experimental flight testing for assessing the safety of ... · corridors, dynamic geo-fencing,...

55
 American Institute of Aeronautics and Astronautics  1 Experimental Flight Testing for Assessing the Safety of Unmanned Aircraft System Safety-Critical Operations Christine M. Belcastro 1 NASA Langley Research Center Hampton, Virginia 23681 David H. Klyde 2 Systems Technology, Inc. Hawthorne, California 90250 Michael J. Logan 3 NASA Langley Research Center Hampton, Virginia 23681 Richard L. Newman 4 Crew Systems Seattle, Washington, 98165 John V. Foster 5 NASA Langley Research Center Hampton, Virginia 23681 Many beneficial civilian applications of commercial and public small unmanned aircraft systems (sUAS) in low-altitude uncontrolled airspace have been proposed and are being developed. Associated with the proliferation of civil applications for sUAS is an expected requirement for BVLOS (beyond visual line of sight) operations with increasing use of autonomous systems and operations under increasing levels of urban development and airspace usage. It is also anticipated that future demand will necessitate a shift toward multi-UAS operations in which a single operator will be responsible for the safe operation of multiple sUAS simultaneously. As risk increases for ensuring the safety of manned aircraft and persons on the ground (e.g., in suburban and urban environments), these operations become safety-critical. Ensuring the safety and effectiveness of these safety-critical operations will require an assessment of the impacts of safety hazards on sUAS and their operation, as well as the development of hazard mitigation and contingency management systems and strategies that reduce the associated risk. Safety assessments must be performed under nominal and off-nominal conditions using analysis, simulation, and experimental testing that utilize a set of test scenarios designed to expose safety vulnerabilities. Moreover, the effectiveness of hazard mitigation systems and contingency management strategies must be similarly evaluated. Experimental test techniques and hazards- based test scenarios that facilitate these safety assessments are therefore needed, as well as sUAS computer simulation models that are capable of characterizing off-nominal vehicle dynamics. Ultimately, real-time risk assessment and safety assurance systems may be needed for safety- critical operations such that determination of unacceptable risk will initiate hazard mitigation actions to reduce risk to an acceptable level and thereby ensure safety. This capability may especially be needed to enable (and ensure) safe multi-UAS operations under uncertain, off- nominal, and hazardous conditions. This will require the development of methodologies for the effective detection and mitigation of emergent (unanticipated) safety hazards, as well as human- automation interface systems that enable effective teaming under adverse conditions. Validation of these systems will require (in part) experimental testing in a realistic and relevant flight environment. This paper presents experimental flight test techniques and an initial set of hazards- based test scenarios that are under development for assessing the safety of sUAS operations. Key research and technical requirements for establishing a flight test environment for assessing the safety of multi-UAS operations are also briefly addressed.                                                            1 Senior Research Engineer, Dynamic Systems and Control Branch, MS 308, E-Mail: [email protected]; AIAA Associate Fellow. 2 Technical Director, E-Mail: [email protected]; AIAA Associate Fellow. 3 Senior Engineer, Aeronautics Systems Engineering Branch, MS 238, E-Mail: [email protected]; AIAA member. 4 Retired, FAA, Post Office Box 25054, E-Mail: [email protected]; AIAA Associate Fellow. 5 Senior Research Engineer, Flight Dynamics Branch, MS 308, E-Mail: [email protected]; AIAA Associate Fellow. Downloaded by NASA AMES RESEARCH CENTER on June 28, 2017 | http://arc.aiaa.org | DOI: 10.2514/6.2017-3274 17th AIAA Aviation Technology, Integration, and Operations Conference 5-9 June 2017, Denver, Colorado AIAA 2017-3274 This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. AIAA AVIATION Forum

Upload: others

Post on 14-May-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

1

Experimental Flight Testing for Assessing the Safety of Unmanned Aircraft System Safety-Critical Operations

Christine M. Belcastro1 NASA Langley Research Center

Hampton, Virginia 23681

David H. Klyde2 Systems Technology, Inc.

