esa lidar missions - esa conference bureauold.esaconferencebureau.com/custom/icso/presentations...

25
Slide 1 ICSO Rhodes Island, 04-08 October 2010 ESA’s Earth Observation Lidar Missions and Critical Technology Developments ICSO Rhodes, 04-08 October 2010 J.-L. Bézy European Space Agency Jean-Loup.Bezy@ esa.int

Upload: danglien

Post on 03-Jul-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Slide 1ICSO Rhodes Island, 04-08 October 2010

ESA’s Earth Observation Lidar Missions and Critical Technology Developments

ICSO Rhodes, 04-08 October 2010

J.-L. BézyEuropean Space AgencyJean-Loup.Bezy@ esa.int

Slide 2ICSO Rhodes Island, 04-08 October 2010

Acknowledgments

Directorate of Earth Observation Programme:Yannig Durand and Roland MeynartJérôme Caron, Arnaud Hélière,Martin Endemann, Alain Culoma, Olivier le Rille, Armin Loescher, Paolo Bensi

Directorate of Technical & Quality Management:Michael Jost, Nick Nelms, Mustapha Zahir, Errico Armandillo

Slide 3ICSO Rhodes Island, 04-08 October 2010

Lidar Principles

Velocity = /2*f

Frequency

Doppler lidar•Wind vectors

ADM-Aeolus

IT

IRTime

Extinction = IR /ITBackscatter lidar•Cloud vertical profile•Aerosol vertical profile

ATLID/EarthCA RE

Wavelength

Concentration = Log(Ion /Ioff )

Differential absorption lidar•Trace gases concentration

A-SCOPEWALESACCURATE

Time

Range = ct/2Altimetry lidar•Ranging•Vegetation canopy distribution

BepiColombo

Slide 4ICSO Rhodes Island, 04-08 October 2010

Current ESA lidar missions under development

ADM-Aeolus - 2013 EarthCARE - 2013

BepiColombo - 2014

ICSO Rhodes Island, 04-08 October 2010 Slide 4

Slide 5ICSO Rhodes Island, 04-08 October 2010

Atmospheric Dynamics Mission-Aeolus

Scientific objective: quantify global measurements of vertical wind profiles in the troposphere and lower stratosphere to improve the quality of weather forecasts, and to advance our understanding of atmospheric dynamics and climate processes.

MISSION PARAMETERSOrbit:• Sun-synchronous• Altitude ~ 405 km• Local time ~18:00 ascending node

Mass: 1500 kgPower: 2.3 kW

Mission life: 3 yearsPAYLOAD

• Doppler Wind Lidar (ALADIN)

ICSO Rhodes Island, 04-08 October 2010 Slide 5

Slide 6ICSO Rhodes Island, 04-08 October 2010

Atmospheric Dynamics Mission-Aeolus

Main Observation requirements

PBL Tropo- sphere

Strato- sphere

Vertical Domain [km] 0-2 2–16 16-30

Vertical Resolution

[km] 0.5 1 2–5

Horizontal Domain Global

Profile Separation [km] 200

Accuracy HLOS [ms-1] 2 2–3 3–5

Dynamic Range [ms-1] ± 150

Horizontal integration

[km] 50

Measurement geometry

Slide 7ICSO Rhodes Island, 04-08 October 2010

Atmospheric Dynamics Mission-Aeolus

Measurement principleMie, Fringe imaging receiver Rayleigh, Double edge receiver

ICSO Rhodes Island, 04-08 October 2010

Slide 8ICSO Rhodes Island, 04-08 October 2010

Atmospheric Dynamics Mission-Aeolus

Instrument features

Transmitter (Nd:YAG)WavelengthPulse energyRepetition rateLine widthDuty cycle

355

nm120

mJ100

Hz30

MHz42 %

Transmit-receive TelescopeTelescope diameterTelescope transm. (incl. obscuration)Transmitter beam divervence (full angle)Receiver Field-of-View (full angle)

1.5 m> 80 %12 µrad19 µrad

ReceiverFizeau interferometer (Mie)

Free Spectral RangeUseful Spectral RangeFringe width (FWHM)

Double Fabry-Perot (Rayleigh)Free Spectral RangeSpacin

Detector quantum efficiency

2.2 GHz1.5 GHz145

MHz

10.9

GHz5.5

GHz> 80%

Laser diode stack used to pump the master oscillator and the power amplifiers of the transmitter.

