parameters

    Channels considered are

    AWGN It is a basic noise model used

    Flat fading Channel here the coherence bandwidth of the channel is larger than the bandwidth of the signal.

    Therefore, all frequency components of the signal will

    experience the same magnitude of fading.

    Frequency-selective fading the coherence bandwidth of the channel is smaller than the bandwidth of the

    signal. Different frequency components of the signal

    therefore will experience uncorrelated fading.

    Al-Nharian University/ Info.& Comm.

    Eng. Dept. 4/19/2015

  • Assumptions &Parameters (Cont.2)

    Modulation: Binary Phase Shift Keying (BPSK)

    (Baseband model is considered).

    Coding Methods :

    o Binary BCH Code

    o Reed Solomon Code

    o Convolutional code

    o Concatenation of block and convolutional Codes

    oHybrid (Code concatenation with ARQ)

    Al-Nharian University/ Info.& Comm.

    Eng. Dept. 4/19/2015

  • Assumptions &Parameters (Cont.2)

    Brief for BCH code

    It is defined over binary GF(2^m) or non-binary version over GF(q).

    For any positive integer m and t there exist a BCH code with the following parameters:

    o Block length: n=2m-1

    o Error correction capability: t

    o Parity check bits: r=n-k m.t

    o Minimum distance: d 2t+1

    The codes are able to correct any error pattern of size t or less, in a code vector of length n.

    Needs long, iterative and complex decoding algorithms .

    Al-Nharian University/ Info.& Comm.

    Eng. Dept. 4/19/2015

  • RS code

    They are non-binary BCH codes with code symbols from a

    GF(q). The most important Feature of Reed - Solomon (RS)

    codes that the minimum distance of a RS code is one greater than

    its number of parity-check symbols. For given (n,k,t) RS gives

    maximum free distance. Thus it is considered as the most

    efficient BCH coding scheme.

    o Code parameters

    For any positive integer t < 2m - 1, there exists a t-symbol

    error correcting RS code with symbols from GF(2m) with the

    following parameters:

    Al-Nharian University/ Info.& Comm.

    Eng. Dept.

    Assumptions &Parameters (Cont.3)

    4/19/2015

  • Convolutional codes

    A convolutional code is specified by three parameters (n, k, m)

    where k input bit, n output bits and m is the maximum length of

    the k shift registers (memory stages)

    Al-Nharian University/ Info.& Comm.

    Eng. Dept.

    Assumptions &Parameters (Cont.4)

    k

    4/19/2015

  • Concatenation of Codes An error correction coding scheme in which two different error

    correction codes are used in cascade is called concatenated code.

    Advantage: Relatively simple decoding & achieve high

    coding gain.

    Usually : Outer Code is Reed-Solomon, while Inner Code is

    convolutional code

    Al-Nharian University/ Info.& Comm.

    Eng. Dept.

    Outer encoder

    Channel

    Inner encoder

    Inner decoder

    Outer decoder

    4/19/2015

  • Hybrid ARQ Code

    Hybrid automatic repeat request (hybrid ARQ or HARQ) is a combination of high-rate forward error-correcting

    coding and ARQ error-control

    The FEC code is chosen to correct an expected subset of all errors that may occur, while the ARQ method is used

    as a call-back for the message to be resent again.

    In its simplest form, the HARQ decoder performs FEC decoding first. If the channel produce uncorrectable

    errors, the FEC decoder fails in decoding and packet

    retransmission is requested. 4/19/2015

    Al-Nharian University/ Info.& Comm.

    Eng. Dept.

  • WSN Simulators Different simulators may be used for WSN;

    oOPNET

    oOMNET++/CASTALIA

    o TOSSIM

    oANSOFT

    oNS2

    It seems that none of the above are suitable for

    the project task (where there is a difficulty in

    simulating WSN environment that supports

    packet content generation and modification

    due to coding methods)

    Al-Nharian University/ Info.& Comm.

    Eng. Dept. 4/19/2015

  • NWSNS NWSNS = Nahrain university Wireless Sensor

    Network Simulator

    This is a Matlab based simulator package created and developed in the Information Eng. College, Al-Nahrain University, Iraq. NWSNS simulates most important operations, tasks and parameters that are required in real WSN environments. Different packet sizes, coding and modulation methods, network coverage area, clusters, Energy, Throughput, Error rates, Wireless channel models are considered in the simulator.