Hawthorne, California 90250

Michael J. Logan 3 NASA Langley Research Center

Hampton, Virginia 23681

Richard L. Newman4

Crew Systems Seattle, Washington, 98165

John V. Foster 5 NASA Langley Research Center

Hampton, Virginia 23681

Many beneficial civilian applications of commercial and public small unmanned aircraft systems (sUAS) in low-altitude uncontrolled airspace have been proposed and are being developed. Associated with the proliferation of civil applications for sUAS is an expected requirement for BVLOS (beyond visual line of sight) operations with increasing use of autonomous systems and operations under increasing levels of urban development and airspace usage. It is also anticipated that future demand will necessitate a shift toward multi-UAS operations in which a single operator will be responsible for the safe operation of multiple sUAS simultaneously. As risk increases for ensuring the safety of manned aircraft and persons on the ground (e.g., in suburban and urban environments), these operations become safety-critical. Ensuring the safety and effectiveness of these safety-critical operations will require an assessment of the impacts of safety hazards on sUAS and their operation, as well as the development of hazard mitigation and contingency management systems and strategies that reduce the associated risk. Safety assessments must be performed under nominal and off-nominal conditions using analysis, simulation, and experimental testing that utilize a set of test scenarios designed to expose safety vulnerabilities. Moreover, the effectiveness of hazard mitigation systems and contingency management strategies must be similarly evaluated. Experimental test techniques and hazards-based test scenarios that facilitate these safety assessments are therefore needed, as well as sUAS computer simulation models that are capable of characterizing off-nominal vehicle dynamics. Ultimately, real-time risk assessment and safety assurance systems may be needed for safety-critical operations such that determination of unacceptable risk will initiate hazard mitigation actions to reduce risk to an acceptable level and thereby ensure safety. This capability may especially be needed to enable (and ensure) safe multi-UAS operations under uncertain, off-nominal, and hazardous conditions. This will require the development of methodologies for the effective detection and mitigation of emergent (unanticipated) safety hazards, as well as human-automation interface systems that enable effective teaming under adverse conditions. Validation of these systems will require (in part) experimental testing in a realistic and relevant flight environment. This paper presents experimental flight test techniques and an initial set of hazards-based test scenarios that are under development for assessing the safety of sUAS operations. Key research and technical requirements for establishing a flight test environment for assessing the safety of multi-UAS operations are also briefly addressed.

                                                            1 Senior Research Engineer, Dynamic Systems and Control Branch, MS 308, E-Mail: [email protected]; AIAA

Associate Fellow. 2 Technical Director, E-Mail: [email protected]; AIAA Associate Fellow. 3 Senior Engineer, Aeronautics Systems Engineering Branch, MS 238, E-Mail: [email protected]; AIAA member. 4 Retired, FAA, Post Office Box 25054, E-Mail: [email protected]; AIAA Associate Fellow. 5 Senior Research Engineer, Flight Dynamics Branch, MS 308, E-Mail: [email protected]; AIAA Associate Fellow.

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

17th AIAA Aviation Technology, Integration, and Operations Conference

5-9 June 2017, Denver, Colorado

AIAA 2017-3274

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

AIAA AVIATION Forum

Page 2: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

2

Nomenclature

AirSTAR = airborne subscale transport aircraft research BRS = base research station BVLOS = beyond visual line of sight FW = fixed wing sUAS configuration GPS = global positioning system LOC = loss of control MOS = mobile operations station MR = multirotor sUAS configuration MTE = mission task element sUAS = small unmanned aircraft system UAS = unmanned aircraft system UH = unmanned helicopter sUAS configuration UTM = UAS traffic management VLOS = within visual line of sight V&V = validation and verification

I. Introduction

ANY beneficial civilian applications of commercial and public small unmanned aircraft systems (sUAS) in low-altitude uncontrolled airspace have been proposed and are being developed. These applications include

delivery of goods, infrastructure monitoring, precision agriculture, search and rescue, and many others. 1 Figure 1 provides a graphical depiction of sUAS low-altitude operations.

