european perspective on metals´ bioavailability research and implementation of the biotic ligand...

55
European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere Bioavailability of metals seminar – 18 October 2007 [email protected]

Upload: lydia-andrus

Post on 16-Dec-2015

220 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

European perspective on metals´ bioavailability research and

implementationof the Biotic Ligand Model (BLM) into

regulatory frameworks

Karel De Schamphelaere

Bioavailability of metals seminar – 18 October [email protected]

Page 2: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

BLM IN THE REAL WORLD

Karel De Schamphelaere

Bioavailability of metals seminar – 18 October [email protected]

Page 3: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

Scientific EQS approach for metals

EQS = HC5 based on Species Sensitivity Distribution (SSD)

Metals (Cu, Zn, Ni, Cd) very data rich

NOEC/EC10 available for 19-32 species

Potential pitfall:

NOEC/EC10 obtained in test media with widely varying chemistry

(= very different bioavailability)

Generic/uncorrected SSD does not represent ‘intrinsic sensitivity’

alone but rather a mix of ‘intrinsic sensitivity’ + bioavailability

effects

Need models to perform bioavailability normalization of

NOEC/EC10 to site/region specific water chemistry before SSD

and HC5 estimation

e.g., Biotic Ligand models (BLM)

Page 4: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

MeOH+

MeCO3

Me-DOC

pH

[Me] on ‘biotic ligand’

Toxic effect

Water Organism

H+

pH

Me2

+

Ca2+

Na+

Mg2

+

‘biotic ligand’ e.g. gill, cell

surface

Speciation

(WHAM)

Intrinsic sensitivityCompetition

(log K’s)

Log KCaBL

Log KMgBL

Log KNaBL

Log KHBL

Log KHBL

Page 5: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

Overview of available models

Standard test organisms

Cu Zn Ni Cd

Algae X X X -

Daphnia X X X X

Fish X X X X

Ceriodaphnia - - X -

Cu, Zn, Ni: BLM models or similar taking into account the effects

of DOC, pH, hardness (Ca+Mg), Na, alkalinity

Cd: Bioavailability correction based on hardness-toxicity relation

for 3 species and 7 datapoints (applied to all species)

HC5 (µg Cd/L) = 0.09 x (Hardness/50)0.7409

Page 6: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

BLM’s are validated in field waters

Factor 10 to 30 variability of toxicity > 90% of prediction errors < factor 2

10

100

1000

10000

10 100 1000 10000

observed EC50 (µg/L)

pre

dic

ted

EC

50 (

µg

/L)

Daphnia - acute - Cu

Daphnia - chronic -Cu

Daphnia -acute -Zn

Daphnia - chronic -Zn

Daphnia - acute - Ni

Field cladocerans -acute - CuRainbow trout -chronic - Zn

Page 7: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

What is normalization with BLM?

Principle = NOECalg with algae-BLM, NOECinvertebrate with Daphnia-

BLM, NOECfish/vertebrate with fish-BLM

=Refinement compared to hardness-Cd toxicity correction

NOECspecies A (µg/L)

Test waterX

(pHx, DOCx, Cax)

Site waterY

(pHY, DOCY, Cay)

BLM

NOECspecies A

[Me-BL]NOECspecies A (µg/L)

For site water Y

BLM

Intrinsic sensitivity

Page 8: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

SSD and HC5 Plot normalized NOEC’s

according to increasing probability

pH 6.9 - DOC 6.3 mg/L - Hardness 106 mg CaCO3/L

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000

NOEC (µg Zn/L)

Cu

mu

lati

ve

Pro

ba

bili

tyAlgae

Invertebrates

Fish

Page 9: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

SSD and HC5 Plot normalized NOEC’s

according to increasing probability

Fit statistical distribution (SSD)

pH 6.9 - DOC 6.3 mg/L - Hardness 106 mg CaCO3/L

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000

NOEC (µg Zn/L)

Cu

mu

lati

ve

Pro

ba

bili

tyAlgae

Invertebrates

Fish

Page 10: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

SSD and HC5 Plot normalized NOEC’s

according to increasing probability

Fit statistical distribution (SSD)