    4/19/2015 Al-Nharian University/ Info.& Comm.

    Eng. Dept.

  • NWSNS Parameters NWSNS is built to provide flexibility in varying the following parameters;

    1- The Size (dimension)of the geographical area of WSN

    2- The number of sensor nodes

    3- Number of Mobile nodes (and their speed)

    4- Packet size and number of packets

    5- Wireless channel type & parameters (fading, Doppler, Freq.)

    6- Transmission parameters (Bit & Packet Rate, Carrier freq.)

    7- Coding Scheme (BCH, RS, Conv., Concat., Interleaving, ARQ)

    8- Coder/ Decoder/ Interleaver Parameters (k, n, t, Symbol, Depth).

    9- Initial and Total Energy

    10- Measurements (SNR, BER, PER, Throughput, Energy) Al-Nharian University/ Info.& Comm.

    Eng. Dept. 4/19/2015

  • Al-Nharian University/ Info.& Comm.

    Eng. Dept. 4/19/2015

    Start WSN program

    Input network parameters and all initializations

    Mobility of SN (% of total number of

    nodes)

    Assign SNR (Initialize Error

    counter)

    Start of Packet Based loop(Np)

    Chose a node to generate and transmit data

    randomly

    Outer Encoder (RS Code)

    Inner Encoder (Convolutional

    Code)

    BPSK modulation

    Sending data through channel

    Last packet

    Inner Decoder (Convolutional

    Code)

    Outer Decoder (RS Code)

    Error Counter(Bit and Packet)

    Last SNR value

    Measurements and Display of

    Results

    End

    NO

    YES

    YES

    NO

    Demodulation/Detection

    Errors

    NO

    YESMax.Retransmission

    s

    YES

    NO

    Retransmission

  • Al-Nharian University/ Info.& Comm.

    Eng. Dept.

    Basic GUI of NWSNS

    4/19/2015

  • Al-Nharian University/ Info.& Comm.

    Eng. Dept. 4/19/2015

  • Initial Simulation Results

    Tests Carried out;

    o Error rate and throughput for RS code with 100

    nodes

    o Error rate and throughput for Concatenated

    code with 100 nodes

    o Measurements involved ( PER, BER,

    Throughput (in terms of Bit & Packet per sec.)

    Al-Nharian University/ Info.& Comm.

    Eng. Dept. 4/19/2015

  • Test Results

    Al-Nharian University/ Info.& Comm.

    Eng. Dept. 4/19/2015

    5 6 7 8 9 10 11 12 13 10

    -5

    10 -4

    10 -3

    10 -2

    10 -1

    10 0

    Eb/No

    BE

    R

    BER Performance of different systems over AWGN

  • Results of Hybrid Concatenated Code

    Test Parameters; Area (square); 1x1,10x10,100x100,1000x1000 (Km)

    No. of Nodes =50,100, 200, 400 nodes

    Percentage of Mobile Nodes (25%, 50%, 75%, 100% )

    Codes RS(255,223), Conv.(3,1), ARQ(N=4)

    No. of Packets : 10000 packets

    Measurements ( PER, BER, Throughput in terms of Bit & Packet per sec)

    Al-Nharian University/ Info.& Comm.

    Eng. Dept. 4/19/2015

  • Test Results #1

    Al-Nharian University/ Info.& Comm.

    Eng. Dept. 4/19/2015

    Error Performance of Different Systems over AWGN channel with Hybrid Code, 10000 Packets.

    Sys. #150 SN, 25% mob., 11 Km

    Sys. #2100 SN, 50% mob., 1010 Km

    Sys. #3200 SN, 75% mob., 100100 Km

    Sys. #4400 SN, 100% mob., 10001000 Km

    6 7 8 9 10 11 12 13 14 10

    -3

    10 -2

    10 -1

    10 0

    Eb/No

    PE

    R

    Sys. #1

    Sys. #2

    Sys. #3

    Sys. #4

  • Test Results #2

    Al-Nharian University/ Info.& Comm.

    Eng. Dept. 4/19/2015

    Error Performance of Different Systems over Flat Fading channel with Hybrid Code, 10000 Packets.