Figure 1. Depiction of sUAS Operations in Low-Altitude Airspace

These UAS operations will increasingly require interactions with an array of existing users of that airspace -

general aviation aircraft, helicopters, gliders, balloons, and even parachutists. However, the safety of these existing

M

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 3: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

3

operations cannot be compromised by the introduction of the new UAS operations. Currently, there is no automation infrastructure to accommodate the widespread use of UAS operations in uncontrolled airspace. The NASA Unmanned Aircraft System (UAS) Traffic Management (UTM) Project2 seeks to facilitate the safe use of low-altitude airspace (below 500 feet) by operators of small UAS (sUAS of 55 lbs or less) for a wide variety of applications. The UTM system will enable safe and efficient low-altitude airspace operations by providing services such as airspace design, corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning, re-routing, separation management, sequencing, spacing, and contingency management. UTM is essential to enable the accelerated development and use of civilian sUAS applications. In its most mature form, the UTM system will be developed using autonomicity characteristics, which will include self-configuration, self-optimization and self-protection. Associated with the proliferation of civil applications for sUAS is a paradigm shift from single-UAS remotely piloted within visual line of sight (VLOS) operations in remote locations to multi-UAS beyond visual line of sight (BVLOS) operations with increasing use of autonomous systems and operations under increasing levels of urban development and airspace usage. It is also anticipated that future demand will necessitate a shift toward multi-UAS operations in which a single operator will be responsible for the safe operation of multiple sUAS simultaneously. Along with increasing levels of operational complexity and sophistication come increasing complexity of hazards sources and their levels of safety / risk impacts. 3, 4 As risk increases for ensuring the safety of manned aircraft and persons on the ground (e.g., in suburban and urban environments), these operations become safety-critical. Ensuring the safety and effectiveness of these safety-critical operations will require an assessment of the impacts of safety hazards on sUAS and their operation, as well as the development of hazard mitigation and contingency management systems5, 6, 7, 8, 9, 10, 11, 12, 13 and strategies that reduce the associated risk. Safety assessments must be performed under nominal and off-nominal conditions using analysis, simulation, and experimental testing that utilize a set of test scenarios designed to expose safety vulnerabilities. Moreover, the effectiveness of hazard mitigation systems and contingency management strategies must be similarly evaluated. Experimental test techniques and hazards-based test scenarios that facilitate these safety assessments are therefore needed, as well as sUAS computer simulation models that are capable of characterizing off-nominal vehicle dynamics.14 ,15, 16 Ultimately, real-time risk assessment17 and safety assurance systems may be needed for safety-critical operations such that determination of unacceptable risk will initiate hazard mitigation actions to reduce risk to an acceptable level and thereby ensure safety. This capability may especially be needed to enable (and ensure) safe multi-UAS operations under uncertain, off-nominal, and hazardous conditions. This will require the development of methodologies for the effective detection and mitigation of emergent (unanticipated) safety hazards, as well as human-automation interface systems that enable effective teaming under adverse conditions. Validation of these systems will require (in part) experimental testing in a realistic and relevant flight environment. This paper presents experimental test techniques and an initial set of hazards-based test scenarios that are under development for assessing the safety of sUAS operations. Experimental testing for assessing the effectiveness of real-time risk assessment and safety assurance systems for multi-UAS operations is also briefly discussed. The paper is organized as follows: Section II summarizes experimental test techniques and some recent flight test results for assessing safety under off-nominal conditions; Section III summarizes the approach being taken for developing test scenarios and an initial set of test scenarios developed using this approach; Section IV discusses considerations for establishing a multi-UAS flight test environment for assessing the safety of sUAS operations; and Section V provides a summary of the paper and some concluding remarks. Supplemental information to these sections is provided in the Appendices.

II. Experimental Flight Testing for Safety Assessment of sUAS under Off-Nominal Conditions The operation of sUAS within the UTM system is expected to migrate toward high-risk environments associated

with suburban and urban settings. It is therefore vital that off-nominal events and their safety impacts for sUAS operations within the UTM system are assessed so that they can be effectively mitigated. This assessment is being accomplished through the development of enhanced simulations for characterizing sUAS dynamics and control characteristics under off-nominal conditions, as well as through the development and implementation of flight test techniques for assessing safety under off-nominal conditions. This section summarizes flight test capabilities and recent results for performing safety assessments of sUAS operating under off-nominal conditions.