Calculate HC5(50%)

pH 6.9 - DOC 6.3 mg/L - Hardness 106 mg CaCO3/L

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000

NOEC (µg Zn/L)

Cu

mu

lati

ve

Pro

ba

bili

tyAlgae

Invertebrates

Fish

HC5 = 25 µg Zn/L

Page 11: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

SSD and HC5 Plot normalized NOEC’s

according to increasing probability

Fit statistical distribution (SSD)

Calculate HC5(50%)

pH 6.9 - DOC 6.3 mg/L - Hardness 106 mg CaCO3/L

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000

NOEC (µg Zn/L)

Cu

mu

lati

ve

Pro

ba

bili

tyAlgae

Invertebrates

Fish

HC5 = 25 µg Zn/L

pH 8.0 - DOC 23 mg/L - hardness 326 mg CaCO3/L

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000

NOEC (µg Zn/L)

Cu

mu

lati

ve

Pro

ba

bili

ty

Algae

Invertebrates

Fish

HC5=

168 µg Zn/L

HC5 increases substantially with increasing pH, DOC and hardness

Bioavailability matters!

Page 12: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

REAL WORLD ISSUES

Page 13: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

Real world issues

Limited number of BLM’s (for standard

species)

Extrapolation to other species? (“non-BLM

species”)

Lab to field extrapolation?

Species vs. communities?

Conservatism?

Models have boundaries

What to do outside boundaries? Extrapolate

BLM’s?

How to implement in regulation?

Consequences + practicalities

Page 14: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

ISSUE 1

Limited number of BLM’s

Extrapolation to other (non-BLM) species?

A few examples

Page 15: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

Same effect of pH on chronic toxiity of Cu2+ for 4 species of algae (slope ~ 1.4)…

…and 3 different endpoints (growth, biomass, P-uptake)

Extrapolatable!

Natural waters?

BLM Cu algae

4

5

6

7

8

9

10

11

12

4 5 6 7 8 9

pH

Ec

x p

Cu

P. subcapitata (NOEbC)

S. quadricauda (EpC50)

C. reinhartii (ErC10)

C. reinahrdtii (ErC50)

y = 1.371x - 1.769R2 = 0.930

y = 1.301x - 0.626R2 = 0.958

5

6

7

8

9

10

11

5 6 7 8 9

pH

ErC

10p

Cu

P. subcapitata

C. vulgaris

De Schamphelaere & Janssen (2006) ES&T 40, 4514-4522

Page 16: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

Typically: factor 10 to 30 variability in toxicity > 90% of prediction errors < factor 2

10

100

1000

10000

10 100 1000 10000

observed EC50 (µg Cu/ L)

pred

icte

d EC50 (

µg C

u/L)

P. subcapitataChlorella sp.C. reinhardtiiP. subcapitata (NOEC, fi eld)

BLM Cu algae in natural waters

Page 17: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

0 10 20 30 40 50 60 70 80

C. reinhardtii

C. vulgaris

P. subcapitata

D. magna

D. pulex

H. azteca

O. kisuch

O. mykiss

P. fluviatilis

P. notatus

P. promelas

S. fontinalis

Factor verschil tussen hoogste en laagste NOEC

Opgelost Cu

Biobeschikbaar Cu

From Cu VRAR report (2007) Supports extrapolation of BLM’s across species

Reduction of variability in NOEC data from literature

Fish

-BLM

Dap

hn

ia

BLM

Alg

a-B

LM

Page 18: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

A single BLM can be used to effects of pH, hardness, and DOC on acute and chronic Ni toxicity to rainbow trout and fathead minnow

Extrapolation possible!

Ni-BLM fish

Deleebeeck et al. (2007) Ecotoxicology and Environmental Safety 67: 1–13

Page 19: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

Very similar pH slope for Zn among two algae species Can be extrapolated!