    Sys. #150 SN, 25% mob., 11 Km

    Sys. #2100 SN, 50% mob., 1010 Km

    Sys. #3200 SN, 75% mob., 100100 Km

    Sys. #4400 SN, 100% mob., 10001000 Km

    6 8 10 12 14 16 18 20 10

    -4

    10 -3

    10 -2

    10 -1

    10 0

    Eb/No

    PE

    R

    Sys. #1

    Sys. #2

    Sys. #3

    Sys. #4

  • Test Results #3

    4/19/2015 Al-Nharian University/ Info.& Comm.

    Eng. Dept.

    Error Performance of Different Systems over Multipath Selective (SUI-1) Fading channel with Hybrid Code, 10000 Packets.

    Sys. #150 SN, 25% mob., 11 Km, D. shift 20 Hz

    Sys. #2 50 SN, 25% mob., 11 Km, D. shift 40 Hz

    Sys. #3 50 SN, 25% mob., 11 Km, D. shift 80 Hz

    Sys. #4 50 SN, 25% mob., 11 Km, D. shift 60 Hz

    Sys. #5 50 SN, 25% mob., 11 Km, D. shift 200 Hz

    Sys. #6 50 SN, 25% mob., 11 Km, D. shift 280 Hz

    Sys. #7 50 SN, 25% mob., 11 Km, D. shift 440 Hz

    6 8 10 12 14 16 18 20 22 24 26 10

    -4

    10 -3

    10 -2

    10 -1

    10 0

    Eb/No

    PE

    R

    Sys. #7

    Sys. #6

    Sys. #5

    Sys. #4

    Sys. #3

    Sys. #2

    Sys. #1

  • Test Results #4

    4/19/2015 Al-Nharian University/ Info.& Comm.

    Eng. Dept.

    Error Performance of Different Systems over Multipath Selective (SUI-1) Fading channel with Hybrid Code, 10000 Packets.

    Sys. #1100 SN, 50% mob., 1010 Km, D. shift 20 Hz

    Sys. #2 100 SN, 50% mob., 1010 Km, D. shift 40 Hz

    Sys. #3 100 SN, 50% mob., 1010 Km, D. shift 80 Hz

    Sys. #4 100 SN, 50% mob., 1010 Km, D. shift 60 Hz

    Sys. #5 100 SN, 50% mob., 1010 Km, D. shift 200 Hz

    Sys. #6 100 SN, 50% mob., 1010 Km, D. shift 280 Hz

    Sys. #7 100 SN, 50% mob., 1010 Km, D. shift 440 Hz

    6 8 10 12 14 16 18 20 22 24 26 10

    -4

    10 -3

    10 -2

    10 -1

    10 0

    Eb/No

    PE

    R

    Sys. #7

    Sys. #6

    Sys. #5

    Sys. #4

    Sys. #3

    Sys. #2

    Sys. #1

  • Test Results #5

    4/19/2015 Al-Nharian University/ Info.& Comm.

    Eng. Dept.

    Error Performance of Different Systems over Multipath Selective channel (SUI-1) with Hybrid Code, 10000 Packets.

    6 8 10 12 14 16 18 20 22 24 26 10

    -3

    10 -2

    10 -1

    10 0

    Eb/No

    PE

    R

    Sys. #7

    Sys. #6

    Sys. #5

    Sys. #4

    Sys. #3

    Sys. #2

    Sys. #1

    Sys. #1200 SN, 75% mob., 100100 Km, D. shift 20 Hz

    Sys. #2 200 SN, 75% mob., 100100 Km, D. shift 40 Hz

    Sys. #3 200 SN, 75% mob., 100100 Km, D. shift 80 Hz

    Sys. #4 200 SN, 75% mob., 100100 Km, D. shift 60 Hz

    Sys. #5 200 SN, 75% mob., 100100 Km, D. shift 200 Hz

    Sys. #6 200 SN, 75% mob., 100100 Km, D. shift 280 Hz

    Sys. #7 200 SN, 75% mob., 100100 Km, D. shift 440 Hz

  • Test Results #6

    4/19/2015 Al-Nharian University/ Info.& Comm.

    Eng. Dept.

    Error Performance of Different Systems over Multipath Selective channel (SUI-1) with Hybrid Code, 10000 Packets.