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 4: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

4

A. Motivation and Research Requirements

Flight testing is required to support the safety assessments being performed for sUAS operations. A key aspect of this testing is the assessment of sUAS dynamics and control characteristics under off-nominal conditions (e.g., system failures). This is the focus of the flight test work presented in this paper. These flight test results will be used in validating vehicle simulation models being developed (see Ref. [16]) for characterizing off-nominal condition effects. Other testing will focus on evaluating the effectiveness of hazard mitigation systems at the vehicle level and contingency management systems and strategies at the operational level. Flight testing will also be used in assessing the effectiveness of real-time risk assessment (see Ref. [17]) and safety assurance systems. Ultimately, a multi-UAS flight test environment will be established for developing and validating safety requirements for multi-UAS operations (see Section IV). The remainder of this section focuses on flight testing of sUAS under system failures.

B. Flight Test Approach, Failure Emulation, and Initial Flight Test Results 1. Flight Test Approach

A series of flight tests were developed to assess failure responses in three different platforms, two multi-rotors and one fixed-wing. For the multi-rotors, two likely failure scenarios were developed, one where a motor fails or degrades while the vehicle is in a stable hover and the other where a motor fails or degrades while the vehicle is navigating a waypoint pattern. For the fixed-wing platform, scenarios were developed that emulated control surface failures of neutral, positive and negative deflections. Additionally, the on-board GPS would be selectively disabled during a waypoint following function. All three platforms used the Pixhawk autopilot as being representative of the types of autopilots currently being used by industry.

Figure 2 shows one of the multi-rotors referred to as “Y-6-2”. It is a 3-arm configuration with motors on both the top and bottom of each arm. The motor selected for “failure” was the top right motor.

 

Figure 2. Y-6-2 sUAS Configuration

Figure 3 shows the second multi-rotor, a Tarot X6, used in the experiments. The motor selected for the “failure” was the right center motor. The vehicle also had a video camera and transmitter which was downlinked to the ground control station (GCS).

Figure 3. Tarot X6 sUAS

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 5: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

5

The fixed-wing sUAS is shown in Figure 4. It is a former U.S. Army target drone converted to have an autopilot, landing gear, and back-pointing camera to obtain visual control surface deflections. A multiplexer was installed which allowed for selection of the control surface failure setting via the radio control transmitter. In addition, a GPS power relay was installed to enable the ability to cut power to the GPS module, observe the response, and restore power to the GPS.

Figure 4. Modified FQM-117B named MigLH

2. Failure Emulation

In order to obtain realistic failure results, sUAS platforms were modified to allow for emulating a failure under controlled conditions. For multi-rotor sUAS, provisions were made to be able to switch the throttle signal going to one of the rotor motor controllers to a value selectable by the radio-control transmitter. This allowed for the test to implement both a complete failure of a rotor emulating loss of motor controller, motor failure, or prop failure, and a “partial” failure emulating a control signal issue where the control signal pulse width modulation to the motor controller is frozen via a “hold last valid setting” by the motor controller. In the case of fixed-wing sUAS, provisions were made to be able to fail control surfaces (e.g., right aileron, right side elevator, and rudder) at selectable positions to emulate a servo failure or a mechanically jammed control surface. In addition, the fixed-wing vehicle was outfitted to incorporate the ability to selectively disable the on-board GPS.

3. Flight Test Activities and Current Status

Flight experiments were defined with the multi-rotors for failing a motor in both fixed, stable hover and waypoint navigation modes. In these tests, the throttle settings included nominal hover, +/-25%, +/-50%, -75%, and -100% (i.e., full off). Note that during testing, it was determined for both types of multi-rotors that a +50% throttle setting or above was unrecoverable in hover. The initial flight test plan involving the aircraft of Section II.B.1 and the failure emulation method of Section II.B.2 is provided in Table 1. These flight tests were conducted in April 2017.

Table 1. Initial Flight Test Plan.