The completed Aeolus 1.5 m transmit/receive SiC telescope

The Flight Model of the Mie Spectrometer with the Fizeau etalon and the associated optics

Detection Front-end Unit with the Accumulation CCD

Slide 9ICSO Rhodes Island, 04-08 October 2010

Atmospheric Dynamics Mission-Aeolus

Status •Platform Integration completed and in storage

•Laser: testing in progress, some design issues still need to be resolved (alignment stability)

•Low pressure Oxygen environment to the majority of the high intensity laser optics.

•Operation in continuous mode

Power Laser HeadICSO Rhodes Island, 04-08 October 2010

Slide 10ICSO Rhodes Island, 04-08 October 2010

ADM-Aeolus: Airborne Campaigns

Campaigns activities First results from 3rd airborne campaignGround return compares good to DEMFirst Rayleigh winds compare qualitatively good to 2 µm wind lidar

Reference 2 m LOS wind

A2D Rayleigh LOS wind

http://www.pa.op.dlr.de/aeolus/ICSO Rhodes Island, 04-08 October 2010 Slide 10

Slide 11ICSO Rhodes Island, 04-08 October 2010

EarthCARE: Earth Clouds Aerosols and Radiation Explorer Mission

Scientific objective: quantify aerosol-cloud-radiation interactions so to include them correctly in climate and numerical weather forecasting models.

MISSION PARAMETERSOrbit:• Sun-synchronous• Altitude : 393 km• Local time : 13:45..14:00 descending node

Mass: 2000 kgPower: 1.5 kW

Mission life: 3 years

PAYLOAD

• Backscatter Lidar (ATLID)

• Cloud Profiling Radar (CPR)

• Multi-Spectral Imager (MSI)

• Broad-Band Radiometer (BBR)

Instantaneous radiative flux with an TOA error of 10 Wm-2

ICSO Rhodes Island, 04-08 October 2010 Slide 11

Slide 12ICSO Rhodes Island, 04-08 October 2010

EarthCARE: ATmospheric backscatter LIDar

Main Observation requirements

Measurement geometry

20 km

40 km

Sampling = 100 m

0 km

Sampling = 500 m

Averaging length = 10 km

Horizontal sampling distance =100 m

Laser pulse

Atmosphere

Signal

Time

Mie co- polar

channel

Rayleighchannel

Mie X- polar

channel

Cirrus

Cirrus optical depth

0.05

Backscatter sr-1 m -1

8 x 10 -7 2.6 x 10 -5

Vertical resolution 100 m 300 m 100 m

Required accuracy @ 10 km integration

50 % 15 % 45 %

Instrument sized to detect the weak signal from the thinnest radiatively significant cirrus cloud in daytime above dense cloud deck

Slide 12

Slide 13ICSO Rhodes Island, 04-08 October 2010

EarthCARE: ATmospheric backscatter LIDar

-6 -4 -2 0 2 4 6Relative frequency (GHz)

arbitra

ry u

nit

-6 -4 -2 0 2 4 6Relative frequency (GHz)

arbitra

ry u

nit

-6 -4 -2 0 2 4 6Relative frequency (GHz)

arbitra

ry u

nit

Rayleigh scattering contribution

Mie scattering contribution

HSR filter transmission

UV (355 nm) Backscatter Lidar with High Spectral Resolution Receiver to separate Rayleigh (molecular) and Mie (cloud,aerosol) cross and co- polarisation return

Measurement principle

Slide 14ICSO Rhodes Island, 04-08 October 2010

EarthCARE: ATmospheric backscatter LIDar

Instrument requirements

Parameters Value

TransmitterWavelengthPulse energyRepetition rateLine width

355

nm30

mJ74

Hz50

MHz

Receive TelescopeTelescope diameter 0.6 m

ReceiverHSR

Etalon Working ApertureAcceptance angleOverall finessePeak transmission BandwidthFree spectral range

Background filter rejectionWorking AperturePeak transmissionOverall finesseBandwidthFree spectral range

20 mm0.78 mrad8> 87 %< 0.3 pm2.4 pm

38 mm> 80 %3712 pm0.45 nm

Capacitance stabilised HSR etalon have been developed and successfully assessed against environment loads.