Zn BLM algae

De Schamphelaere et al. (2005) Environ Toxicol Chem 24:1190-1197

y = - 0.7542x - 1.294

R2 = 0.9621

y = - 0.8197x - 0.5775

R2 = 0.9448

- 8.0

- 7.0

- 6.0

- 5.0

- 4.0

5.5 6.0 6.5 7.0 7.5 8.0 8.5

pH

log(

EC10 a

s Zn2

+)

Chlorella sp. P. subcapitata

Wilde et al. (2006) Arch. Environ. Contam. Toxicol. 51: 174–185

Page 20: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

Much evidence that Cu-BLM’s for all trophic levels can be accurately extrapolated (see also additional evidence in Cu-VRAR documents)

Clear evidence that Ni-BLM for fish may be extrapolated to non-BLM fish

Results of a comprehensive “spot-check” study indicate that BLM’s for other trophic levels may also be extrapolated (this issue is still under discussion at TC-NES)

Clear evidence that Zn-BLM for algae may be extrapolated to other algae

Although there is no toxicity-based evidence for invertebrate and fish Zn-BLM’s, extrapolation may possibly be justified on the basis of:

Very similar mode of action (disruption of Ca-balance) Ca is most important protective cation BLM-constants (log K’s) of fish and Daphnia are very similar

Clear need for toxicity-based research to test applicability of extrapolation

Extrapolation: conclusions & outlook

Page 21: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

ISSUE 2

LAB TO FIELD EXTRAPOLATION

Page 22: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

Three high quality mesocosm studies

Estimate HC5 based on NOEC values for the species within the mesocosm experiment = observed HC5

Estimate HC5 based on SSD with single-species literature toxicity data normalized to mesocosm chemistry (pH, DOC, Ca, …) = predicted HC5

Compare observed vs. predicted HC5

Example 1: Cu mesocosm data

Page 23: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

From Cu VRAR (2007) – arrow reflects uncertainty due to non-equilibrium

HC5(observed) from 3.4 to 19.6 µg/L Good agreement between observed and predicted HC5 SSD+BLM methodology for Cu seems appropriate for accurate

protection in the field

Example 1: Cu mesocosm dataPrediction of mesocosm sensitivity

1

10

100

1 10 100

Observed HC5-50 mesocosm

Pre

dic

ted

HC

5-5

0

me

so

co

sm

Roussel, 2006

Schaefers, 2001- all

Hedke, 1984

Roussel, 2006 correct at inflow"

Page 24: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

Conducted for the UK Environment Agency

Research consortium of Centre for Ecology and Hydrology (UK), UGent (B), Univ. Antwerp (B), Univ. Wageningen (NL)

Monitoring of full chemistry, invertebrate and diatom community composition, metal bioaccumulation in invertebrates, Toxicity Identification Evaluation for reference and metal contaminated streams (n=35)

Aims: To investigate if water chemistry and bioavailability should be

taken into account when looking at ecological, community-level effects in the field

To investigate if current and proposed EQS methodologies are adequate for protecting field communities

Example 2: UK EQS project

Page 25: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

Chemical analyses(dissolved metals, DOC,

pH, major ions, alkalinity, etc.)

UK EQS project - concept

Physical site characterization

(width, depth, stream velocity, etc.)

RIVPACS MODEL

Expected No. of TAXA present in stream

Ecological analyses(invertebrates,

diatoms)

Observed No. of TAXA present in stream

Predicted HC5 and % affected species

BLM+SSD

Observed/Expected No. of TAXA

Agreement?

Conservatism?

Page 26: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

Chemistry clearly influenced how metals affect community composition

Both speciation and competition effects seemed important

The importance of metal mixtures in the field could not be dismissed

Regression analysis suggested that ecological effects in non-acidic sites (pH>6) could best be explained in terms of contamination by Zn and/or Al and/or Cu and/or a mixture of these elements, although Cd could not be excluded either due to its correlation with Zn

Under these circumstances: predictive capacity of Zn-BLM + SSD approach for effects observed in the field?