Flight Experiment Schedule

Dates: 4/12/2017-4/21/2017

Flt # Vehicle Total Time Mode Fail setting Status

1 Y-6-2 9 Loiter Nominal Completed

Nominal - 25% Completed

Nominal + 25% Completed

Nominal - 50% Completed

Nominal + 50% Completed

Nominal - 75% Completed

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 6: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

6

Nominal + 75%* Not Flown

Nominal - 100% Completed

Nominal + 100%* Not Flown

2 Y-6-2 10 Auto Nominal Completed

Nominal - 25% Completed

Nominal - 50% Completed

3 Y-6-2 10 Auto Nominal - 75% Completed

Nominal - 100% Completed

Nominal + 25% Completed

4 Tarot X6 9 Loiter Nominal Completed

Nominal - 25% Completed

Nominal + 25% Completed

Nominal - 50% Completed

Nominal + 50% Completed

Nominal - 75% Completed

Nominal + 75%* Not Flown

Nominal - 100% Completed

Nominal + 100%* Not Flown

5 Tarot X6 10 Auto Nominal Completed

Nominal - 25% Completed

Nominal - 50% Completed

6 Tarot X6 10 Auto Nominal - 75% Completed

Nominal - 100% Completed

Nominal + 25% Not flown

7 MigLH 12 Auto Check Flight Check Flight

8 MigLH 12 Auto Aileron fail - neutral Completed

Aileron fail +25% Completed

Aileron fail -25% Completed

Aileron fail -75% Completed

Aileron fail -100% Completed

10 MigLH 12 Auto Rud fail - neutral Completed

Rud fail +25% Completed

Rud fail +50% Completed

Rud fail +100% Completed

11 MigLH 12 Auto Elev fail - neutral Completed

Elev fail -25% Completed

Elev fail +25% Completed

Elev fail -50% Not flown

Elev fail +50% Completed

12 MigLH 10 Auto GPS power fail Completed

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 7: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

7

Failure durations ranged from 1 – 30 seconds, depending on the effect, with longer durations applied to the fixed wing sUAS. That is, if the failure did not cause visible distress to the component or the vehicle it was allowed to persist for several seconds. If the failure effect was visibly significant or destabilizing, the failure was reversed more quickly to prevent entry into an unrecoverable state.

The preliminary results of the flight experiments performed to date have illustrated important characteristics. The multi-rotors were generally able to ignore a nominal hover throttle setting “failure” in hover. However, even this benign condition made navigating a waypoint pattern problematic. Neither multi-rotor was able to recover from a +50% or higher “stuck” throttle setting. Figure 5 shows the Tarot X-6 with its right center motor in the “failed” condition of complete shutdown in hover.

Figure 5. Tarot X6 in Hover with Right Center Motor Shut Down

In some cases, both multi-rotors were unable to hold a single fixed position but would instead fly a very tight circle around the hover position. In addition, both vehicles would exhibit a fairly dynamic response to a complete shutdown of one rotor. Figure 6 shows the trigger plot and the pitch and roll response of the Y-6-2. As can be seen, the pitch and roll extent is quite dramatic. The Tarot X6 had slightly lower excursions than the Y-6-2.

Figure 6. Trigger Plot and Roll/Pitch Attitude (Degrees) Plot of Y-6-2 with Emulated Rotor Failure

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 8: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

8

The fixed-wing sUAS was not affected by a frozen-neutral aileron setting. Waypoint navigation with the right

aileron fixed was indistinguishable from nominal flight path. The ± 25% failures showed a slight deviation from the assigned flight path but were generally able to turn the waypoint “corners” in the box pattern.

Additional testing with larger off-nominal settings indicated that if the failed aileron is stuck to either +/- 100%, as would be the case with a jam, the vehicle can barely maneuver around the waypoint pattern. As would be expected, the remaining operational aileron is deflected in fully the opposite direction leaving only the rudder to effect a turn.

Testing a rudder failure on the fixed-wing vehicle was conducted as well. The patterns in Figure 7 were re-used with the waypoints arranged in a clockwise fashion to necessitate a right turn at the corners. A neutral rudder failure had little impact on the ground track. However, a full left rudder deflection made making a right turn difficult. Conversely, having a full right rudder failure made the ground track appear nominal with turns taking a normal amount of time and cross-track error.