    6 8 10 12 14 16 18 20 22 24 26 10

    -3

    10 -2

    10 -1

    10 0

    10 1

    Eb/No

    PE

    R

    Sys. #7

    Sys. #6

    Sys. #5

    Sys. #4

    Sys. #3

    Sys. #2

    Sys. #1

    Sys. #1400 SN, 100% mob., 10001000 Km, D. shift 20 Hz

    Sys. #2 400 SN, 100% mob., 10001000 Km, D. shift 40 Hz

    Sys. #3 400 SN, 100% mob., 10001000 Km, D. shift 80 Hz

    Sys. #4 400 SN, 100% mob., 10001000 Km, D. shift 60 Hz

    Sys. #5 400 SN, 100% mob.,10001000 Km, D. shift 200 Hz

    Sys. #6 400 SN, 100% mob.,10001000 Km, D. shift 280 Hz

    Sys. #7 400 SN, 100% mob.,10001000 Km, D. shift 440 Hz

  • Test Results #7

    Al-Nharian University/ Info.& Comm.

    Eng. Dept. 4/19/2015

    Throughput variation with SNR of Different Systems over AWGN channel with Hybrid Code, 10000 Packets

    6 8 10 12 14 16 18 20 22 24 26

    10 2.3

    10 2.4

    10 2.5

    10 2.6

    Eb/No

    Th

    rou

    gh

    pu

    t(P

    acket/se

    c)

    Sys. #1

    Sys. #2

    Sys. #3

    Sys. #4

    Sys. #150 SN, 25% mob., 11 Km

    Sys. #2100 SN, 50% mob., 1010 Km

    Sys. #3200 SN, 75% mob., 100100 Km

    Sys. #4400 SN, 100% mob., 10001000 Km

  • Test Results #8

    4/19/2015 Al-Nharian University/ Info.& Comm.

    Eng. Dept.

    Throughput variation with SNR of Different Systems over Flat Fading channel with Hybrid Code, 10000 Packets

    Sys. #150 SN, 25% mob., 11 Km

    Sys. #2100 SN, 50% mob., 1010 Km

    Sys. #3200 SN, 75% mob., 100100 Km

    Sys. #4400 SN, 100% mob., 10001000 Km

    6 8 10 12 14 16 18 20 22 24 26

    10 2.2

    10 2.3

    10 2.4

    10 2.5

    10 2.6

    Eb/No

    Th

    rou

    gh

    put(

    Pa

    cket/

    sec)

    Sys. #1

    Sys. #2

    Sys. #3

    Sys. #4

  • Test Results #9

    4/19/2015 Al-Nharian University/ Info.& Comm.

    Eng. Dept.

    Throughput variation with SNR of Different Systems over Multipath channel (SUI-1) with Hybrid Code, 10000 Packets

    Sys. #1100 SN, 50% mob., 1010 Km, D. shift 20 Hz

    Sys. #2 100 SN, 50% mob., 1010 Km, D. shift 40 Hz

    Sys. #3 100 SN, 50% mob., 1010 Km, D. shift 80 Hz

    Sys. #4 100 SN, 50% mob., 1010 Km, D. shift 60 Hz

    Sys. #5 100 SN, 50% mob., 1010 Km, D. shift 200 Hz

    Sys. #6 100 SN, 50% mob., 1010 Km, D. shift 280 Hz

    Sys. #7 100 SN, 50% mob., 1010 Km, D. shift 440 Hz

    0 2 4 6 8 10 12 14 16 18 20 0

    50

    100

    150

    200

    250

    300

    350

    400

    450

    500

    Eb/No

    Th

    rou

    gh

    put(

    Pa

    cket/

    sec)

    Sys. #7

    Sys. #6

    Sys. #5

    Sys. #4

    Sys. #3

    Sys. #2

    Sys. #1

  • Test Results #10

    4/19/2015 Al-Nharian University/ Info.& Comm.

    Eng. Dept.