Slide 15ICSO Rhodes Island, 04-08 October 2010

EarthCARE: ATmospheric backscatter LIDar

Status:Preliminary Design Review completedBi-static configurationPressurised laser

Slide 16ICSO Rhodes Island, 04-08 October 2010

EarthCARE: ATLID pre-development

ATLID Laser Source: Medium energy frequency tripled and stabilised Nd:YAG laser MO/PA architecture

Oscillator: End pump; 8 mJ, 15 % o-oAmplifier based on patented Innoslab® concept:Slab crystal partially end-pumped from 2 sidesSignal folded in single pass configuration with constant fluence: scalable output85 mJ with 21 % o-oHarmonic section: LBO crystals: efficiency < 50 %

Parameters Performance

Output energy 34 mJ

Optical–optical efficiency 8% [808 nm-355 nm]

PRF 100 Hz

Spatial quality M2

< 1.7

Boresight stability < ±41 µrad

ptp

over 10 min

Pulse duration < 35ns

Longitudinal mode Single

Pulse linewidth < 50MHz

Spectral purity 99% in 100MHz

Frequency stability < 10MHz rms

over 1.4 sec

Slide 17ICSO Rhodes Island, 04-08 October 2010

EarthCARE: ATLID pre-development

ATLID Stacks: laser diodes manufacturers involved in the development of a stack optimised for a space application: long lifetime, high efficiency

Parameters Requirements

Wavelength (807 +

2) nm

Spectral width 2-3 nm

Peak output power > 700 W

Pulse width 150-200 µs

Repetition rate 70-100 Hz

Total efficiency > 50%

Emitting area < 10 x 14 mm

Divergence < 10 x 60 deg

Polarisation Linear >95%

Lifetime 10 billion shots

Highly-Reliable Laser Diodes and Modules for Spaceborne Applications, E. Deichsel, Jenoptik, Session 4a

Slide 18ICSO Rhodes Island, 04-08 October 2010

A-SCOPE: Advanced-Space Carbon and Climate Observation of Planet Earth Mission

Scientific objective: : The observation of the spatial and temporal gradients of atmospheric XCO2 with a precision and accuracy sufficient to constrain CO2 fluxes within 0.02 Pg C yr-1 on a scale of 1000 x 1000 km2.

MISSION PARAMETERS

Orbit:• Sun-synchronous• Altitude ~ 400 km• Local time 06:00descending node

Mass: ~ 1000 kgPower: ~ 1.7 kW

Mission life: 3 years

PAYLOAD

• Integrated Path Differential Absorption lidar (IPDA)

ICSO Rhodes Island, 04-08 October 2010 Slide 18

Slide 19ICSO Rhodes Island, 04-08 October 2010

A-SCOPE: Advanced-Space Carbon and Climate Observation of Planet Earth Mission

NIR (1.57 or 2.05 m) DIAL lidar for total column dry air CO2 mixing ratio

Value

Geophysical product XCO2

Random error [ppm] 0.5

Systematic error [ppm] 0.05

Coverage Global

Horizontal Resolution observation

[km] 50

Horizontal Resolution measurement

[m] 100

Vertical resolution Total column

Main Observation requirements

10 20 30Altitude [km]

Wei

ghting f

unct

ion [

-] 1.0

0.8

0.6

0.4

0.2

= 2.05 m

= 1.57 m

Slide 20ICSO Rhodes Island, 04-08 October 2010

A-SCOPE: Advanced-Space Carbon and Climate Observation of Planet Earth Mission

Instrument parametersInstrument design drivers:•Low random error:0.5 ppm wrt 380 ppm (0.13 % of DAOD) for ~ 350 measurements