Figure 7. MigLH Waypoint Navigation with Neutral, +25%, and -25% Aileron Failure

The elevator testing was similarly selected to represent half the elevator failed in a specific deflection between -

100% and +100%. When the half elevator was failed full down, the vehicle made an abrupt dive and did not appear to recover above the safety floor altitude. When the half elevator was failed full up, the vehicle began to climb but the throttle power was cut, the airspeed decayed rapidly, and the other half elevator was deflected full down. Eventually, the vehicle leveled off but was unable to navigate the waypoint pattern with the compromised elevator.

When the GPS power was turned off, the ability of the vehicle to maintain altitude, course, and attitude degraded very rapidly. Part of this was due to the compass, packaged with the GPS unit, deriving its power from the GPS power lead rather than the Inter-Integrated Circuit (I2C) bus to which it is connected. Figure 8 shows that when the GPS status goes to zero (i.e., failed, depicted by the red trace), the vehicle began a distinct nose-dive until the safety pilot unfailed the GPS and took control of the vehicle (depicted by the green trace).

Figure 8. GPS Failure and Pitch Attitude (Degrees) Plots for Fixed-Wing MigLH Platform

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 9: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

9

C. Next Steps and Future Directions

A number of future tests are envisioned to make the data set more comprehensive. Some of these include testing more vehicle types, such as an octocopter and a different fixed-wing sUAS. Tests are also planned to evaluate the ability of multi-rotor sUASs to descend in the presence of failure and to navigate when the GPS system has failed. Different types of autopilots will also be tested to determine whether the phenomenon captured during these tests is autopilot specific.

Other planned flight test activities will support the sUAS dynamics modeling research for off-nominal conditions, as well as the evaluation of hazard mitigation systems. The evaluation of hazard mitigation systems will include support in the development of a comprehensive set of test scenarios, as described in Section III, including the validation of performance requirements.

A potential outcome of this work is the development of safety recommendations and recommended “best practices” for improving the robustness of both the hardware platform and the airborne software, as well as for developing and evaluating resilient systems for off-nominal conditions. These recommendations would allow system designers to develop safer, more reliable vehicles even in the event of component failures, which will be mandatory on future sUAS that operate BVLOS and under high-risk safety-critical conditions.

III. Preliminary Hazards-Based Test Scenarios for Safety Assessment of sUAS The operation of sUAS in high-risk environments (e.g., suburban, urban, and congested population densities) will

require the development and implementation of hazards mitigation systems and contingency management strategies for reducing risk. Implementing these systems and strategies for safety-critical applications will necessitate a thorough evaluation of their effectiveness and clear identification of any limitations. Such evaluations will require the development and application of a realistic set of hazards-based test scenarios. This section summarizes a proposed approach for the development of hazards-based test scenarios for sUAS and presents an initial set of test scenarios developed for a selected hazard. The scenarios are based on mission task elements (MTEs) and include nominal and off-nominal conditions. Nominal test scenarios are developed to establish a baseline for assessing performance. Section III.A describes the technical approach, Section III.B presents an initial set of nominal test scenarios, and Section III.C presents an initial set of hazards-based test scenarios.

A. Technical Approach: Use of Mission Task Elements

This section describes the use of mission task elements (MTEs) in the development of sUAS test scenarios for nominal and off-nominal conditions.

1. A Formal Approach Lessons learned from the world of manned flight handling qualities has been used to establish test scenarios for

sUAS. The first lesson is that flight test is the ultimate verification of handling qualities and successful flight verification can only be made using well defined evaluation tasks. The aeronautical design standard that defines handling qualities requirements for military rotorcraft, ADS-33E-PRF18, provides the most successful use of well-defined evaluation tasks. The approach used in this design standard is referred to as a mission-oriented approach. In a mission-oriented approach to aircraft handling qualities19, the aircraft mission is broken down into realistic mission task elements (MTEs). Specific flight test demonstration maneuvers are then defined for each MTE. For example, the mission of a commercial transport is to deliver cargo and passengers from a departure location to an arrival location. This mission can then be broken down into smaller elements, mission task elements, that include takeoff/departure climb, cruise, descent, loiter, approach, and landing. Other MTEs may include less frequent events such as a missed approach/go-around.