    Throughput variation with SNR of Different Systems over Multipath channel (SUI-1) with Hybrid Code, 10000 Packets

    Sys. #150 SN, 75% mob., 100100 Km, D. shift 20 Hz

    Sys. #250 SN, 75% mob., 100100 Km, D. shift 40 Hz

    Sys. #350 SN, 75% mob., 100100 Km, D. shift 80 Hz

    Sys. #450 SN, 75% mob., 100100 Km, D. shift 60 Hz

    Sys. #550 SN, 75% mob., 100100 Km, D. shift 200 Hz

    Sys. #650 SN, 75% mob., 100100 Km, D. shift 280 Hz

    Sys. #750 SN, 75% mob., 100100 Km, D. shift 440 Hz

    0 2 4 6 8 10 12 14 16 18 20 0

    50

    100

    150

    200

    250

    300

    350

    400

    450

    500

    Eb/No

    Th

    rou

    gh

    put(

    Pa

    cket/

    sec)

    Sys. #7

    Sys. #6

    Sys. #5

    Sys. #4

    Sys. #3

    Sys. #2

    Sys. #1

  • Test Results #11

    4/19/2015 Al-Nharian University/ Info.& Comm.

    Eng. Dept.

    Throughput variation with SNR of Different Systems over Multipath channel (SUI-1) with Hybrid Code, 10000 Packets

    Sys. #1200 SN, 75% mob., 100100 Km, D. shift 20 Hz

    Sys. #2 200 SN, 75% mob., 100100 Km, D. shift 40 Hz

    Sys. #3 200 SN, 75% mob., 100100 Km, D. shift 80 Hz

    Sys. #4 200 SN, 75% mob., 100100 Km, D. shift 60 Hz

    Sys. #5 200 SN, 75% mob., 100100 Km, D. shift 200 Hz

    Sys. #6 200 SN, 75% mob., 100100 Km, D. shift 280 Hz

    Sys. #7 200 SN, 75% mob., 100100 Km, D. shift 440 Hz

    0 2 4 6 8 10 12 14 16 18 20 -100

    0

    100

    200

    300

    400

    500

    Eb/No

    Th

    rou

    gh

    put(

    Pa

    cket/

    sec)

    Sys. #7

    Sys. #6

    Sys. #5

    Sys. #4

    Sys. #3

    Sys. #2

    Sys. #1

  • Test Results #12

    4/19/2015 Al-Nharian University/ Info.& Comm.

    Eng. Dept.

    Throughput variation with SNR of Different Systems over Multipath channel (SUI-1) with Hybrid Code, 10000 Packets

    Sys. #1400 SN, 100% mob., 10001000 Km, D. shift 20 Hz

    Sys. #2 400 SN, 100% mob., 10001000 Km, D. shift 40 Hz

    Sys. #3 400 SN, 100% mob., 10001000 Km, D. shift 80 Hz

    Sys. #4 400 SN, 100% mob., 10001000 Km, D. shift 60 Hz

    Sys. #5 400 SN, 100% mob.,10001000 Km, D. shift 200 Hz

    Sys. #6 400 SN, 100% mob.,10001000 Km, D. shift 280 Hz

    Sys. #7 400 SN, 100% mob.,10001000 Km, D. shift 440 Hz

    0 2 4 6 8 10 12 14 16 18 20 -100

    0

    100

    200

    300

    400

    500

    Eb/No

    Th

    rou

    gh

    put(

    Pa

    cket/

    sec)

    Sys. #7

    Sys. #6

    Sys. #5

    Sys. #4

    Sys. #3

    Sys. #2

    Sys. #1

  • Test Results #13

    4/19/2015 Al-Nharian University/ Info.& Comm.

    Eng. Dept.

    Sys. #150 SN, 25% mob., 11 Km

    Sys. #2100 SN, 50% mob., 1010 Km

    Sys. #3200 SN, 75% mob., 100100 Km

    Sys. #4400 SN, 100% mob., 10001000 Km

    Error Performance of Different Systems over AWGN channel with Hybrid Code, 10000 Packets.

    6 7 8 9 10 11 12 13 14 15 10

    -4

    10 -3

    10 -2

    10 -1

    Eb/No

    BE

    R

    Sys. #1

    Sys. #2

    Sys. #3

    Sys. #4

  • Test Results #14

    4/19/2015 Al-Nharian University/ Info.& Comm.

    Eng. Dept.

    Sys. #150 SN, 25% mob., 11 Km

    Sys. #2100 SN, 50% mob., 1010 Km

    Sys. #3200 SN, 75% mob., 100100 Km

    Sys. #4400 SN, 100% mob., 10001000 Km

    Error Performance of Different Systems over Flat Fading channel with Hybrid Code, 10000 Packets.