– high laser power ×

telescope aperture– low detector noise– maximize the on and off-lines pulses overlap on ground

• Very low systematic error: 10 % of random error for 1000 x 1000 km2

– laser spectral stability and knowledge– laser spectral purity– stability of power monitoring of emitted laser pulses– stability and knowledge of the S/C pointing

Parameters 1.57 m 2.05 m

TransmitterPulse energyRepetition rateFrequency accuracyLinewidthSpectral purity

50 mJ50 Hz70 kHz50 MHz>99.95

55

mJ50

Hz100 kHz< 50 MHz> 99.93 %

Receive TelescopeTelescope diameterFOV

1 m0.47 mrad

1.2 m0.220 mrad

DetectorQENEP

0.7446 fW/Hz0.5

0.75100 fW/Hz 0.5

Slide 21ICSO Rhodes Island, 04-08 October 2010

A-SCOPE: pre-development

Parameters Requirements

OPO-OPA Fiber laser

Spectral band (um) 1.57 2.05 2.05

PRF (Hz) 50 30 2000-4000

Power (W) 2.5 1.2 2.5

Energy per pulse (mJ) 50 40 1.5

Bandwidth (MHz) 60 60 60

Spectral Stability (MHz) over 10 s 0.07 1.5 1.5

Spectral purity in 1 GHz 99.94% 99.98% 99.9%

A-SCOPE laser sources:

OPO-OPA at 1.57 m

OPO-OPA at 2.05 mFibre laser at 2.05 m

Slide 22ICSO Rhodes Island, 04-08 October 2010 Multiplication1 2 3 4 5 6 7

Exc

ess

Noi

se F

acto

r

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Exc

ess

Nois

e fa

ctor

Reverse Voltage(V)0 10 20 30 40 50 60 70

Cur

rent

(A)

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

Mul

tiplic

atio

n

5

10

15

20

25

30

Dark currentPhotocurrentMultiplicationT=200K

=2.1m

IV characteristics of Type-II APD

A-SCOPE: pre-development

Parameters

QE 70%

Active area diameter 150 m

Excess noise 1.5

NEP 100 fW/Hz0.5]

Bandwidth 20 MHz

Gain stability 0.1 % rms (short term)

Linearity 5 % rms

A-SCOPE APD detectors at 2.05 m

HgCdTe:APD based on loophole junctions Amplifier based on CMOS TIAMCT hybridised directly ontothe silicon chip

InAlAs:Type-II superlattice heterojunctionSAM structureMBE growth

InAs:InAs MBE and MOVPE growthSAM structure

Slide 23ICSO Rhodes Island, 04-08 October 2010

Earth Explorer 8

Opportunity Mission

• Release of the Call 02.10.09• Proposals 01.06.10

• 100 M€ industrial cost for the space segment and mission specific ground segment

• a minimum TRL of 4-5 required by the end of Phase A

• 31 proposals received7 proposals based on lidar technique

• Results of evaluation expectedin NOV 2010

Slide 24ICSO Rhodes Island, 04-08 October 2010

The ESA Living Planet Programme

CryoSat-2EXPLORER 1

EXPLORER 2

EXPLORER 4

EXPLORER 3

EXPLORER 5

EXPLORER 6

GOCE

SMOS

ADM-Aeolus

SWARM

EarthCARE

Call release

Proposals

Selection for phase A: PREMIER, CoReH2O, BIOMASS

CryoSat

Phase 0

EXPLORER 7

Call release Selection for phase A

2005 2006 20122007 2008 2009 2010 2011 2013 2014 2015 2016

EXPLORER 8Proposals

Slide 25ICSO Rhodes Island, 04-08 October 2010

Thank you for your attention

Merci de votre attention

Bedankt voor

jullie

andacht

Danke für

Ihre

Aufmerksamkei

Gracias por su

atención

Grazie per la vostra attenzione

σας ευχαριστώ!