UK EQS project – Main Results

Page 27: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

Ecological effects are significantly correlated to exceedence of HC5(Zn)

7 sites correctly classified as non-impacted, 12 sites correctly classified as impacted, 6 false-negatives, 4 false-positives

Mean (Zn/HC5) vs. field effectsPreliminary calculations – do not quote

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.01 0.10 1.00 10.00 100.00 1000.00

geomean(Zn/HC5)

Ob

serv

ed /

Exp

ecte

d N

o.

of

Tax

a

r2=0.18p=0.02

≥ 0.79RIVPACS

Class A quality

Page 28: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

Interpretation

In general: ecological effects in the field can be related to exceedence of thresholds (HC5) based on laboratory-based ecotoxicity data, normalized for bioavailability

False-positives can be due to: Over-conservative HC5 Tolerance acquisition of local communities

False-negatives can be due to: Under-conservative HC5 Temporary exceedence of HC5 (in two out of six cases) Toxicity contribution from other metals, including Al (mixture

effects)

In order to understand better the ecological effects of metal contamination in the field: mixture toxicity needs to be understood

Page 29: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

Preliminary approach for metal mixtures toxicity in the field

Assume that organisms consist of a set of binding sites relevant for accumulation and toxicity with which all metals and competing cations react (cf. BLM) in a similar way as humic acid reacts with all metals and cations

Then: the total amount of all metal calculated with WHAM VI to be bound to HA (mol/g) could potentially be related to accumulation and effects

The Toxicity Binding Model (TBM)

Two examples: Metal accumulation in bryophytes Toxicity to P. subcapitata in the field samples

Page 30: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

Metal accumulation in bryophytes

Metals in bryophytes agrees fairly well with WHAM VI calculated metal binding to HA proof of principle that mixture-BLM is possible

Page 31: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

Metal toxicity to algae in field samples

Ftox = [metal bound to HA]/[metal’s specific toxicity] TBM approach is also promising for predicting metal mixture toxicity

Page 32: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

Main conclusions UK EQS project

Chemistry (both speciation and competition) seemed to be important for ecological effects of metals in the field

As shown for Zn, ecological effects in the field can be related to exceedence of thresholds (HC5) based on laboratory-based ecotoxicity data, if normalized for bioavailability

Metal mixtures in the field are a reality

The TBM shows that BLM-like approaches might be valuable for taking mixture effects into account

Final report expected soon (end 2007) Further information: UK Environment Agency (Paul Whitehouse)

Page 33: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

ISSUE 3

MODELS HAVE BOUNDARIES

Page 34: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

Boundaries within which bioavailability models for three trophic levels have been developed and/or

validatedCu Zn Ni Cd

pH range 6 – 8.5 6 - 8 5.9 – 8.2

Hardness range (mg/L)

10 - 360

- 25 – 320* > 40

Ca range (mg/L) - 5 - 160

-* Before Ni research with soft waters (lower hardness boundary was reduced to 6 mg CaCO3/L based on Ni-SOFT research (see further)

Page 35: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

Cu toxicity to cladocerans in acidic waters

Ni toxicity to cladocerans in soft waters

Cd toxicity to Daphnia longispina in soft waters

Three examples

Page 36: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

Collected field waters and their inhabiting field cladocerans (water fleas) populations

Toxicity test results in standard medium with these species were used to calibrate Cu-BLM Daphnia to sensitivity of field-species

Predicted toxicity in natural waters with varying composition was compared with observed toxicity in natural waters

Cu toxicity to field cladocerans

Page 37: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

For normal sites (pH > 5.5): 27/28 LC50’s accurately predicted

=further evidence in support of extrapolation

Cu toxicity to field cladocera

1

10

100

1000

10000

1 10 100 1000 10000

Observed 48-h EC50 (µg Cu L-1)

Pre

dict

ed 4

8-h

EC

50 (µ

g C

u L

-1)

Bossuyt et al. (2004) Environ Sci Technol 38: 5030-5037

Page 38: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

Cu toxicity to field cladocera

1

10

100

1000

10000

1 10 100 1000 10000

Observed 48-h EC50 (µg Cu L-1)