    6 8 10 12 14 16 18 20 10

    -4

    10 -3

    10 -2

    10 -1

    Eb/No

    BE

    R

    Sys. #1

    Sys. #2

    Sys. #3

    Sys. #4

  • Test Results #15

    4/19/2015 Al-Nharian University/ Info.& Comm.

    Eng. Dept.

    6 8 10 12 14 16 18 20 22 24 26 10

    -4

    10 -3

    10 -2

    10 -1

    10 0

    Eb/No

    BE

    R

    Sys. #7

    Sys. #6

    Sys. #5

    Sys. #4

    Sys. #3

    Sys. #2

    Sys. #1

    Error Performance of Different Systems over Multipath Selective (SUI-1) Fading channel with Hybrid Code, 10000 Packets.

    Sys. #150 SN, 25% mob., 11 Km, D. shift 20 Hz

    Sys. #2 50 SN, 25% mob., 11 Km, D. shift 40 Hz

    Sys. #3 50 SN, 25% mob., 11 Km, D. shift 80 Hz

    Sys. #4 50 SN, 25% mob., 11 Km, D. shift 60 Hz

    Sys. #5 50 SN, 25% mob., 11 Km, D. shift 200 Hz

    Sys. #6 50 SN, 25% mob., 11 Km, D. shift 280 Hz

    Sys. #7 50 SN, 25% mob., 11 Km, D. shift 440 Hz

  • Test Results #16

    4/19/2015 Al-Nharian University/ Info.& Comm.

    Eng. Dept.

    Error Performance of Different Systems over Multipath Selective (SUI-1) Fading channel with Hybrid Code, 10000 Packets.

    6 8 10 12 14 16 18 20 22 24 26 10

    -5

    10 -4

    10 -3

    10 -2

    10 -1

    10 0

    Eb/No

    BE

    R

    Sys. #7

    Sys. #6

    Sys. #5

    Sys. #4

    Sys. #3

    Sys. #2

    Sys. #1

    Sys. #1100 SN, 50% mob., 1010 Km, D. shift 20 Hz

    Sys. #2 100 SN, 50% mob., 1010 Km, D. shift 40 Hz

    Sys. #3 100 SN, 50% mob., 1010 Km, D. shift 80 Hz

    Sys. #4 100 SN, 50% mob., 1010 Km, D. shift 60 Hz

    Sys. #5 100 SN, 50% mob., 1010 Km, D. shift 200 Hz

    Sys. #6 100 SN, 50% mob., 1010 Km, D. shift 280 Hz

    Sys. #7 100 SN, 50% mob., 1010 Km, D. shift 440 Hz

  • Test Results #17

    4/19/2015 Al-Nharian University/ Info.& Comm.

    Eng. Dept.

    Error Performance of Different Systems over Multipath Selective (SUI-1) Fading channel with Hybrid Code, 10000 Packets.

    Sys. #1200 SN, 75% mob., 100100 Km, D. shift 20 Hz

    Sys. #2 200 SN, 75% mob., 100100 Km, D. shift 40 Hz

    Sys. #3 200 SN, 75% mob., 100100 Km, D. shift 80 Hz

    Sys. #4 200 SN, 75% mob., 100100 Km, D. shift 60 Hz

    Sys. #5 200 SN, 75% mob., 100100 Km, D. shift 200 Hz

    Sys. #6 200 SN, 75% mob., 100100 Km, D. shift 280 Hz

    Sys. #7 200 SN, 75% mob., 100100 Km, D. shift 440 Hz

    6 8 10 12 14 16 18 20 22 24 26 10

    -3

    10 -2

    10 -1

    10 0

    Eb/No

    BE

    R

    Sys. #7

    Sys. #6

    Sys. #5

    Sys. #4

    Sys. #3

    Sys. #2

    Sys. #1

  • Test Results #18

    4/19/2015 Al-Nharian University/ Info.& Comm.

    Eng. Dept.

    Error Performance of Different Systems over Multipath Selective (SUI-1) Fading channel with Hybrid Code, 10000 Packets.