Ultimately, a truly mission-oriented approach will have all quantitative requirements tied directly to realistic MTEs, and for every MTE, there will be a corresponding demonstration maneuver. The requirements define what is expected of the airplane, while the demonstration maneuvers provide an explicit way of verifying handling qualities in flight. Traditionally, the flight evaluations are conducted with test pilots that are trained to provide these assessments using formal rating procedures20. Such an approach is not recommended here for sUAS hazard

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 10: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

10

assessment, since most future use cases will involve autonomous vehicle operations. Instead, sUAS performance will be quantified via a direct comparison of MTE performance under nominal conditions with the MTE performance observed under selected hazard scenarios. Thus, the MTE process can be applied as a means to define baseline vehicle performance from which the performance in a given hazard scenario can then be compared and quantified.

2. MTEs and Hazard Scenario Testing

How does the MTE approach apply to sUAS? As described in this paper and elsewhere (see Refs. [3], [4], [16], and [17]), there are numerous use cases that are emerging for sUAS as access to airspace including beyond visual line of sight operations is granted. These use cases define missions that can be broken down into smaller elements – MTEs. The approach is therefore to formally define MTEs for current and anticipated use cases with specific, but realistic performance requirements from which the nominal vehicle performance can be defined. Scenarios can then be introduced and tested for the MTEs analytically, via computer simulation, and in flight from which the vehicle performance in the presence of a hazard can be compared with the nominal performance, thereby providing a quantifiable means to assess the impact of the given hazard. This process is illustrated in Figure 9. It should be noted that this same process can be used to assess hazard mitigation approaches.

Figure 9. Use of MTEs to Assess sUAS Hazard Scenario Performance.

B. Preliminary Nominal Test Scenarios for sUAS

This section describes the common and specialized mission task elements (MTEs) developed for sUAS by vehicle configuration and the associated test scenarios for nominal conditions. Performance and safety requirements are considered for increasing levels of population density (remote/rural, suburban, and urban/congested).

1. sUAS Use Case Summary

A large number (> 100) of sUAS use cases were obtained from industry, government, and academia to characterize future UTM operations. Details of this work were presented in Ref. [3]. These sUAS use cases were then organized into categories and used in identifying future potential hazards. These use case categories are used herein to develop mission-based test scenarios for evaluating nominal performance and the effectiveness of hazard mitigation systems developed for reducing risk. Table 2 summarizes the sUAS use case categories defined in Ref. [3].

Table 2. Summary of Use Case Categories Used in the Development of Mission-Based Test Scenarios

Use Case Category Description

Videography at Public Events Includes Sporting Events, Fireworks Displays, Parades, Festivals, etc.

Security at Public Events & Counter UAS Operations

Monitoring, Detection, & Mitigation of Security Threats & Rogue UAS

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 11: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

11

Infrastructure Inspection Critical Infrastructure – Includes Dams, Canals, Railroads, Bridges, Mines, Power

Distribution Lines, Oil Pipelines, Onshore Oil and Gas Facilities, Offshore Oil Platforms, and Wind Turbine Blades, etc.

Search & Rescue Includes Missing Persons, Missing Airplane, Missing Ship, Survivors from a

Shipwreck or Aircraft Accident, etc.

Disaster Response Includes Widespread Events Associated with Landslides, Mudslides, Hurricanes,

Floods, Tornadoes, Earthquakes, etc., and Includes Volcano Inspection / Monitoring after Eruption Event, Avalanche Monitoring / Control, Flood Mapping, etc.

Emergency Response Includes Localized Events such as Aircraft Accidents, Multi-Vehicle Collisions, etc.

Monitoring & Patrol Includes Border Patrol, Individual / Group / Vehicle Identification and Tracking,

Maritime Patrol along Coastal Border Regions, Intelligence, Surveillance, and Reconnaissance of an Area or Building of Interest, etc.