Pre

dict

ed 4

8-h

EC

50 (µ

g C

u L

-1)

For acidic sites (pH < 5.5): general overestimation of toxicity

Further research requiredBossuyt et al. (2004) Environ Sci Technol 38: 5030-5037

For normal sites (pH > 5.5): 27/28 LC50’s accurately predicted

=further evidence in support of extrapolation

Page 39: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

Ni SOFT project

### ##### ### ### ########### ## ### ## ###### ##### ##### ## ### ### ######### ##### ###### ######### ### ##### ## ##### ### ### ################## ##### #### ##### ## #### ########## ################## #### ## ## ### ####### ## ####### ###### ## ###############

######### ### ### #### # ## ### ## ### ####

###### ## ########### #### ##### #### ### #### #### ## ## ####### ## ## ##### ###### ######### ## ### ## ### ### ### #### ######## ##### ## # #### ######## #####

### ### ## ## # #### ## ### # ### ## ## ## # ## ### ### ### # ## # ####### ### ### #### ## #### ## # ####### ######## # ## # ### ### ##### ### # ### #### ###### #### ## ### ## #### ### # ##### ##

###### ### ## # #### ## ## ##### ## ## ### ##### # ## ### ## ### #### ##### # ### ### ## ### ### ## ## ## ##

###################### ### #### ## ## ####### #### ##### ########### ##### ####### #### ### ### ## ### ##### ##############

#############

##### ##### ## #### ## #######

################# # ########## ### ##### ## ########## ### #### ### ###### ### #### #### ####### #### #### ### #### ##### ### ### ######### ### #### ###### ##### ## ### #### ### #### ## #### #### ### ## #### ### #### ### ## ##### ## ## ## ### ## ########### ### ## ###### ## ## ###### ### ### ## ## ### ### # ## ## ###### ## ## # ### ## ##### ######### ### ## ## ####### ### ####### ## ########## ########### #### ### #### # ### ## # ## ##### #### ### # #### ##### # ## ### #### ### ## ## ##### # ## # ## ## #### ### ## # #### ### ### ### ## ### ###### ## ## ###### # ### ######## ####### #### ############

# ###### ## ### #### #### ###### #### ######## ######## ############ ### ###########

###### ### ###### #### ## ######### # ### #### # ##### ### #### #### #### ####### ####

######## ### ### #### ##### ## ### ## ### ### # ### ## ### #### ## ## # ###### ### ### # ### ## ### ## ## ## # ### ### ##### ## ## #### # ### ## ## # ## #### #### ## ## #### #### ### ## # ## ## ## ### ## ### ## # # #### ## ### #### ## # ####### #### ## ##### ## ### ### ####### ### # ######### ####

######## ####### # #### ####### ########## ##### ## ###### ## # ### ## ## #### #### #### ## ##### ## #### ## ##### ##### #### ## ## ### ##### ## ## ## #### ######## ## ## ## ## ### ## # ## ## ## ## ## # ## ## ## ### ### ## ## ## ## #### ## ##### # ## ## ### #### ### ## ## # ## ## ######### ### ### ################ ######## ###### # ### ## # # ##### ## ## #### ## # #### ## # # ### ## ## ## ## ### ### ### ### # ### ## ##### ## ## # #### ### ### ## #### # # ####### # ### ### #### ## # # ## # ##### # ## #### ## # ## ## ## #### ####### ## ####

## #### ### ## # #### ## ## ## ##### ########## #### ## ### ## ## ### ## ## ## # ## ### ### ## ## #### ## ### ### #### #### ## # ## ### # ### ##### ### ### ## # #### ## ###### # # ## # ## ### # #### ## ### ## ## # ## #### ## ## ## ## ## ### ### ## ## #### # ## ### ### ### ### ## ## ### # ### ## ##### ### ## ## ## ### ## ## ## #### ## ## ## ## ## # ## ## #### ##### ##### #### ##### ######

