exoplanet* characterization withhighresolution irspectroscopy · exoplanet* characterization...

18
Exoplanet characterization with highresolution IR spectroscopy Nikolai Piskunov and Erik Aronson Uppsala University

Upload: others

Post on 19-Feb-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Exoplanet  characterization  with  high-­‐resolution  IR  spectroscopy    Nikolai  Piskunov  and  Erik  Aronson  Uppsala  University  

Transit  spectroscopy  

Transit  spectrophotometry  Fi7ng  FORS  observa=ons  of  GJ1214b  to  selected  models:                          

Can  we  do  it  without  assuming  a  model?  

In  principle,  yes:  Matching  observa=ons  with  tellurics  removed  against  normalized  stellar  flux  minus  intensity  affected  by  the  planet  plus  intensity  passing  through  planetary  atmosphere:        This  really  does  not  work:  •  We  subtract  two  large  values  that  are  marginally  different  •  Where  telluric  features  are  strong  we  will  be  dividing  noise  by  zero  

•  We  have  all  systema=cs  (telluric,  flux,  intensity  and  instrumental  profile)  working  directly  against  us  

X

�,�

!�,� ·⇥O�,�/T�,� �

�F�,� � �

core

· I�,� + �atm

· I�,� ·Atr

�⌦ �

inst

⇤2

= minX

�,�

!�,� ·⇥O�,�/T�,� �

�F�,� � �

core

· I�,� + �atm

· I�,� ·Atr

�⌦ �

inst

⇤2

= min

Equations:  alternative  Observed  flux  is  normalized  by  the  theore=cal  stellar  flux  and  matched  against  the  rela=ve  contribu=on  of  the  planet:          This  is  beTer:  •  Systema=c  errors  with  instrumental  profile  cancel  out  for  the  exoplanet  part.  

•  The  telluric  spectrum  acts  as  a  weight:  wavelengths  with  strong  telluric  absorp=on  have  less  contribu=on  to  the  total.  

•  An  accurate  analy=cal  model  of  telluric  spectrum  allows  reducing  the  dynamic  range  between  observa=ons  and  planetary  signatures.    

X

�,�

!�,� ·⇢

O�,�

F�,� ⌦ �inst

� T�,� ·1� �

core

I�,�F�,� ⌦ �

inst

+ �atm

(Atr

� · I�,�)⌦ �inst

F�,� ⌦ �inst

��2

= min

X

�,�

!�,� ·⇢

O�,�

F�,� ⌦ �inst

� T�,� ·1� �

core

I�,� ⌦ �inst

F�,� ⌦ �inst

+ �atm

(Atr

� · I�,�)⌦ �inst

F�,� ⌦ �inst

��2

= min

Numerical  experiments  Jupiter-­‐size  planet  in  front  of  a  solar-­‐type  star.  Using  120  exposures  during  a  single  transit  (S/N=250  per  exposure)  

Numerical  experiments  

Earth-­‐like  planet  passing  in  front  of  an  M5  dwarf.  BoTom  panel:  simulated  observa=ons  with  CRIRES+.  Top  panel:  CO2  spectrum  in  planet  atmosphere  (blue)  and  its  reconstruc=on  from  10  transits  (red).  

Numerical  experiments  Resolu=on  and  spectral  coverage:      R=100000              R=10000  

Test  object:HD209458  CRIRES  observations  

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2Phase

−200

−100

0

100

200

Rad

ial V

eloc

ity (

m/s

)

HD 209458 bP = 3.5 d

exoplanets.org

Data  reduction:  λ-­‐scale  

Shift  to  star  rest  frame  

Remove  telluric  and  stellar  features  

Shift  to  the  planet  rest  frame  …  CO

2.324 2.326 2.328 2.330 2.332 2.334Microns

0.997

0.998

0.999

1.000

1.001

We  can  look  at  many  molecules  

…  and  in  other  spectral  regions,  but  we  are  not  there  yet  with  current  the  data  

Well,  may  be  there  is  something  there  …  

CRIRES+  (ready  2017)  •  Massive  increase  in  wavelength  coverage                  

•  BeTer  throughput  •  BeTer  sampling  •  BeTer  detectors  •  Spectropolarimetry  •  BeTer  wavelength  calibra=ons  

Conclusions  Ground-­‐based  high-­‐resolu6on  (IR)  spectroscopy  has  a  great  poten6al  for  true  (model  independent)  characteriza6on  of  exoplanetary  atmospheres.    What  we  need  is:  •  High  (>300)  S/N  in  a  short  exposure  with  a  good  duty  cycle  •  High-­‐resolu=on  (R>=100000)  to  see  between  telluric  lines  and  take  advantage  of  the  Doppler  shic  varia=on  between  exposures  

•  High  wavelength  coverage  to  look  at  different  species  and  play  with  combining  lines  

•  Reliable  calibra=ons  (wavelength,  flat,  background,  blaze)  •  Stability  on  =me-­‐scale  of  a  transit  •  Repeatability  to  use  day-­‐=me  calibra=ons  and  connect  different  transits  

This  can  be  achieved  with  CRIRES+  at  the  VLT    •  All  of  the  above  for  tens  of  targets!  This  is  a  job  for  the  E-­‐ELT  +  HiRes