    Sys. #1400 SN, 100% mob., 10001000 Km, D. shift 20 Hz

    Sys. #2 400 SN, 100% mob., 10001000 Km, D. shift 40 Hz

    Sys. #3 400 SN, 100% mob., 10001000 Km, D. shift 80 Hz

    Sys. #4 400 SN, 100% mob., 10001000 Km, D. shift 60 Hz

    Sys. #5 400 SN, 100% mob.,10001000 Km, D. shift 200 Hz

    Sys. #6 400 SN, 100% mob.,10001000 Km, D. shift 280 Hz

    Sys. #7 400 SN, 100% mob.,10001000 Km, D. shift 440 Hz

    6 8 10 12 14 16 18 20 22 24 26 10

    -3

    10 -2

    10 -1

    10 0

    Eb/No

    BE

    R

    Sys. #7

    Sys. #6

    Sys. #5

    Sys. #4

    Sys. #3

    Sys. #2

    Sys. #1

  • Test Results #19

    4/19/2015 Al-Nharian University/ Info.& Comm.

    Eng. Dept.

    Throughput variation with SNR of Different Systems over AWGN channel (SUI-1) with Hybrid Code, 10000 Packets

    6 8 10 12 14 16 18 20 22 24 26

    10 5.8

    10 5.9

    Eb/No

    Th

    rou

    gh

    pu

    t(B

    it/s

    ec)

    Sys. #1

    Sys. #2

    Sys. #3

    Sys. #4

    Sys. #150 SN, 25% mob., 11 Km

    Sys. #2100 SN, 50% mob., 1010 Km

    Sys. #3200 SN, 75% mob., 100100 Km

    Sys. #4400 SN, 100% mob., 10001000 Km

  • Test Results #20

    4/19/2015 Al-Nharian University/ Info.& Comm.

    Eng. Dept.

    Throughput variation with SNR of Different Systems over Flat Fading channel (SUI-1) with Hybrid Code, 10000 Packets

    Sys. #150 SN, 25% mob., 11 Km

    Sys. #2100 SN, 50% mob., 1010 Km

    Sys. #3200 SN, 75% mob., 100100 Km

    Sys. #4400 SN, 100% mob., 10001000 Km

    6 8 10 12 14 16 18 20 22 24 26

    105.8

    105.9

    Eb/No

    Thro

    ughput(

    Bit/s

    ec)

    Sys. #1

    Sys. #2

    Sys. #3

    Sys. #4

  • Test Results #21

    4/19/2015 Al-Nharian University/ Info.& Comm.

    Eng. Dept.

    Sys. #150 SN, 25% mob., 11 Km, D. shift 20 Hz

    Sys. #2 50 SN, 25% mob., 11 Km, D. shift 40 Hz

    Sys. #3 50 SN, 25% mob., 11 Km, D. shift 80 Hz

    Sys. #4 50 SN, 25% mob., 11 Km, D. shift 60 Hz

    Sys. #5 50 SN, 25% mob., 11 Km, D. shift 200 Hz

    Sys. #6 50 SN, 25% mob., 11 Km, D. shift 280 Hz

    Sys. #7 50 SN, 25% mob., 11 Km, D. shift 440 Hz

    0 2 4 6 8 10 12 14 16 18 20 3

    4

    5

    6

    7

    8

    9

    10 x 10

    5

    Eb/No

    Th

    rou

    gh

    pu

    t(B

    it/S

    ec)

    Sys. #7

    Sys. #6

    Sys. #5

    Sys. #4

    Sys. #3

    Sys. #2

    Sys. #1

    Throughput variation with SNR of Different Systems over Multipath channel (SUI-1) with Hybrid Code, 10000 Packets

  • Test Results #22

    4/19/2015 Al-Nharian University/ Info.& Comm.

    Eng. Dept.

    Sys. #1100 SN, 50% mob., 1010 Km, D. shift 20 Hz

    Sys. #2 100 SN, 50% mob., 1010 Km, D. shift 40 Hz

    Sys. #3 100 SN, 50% mob., 1010 Km, D. shift 80 Hz

    Sys. #4 100 SN, 50% mob., 1010 Km, D. shift 60 Hz

    Sys. #5 100 SN, 50% mob., 1010 Km, D. shift 200 Hz

    Sys. #6 100 SN, 50% mob., 1010 Km, D. shift 280 Hz

    Sys. #7 100 SN, 50% mob., 1010 Km, D. shift 440 Hz

    0 2 4 6 8 10 12 14 16 18 20 3

    4

    5

    6

    7

    8

    9

    10 x 10

    5

    Eb/No

    Th

    rou

    gh

    put(

    Bit/S

    ec)

    Sys. #7

    Sys. #6

    Sys. #5

    Sys. #4

    Sys. #3

    Sys. #2

    Sys. #1

    Throughput variation with SNR of Different Systems over Multipath channel (SUI-1) with Hybrid Code, 10000 Packets

  • Test Results #23

    4/19/2015 Al-Nharian University/ Info.& Comm.