## ## ### # ### # ##### # ## ## # ### ## ### # ## ## # ## # # # ## ### # ## # ### ##### ### # #### ### # ### # ## ##### ### #### # ### ## # ### # #### # #### #### # ## #### ## ### ### ### ## # ### # ## ## ## # # ### ### # ### # ### ## # # # ### ## ## #### # ## ## ## ## ## # # ##### ## # ### ### # ## ## ## # ### ## ## ## ## ## ### #### #### ####### ## ## ### ## ##### # ### # ### ### #### ### ## ## ## ## ## #### ##### # ## ## ## ## #### ## ## # ## ## # #### ## ### ## #### ### ### #### ####

# ## ### ## #### ##### ## ## ## ## ### ##### ## # # ## ## ## ## # # ### ## ### ###### ##### ## #### # #### ### # # ## ## ## # ### # ####### #

#### #

## # ### # # #

# # # ###### ## # ## ## #### ### #

## #### ### # ####

## # ## ##### ## ##

#### ## ## ######### # #### # ### ###

## ## ### # ### # ## # ## # # ## ## ## ## ## # ### ## ##

## ## ### ##### ##

# ##### # ### ## # ######

###

# #### # ## #### ## # ## ##

### ####### ### ##### ### # ## #

## ##

## #### # ## # ##### # ## #### #####

## #### ## ## ### # ##

### ##

### ## ####

### # ##

# # ## # #### ## # ##### # ## # ## ##### # ## ##### ### #####

# # ### ## ### # ### ### #### ## # ## #### ## ### ## ### #### # ## ## ## ## ## # ## ## ## ### # # ## ### #### #### ### # # ### ## ## # ### # ## ### ## # # #### ### ### ## ## ### ## # # ## ## ### # # ### ## # ## # ## # #### ## #### # # ## ## # ### # # ## # ## ### ## ### ####### # ### ## ## # ## ## ### ## ### ###### ## ## #### ## ###### ###### ### ###

####

########

###

###

## #

##########

### ##

#

#### ##

# ##

#

#

##

#

#### #

### ############

#

## ###

## #####

####

#

#############

#

###### ####

## ####

####

########

#####

#

##

# ####

########

#

###### #

## #

#

##########

#######

#### ##### ####

#

####### #

# ##

#

###

###

##

##

### #

#

#######

####

###

#

#####

######

# #####

##

#######

#

## ###

## #

# ##### #

###### # ## #

###

####

# ## #

###

## #### ##

# ##

## ## ### # ###

##

####### #

#

#

####

###### ###

####

#

#

#

######

#### ##

##

######

########## # ## ######

##

## #

##########

### ######

##### ##

#

##

## ## #####

#

### #

## ###

##

# #

#

#

##

##

##

###

###

##

#

####

##

###

#

#####

##

## ###

#

#####

##

##

#####

#

#

## ## #

## ###

##

##

#

#

##

#

#

### ###

#

#

#

##

#

#

#

#

#

#

#

#### ########

## ######

######

### ####

#####

### #######

##

#

##

#######

# ###

#######

##

#

### ##

##

### #########

##

### ######

######

#######

######################

##

###

############ ###

### ###### ##

###########

### ## ## ###

### ###

#

#########

############ ####

######

##### ########

###########

#######

##

######

####

###

####

############### ####

#### #

#### ####### #

######

######

######

########## ####

## ########

#######

##

####

###### ####

#######

#####

################ ######## #

####

##

## ######## ######

### #####

####### ##

##

######

##### ####

### ##### ## #######

#####

### ########

###### ###

##########

##

##### #### ##### #####

#### #####

##### ###### # ### #########

#### #

## ## #

##

### # ## ##### ### #

##

######

############### ## ##

####

### ##### #

##

####

##

######

#####

######## #######

# #### #####

##

## ## ###

###

##

# #####

#####

#

###

###

## ##

######

## ###

### ###### #### ####

### ###

## ###

##### ##

##

#

###

###

####### # #

##

###### #

##

##

# ##

##

##

## ##

#### ##

##

##

## #

#

### # ## #### ###

###

#

###### ##

###

##

# #

###

##

##

#### ###

####

#

##

###

## ####

######

#

####

##

###

#

#

#

zone A

hardness ( mg/L Ca CO3)# <2.5# 2.5 - 10# 10 - 25# 25 - 100# >100

900 0 900 1800 Kilometers

N

EW

S

Selected region for sampling: Both soft and hard close to each other Low anthropogenic input (N,P) Same climate Calcareous deposits for ‘hard’ region

Collect cladocerans and algae from soft (H~6) and hard water (H~42) and test for chronic Ni toxicity in soft, moderately hard and hard water

Deleebeeck et al. (2007) Aquat. Toxicol 84:223-235

Page 40: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

Ni SOFT project – hypotheses

Cladocerans originating from soft water would be inherently more sensitive to Ni than those originating from hard water

Cladocerans from soft water would be more protected against Ni toxicity by hardness than those from hard water

Page 41: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

Ni SOFT project – design

Chronic toxicity testing (reproduction, 10d to 21d)

Species from soft water tested in Soft (S, hardness 6 mg/L) and Moderately Hard (MH, hardness 16 mg/L) water

Species from hard water tested in Moderately Hard (MH) and Hard water (H, hardness 42 mg/L)

Allows comparison of species sensitivity (comparison of EC50 in MH water)

hardness effect (comparison of KCaBL and KMgBL

estimated for soft and hard water species)

Page 42: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

Chronic Ni toxicity to cladocerans

Chronic EC50 (µg Ni/L)

Species from soft moderate

hard

Peracantha truncata soft 15.3 47.2

Ceriodaphnia quadrangula

soft 4.4 23.4

Simocephalus serrulatus soft 7.67 54.2

Ceriodaphnia quadrangula

hard 11.3 36.2

Ceriodaphnia pulchella hard 16.2 31.2

Simocephalus vetulus hard 11.2 28.9

Daphnia longispina hard 58.6 125 No significant difference in intrinsic sensitivity No significant difference in protective hardness effect Ni-BLM can be extrapolated down to hardness 6 mg/L

Page 43: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

Cd SOFT project

Hardness correction equation proposed in Cd RAR was only derived for hardness > 40 mg CaCO3/L

Can equation be extrapolated to hardness as low as 5 mg CaCO3/L?

Chronic toxicity testing (reproduction, 21d) with D. longispina

In two Swedish soft waters with manipulated hardness

Page 44: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

RAR hardness slope (0.7409 – dashed line) cannot be extrapolated to hardness < 40 mg CaCO3/L

Hardness effect at hardness <50 is much lower (slope=0.1562=n.s.)

Cd SOFT project

0 10 20 30 40 50 60

Hardness, mg CaCO 3 /l

0

2

4

6

8

10

12

14

21-d

ay E

C50

, ug

dis

solv

ed C

d/l

Page 45: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

Conclusion extrapolation outside model boundaries

Based on the given examples, any type of outcome may be expected from extrapolation outside model boundaries (accurate, overconservative, underconservative)

Thus, extrapolation outside model boundaries will usually not be recommended without additional investigation for the specific local or regional abiotic conditions

Page 46: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

IMPLEMENTATION

Demonstration project in NL

Page 47: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

NL issue Cu and Zn were considered nation-wide problematic substances

Yellow, orange and red dots are sites where [Me] > EQS

Baseline EQS not corrected for bioavailability (1.5 µg Cu/L, 9.4 µg Zn/L)

Additional metal removal step from WWTP was planned nationally

Large investments required while local water agencies wanted to invest

mainly in ‘more important’ problems (eutrofication, habitat restoration)

Thus: how large are true ecological risks if bioavailability is considered?