    Eng. Dept.

    0 2 4 6 8 10 12 14 16 18 20 3

    4

    5

    6

    7

    8

    9

    10 x 10

    5

    Eb/No

    Th

    rou

    gh

    put(

    Bit/S

    ec)

    Sys. #7

    Sys. #6

    Sys. #5

    Sys. #4

    Sys. #3

    Sys. #2

    Sys. #1

    Sys. #1200 SN, 75% mob., 100100 Km, D. shift 20 Hz

    Sys. #2 200 SN, 75% mob., 100100 Km, D. shift 40 Hz

    Sys. #3 200 SN, 75% mob., 100100 Km, D. shift 80 Hz

    Sys. #4 200 SN, 75% mob., 100100 Km, D. shift 60 Hz

    Sys. #5 200 SN, 75% mob., 100100 Km, D. shift 200 Hz

    Sys. #6 200 SN, 75% mob., 100100 Km, D. shift 280 Hz

    Sys. #7 200 SN, 75% mob., 100100 Km, D. shift 440 Hz

    Throughput variation with SNR of Different Systems over Multipath channel (SUI-1) with Hybrid Code, 10000 Packets

  • Test Results #24

    4/19/2015 Al-Nharian University/ Info.& Comm.

    Eng. Dept.

    0 2 4 6 8 10 12 14 16 18 20 3

    4

    5

    6

    7

    8

    9

    10 x 10

    5

    Eb/No

    Th

    rou

    gh

    put(

    Bit/S

    ec)

    Sys. #7

    Sys. #6

    Sys. #5

    Sys. #4

    Sys. #3

    Sys. #2

    Sys. #1

    Sys. #1400 SN, 100% mob., 10001000 Km, D. shift 20 Hz

    Sys. #2 400 SN, 100% mob., 10001000 Km, D. shift 40 Hz

    Sys. #3 400 SN, 100% mob., 10001000 Km, D. shift 80 Hz

    Sys. #4 400 SN, 100% mob., 10001000 Km, D. shift 60 Hz

    Sys. #5 400 SN, 100% mob.,10001000 Km, D. shift 200 Hz

    Sys. #6 400 SN, 100% mob.,10001000 Km, D. shift 280 Hz

    Sys. #7 400 SN, 100% mob.,10001000 Km, D. shift 440 Hz

    Throughput variation with SNR of Different Systems over Multipath channel (SUI-1) with Hybrid Code, 10000 Packets

  • Conclusions A successful simulator is built to meet the required WSN

    simulation tasks and parameters.

    The initial results confirm the need for error correction scheme that reduce the errors to some extends so that the consumed

    energy will be reduced accordingly.

    The increase of Doppler (or the mobile node speed) degrades the performance of the systems and reduce their throughput.

    Thus more sophisticated coding scheme is required under such

    condition.

    The use of HARQ improved the error and throughput performance over fading channels on the expense of (possibly)

    more packet retransmissions.

    Further conclusions will be drawn when actual energy measurements will be involved after completing the full

    investigation regarding consumed energy required based on

    packet size and maximum number of retransmission involved in

    ARQ scheme. 4/19/2015

    Al-Nharian University/ Info.& Comm.

    Eng. Dept.

  • Future Work Proposal of a coding schemes that are the most

    promising ones to achieve the highest throughput

    with least energy consumption.

    Further investigation is required on the best coding parameters of the constituent encoders used in

    HARQ arrangement.

    Modifying the simulator to take into account the routing algorithm so that the network layer protocol

    performance will be covered together with the

    coding and modulation applied at the physical

    layer.

    4/19/2015 Al-Nharian University/ Info.& Comm.

    Eng. Dept.

  • THANK YOU

    Al-Nharian University/ Info.& Comm.

    Eng. Dept. 4/19/2015