Cu

Zn

Page 48: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

Monitoring campaignJune 2006 – January 2007

Total and dissolved metal (Cu, Zn, Ni)

TOC, DOC, pH, Ca, Mg, Na, K, Cl, SO4, alkalinity

River basins # Sites # Samples / site

Total # Samples

Regge & Dinkel 8 6 48

Dommel 6 5-6 33

HHSK 6 7 42

Velt &Vecht 6 2-5 27

Hunze & Aa’s 5 3-4 18

Vallei en Eem 8 6 48

Total 31 2-7 216

Page 49: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

Chemistry summary(percentiles)

10% 50% 90%

pH 6.90 7.48 8.05

Hardness (mg CaCO3/L) 106 189 326

Ca (mg/L) 33 63 100

DOC (mg/L) 6.3 12 23

Page 50: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

Metal measurements

min 10% 50% 90% max

Dissolved Cu (µg/L) < 0,7

1 2 4,2 8,3

Dissolved Ni (µg/L) < 1 2 3,8 9,8 33

Dissolved Zn (µg/L) < 4 6 9 30 170

Despite careful discussions with and protocol transfer to people

from local water agencies some difficulties noted

Some laboratories acidified samples before filtration

In many samples dissolved metal > total metal (varies among

agencies)

Cu (7-34%), Ni (2-50%), Zn (5-21%)

Page 51: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

HC5 vs. baseline EQS

min 5% 10% 50% max EQS*

HC5-Cu (µg/L)

1.3 11 19 37 133 1.5

HC5-Ni (µg/L) 9 16 21 34 100 5.1

HC5-Zn (µg/L) 11 25 30 63 206 9.4

HC5’s varied 10-fold (Cu, Ni) to 20-fold (Zn)

HC5 is in most samples much higher than the baseline EQS

* This is the baseline EQS, not corrected for bioavailability

Page 52: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

HC5 vs. DOC

Possibilities to develop simple equations (avoiding the use of complex BLM calculations + SSD fittings)

EQS of metals without DOC measurement are worthless

pH second most important

Best fit

y = 4.2056x + 15.563

R2 = 0.7527

0

50

100

150

200

250

0 10 20 30 40 50

DOC (mg/L)

HC

5 (µ

g Z

n/L

)Best fit

y = 1.787x + 12.632

R2 = 0.8689

0

20

40

60

80

100

120

0 10 20 30 40 50

DOC (mg/L)

HC

5 (µ

g N

i/L

)

Best fit

y = 2.4503x + 8.411

R2 = 0.6336

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50

DOC (mg/L)

HC

5 (µ

g C

u/L

)

Page 53: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

Compliance with HC5 vs. baseline EQS

without bioav. correction

with bioav. correction

n>EQS %>EQS n>HC5 %>HC5

Cu 116 58 % 2 1.0 %

Ni 51 26 % 0 0.0 %

Zn 63 32 % 9 4.5 %

Non-compliance with baseline EQS for 26-58% of samples

Non-compliance with bioavailability-corrected HC5 for 0-4.5% of

samples

Page 54: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

Conclusion - implementation

Analysis of dissolved metal concentrations is not as easy to

implement as many people tend to believe

A very different view about the “nation-wide metal problem” was

obtained in NL when bioavailability is considered; the

recommendation was to extend the analysis to all WFD

monitoring stations of NL

Bioavailability corrections might provide a more accurate picture

of true ecological risks, thus avoiding “useless” investment of

money that could be used for more important issues (e.g.,

eutrofication)

Complex BLM + SSD calculation may be simplified without very

much loss of accuracy…

Page 55: European perspective on metals´ bioavailability research and implementation of the Biotic Ligand Model (BLM) into regulatory frameworks Karel De Schamphelaere

General conclusions Validated bioavailability models are now available for Cu, Zn, Ni, (and

Cd)

Extrapolation of models across species:

OK for Cu

Available information for Ni under discussion at TCNES

Some supportive information available for Zn, but more research

recommended

Extrapolation from lab to field:

OK for Cu (mesocosms)

Supportive information for Zn (UK project), mesocosm studies under

investigation

No data available for Ni

Mixtures are a reality (mixture BLM seems possible – more research

required)

Extrapolation outside model boundaries:

Variable outcomes; hence extrapolation not recommended without extra

research

Implementation in legal frameworks:

Provides more accurate picture of true ecological risk – avoids wrong

investments

Training will be required (analytical issues, BLM+SSD calculations)