Maritime Surveillance & Security

Includes: Surveillance, Situational Awareness, and Security of Ports, Waterways, and the Coast; Security zone enforcement (e.g., deterring unauthorized vessels from

entering a security zone); Airborne patrol of waterfront facilities (marinas, boat launch sites, etc.); Vessel inspection prior to boarding; Facility security inspections;

Airborne wide-area surveillance in ports and/or offshore for potential terrorist activity; Drug interdiction

Wildfire Monitoring & Control Includes Coordinated Multi-Vehicle (Air and Ground) Operations

Law Enforcement Includes Aerial Photography for Suspect Tracking, Motor Vehicle Accident

Response, Crime Scene Investigation, Accident Scene Investigation, Search and Rescue of Missing Persons [Amber Alerts, ...], etc.

Package / Cargo Delivery Includes Package Delivery to Individual Consumers in Rural / Suburban / Urban Environment, and Delivery of Emergency Medical Supplies in Remote Locations

Imaging / Data Acquisition / Survey of Public / Private Land

Includes Construction Site Inspection, Terrain Mapping, Land Surveys for Future Construction, etc.

Environmental and Wildlife Monitoring & Protection

Includes Wildlife Inventory and Monitoring, Atmosphere / Environment Data Collection and Monitoring, Air and Water Quality/Pollution Monitoring, Climate Change Analysis, Volcano Inspection / Monitoring, Landscape Monitoring, etc.

Precision Agriculture Includes Crop Dusting, Inspection, Vegetation Inventory and Monitoring, etc.

2. Mission Task Element Descriptions

Building upon the MTE definition process established in the handling qualities discipline, the MTEs will be defined using the formal description process outlined in a previous work 21, 22. It is important that the MTEs be carefully defined to ensure repeatability within a given assessment program and between disparate programs from which data may be used and compared. The MTE description begins with a listing of the maneuver objectives presented in a succinct bullet list format. The objectives identify the specific analysis issues to be evaluated in the maneuver. A description of the maneuver execution then follows. The description is designed to provide guidelines rather than step-by-step instructions. The intent is to allow the maneuver to be performed in a consistent manner over multiple platforms and flight conditions. Next are the desired and adequate performance criteria. In the handling qualities world, such requirements are designed to facilitate use of pilot rating scales. For sUAS hazard scenario assessments, these requirements are designed to provide a means to objectively measure task performance under nominal and hazard scenario conditions, so that the impact of a given hazard can be quantified.

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 12: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

12

The role of the pilot/operator is an important factor in evaluating and mitigating sUAS hazards. For a remote pilot that is actively engaged in flying the vehicle, issues such as latency in pilot inceptor to vehicle response may be an important factor and must be reflected in the requirements. On the other hand, an autonomous system can be considered an on-board “pilot” where the impact of the guidance, navigation, and control functions of the software must be considered in the assessments. Thus, the role of the pilot/operator will be reflected in the requirements that are linked to a given MTE. UAS operations may be:

Remotely Piloted;

Remote Pilot Assisted (delegated or supervised);

Fully Autonomous; or

A combination of the three.

The above correspond with the four levels of autonomy as defined in the DoD Unmanned Systems Integrated Roadmap23. These definitions are repeated below:

Level 1 – Human Operated: The human operator makes all decisions. The system has no autonomous control of its environment although it may have information-only responses to sensed data.

Level 2 – Human Delegated: The vehicle can perform many functions independently of human control when delegated to do so (e.g., autopilot functions). This level encompasses automatic controls, engine controls, and other low-level automation that must be activated or deactivated by human input and must act in mutual exclusion of human operation.

Level 3 – Human Supervised: The system can perform a wide variety of activities when given top-level permissions or direction by a human. Both the human and the system can initiate behaviors based on sensed data, but the system can do so only if within the scope of its currently directed tasks.

Level 4 – Fully Autonomous: The system receives goals from humans and translates them into tasks to be performed without human interaction. A human could still enter the loop in an emergency or change the goals, although in practice there may be significant time delays before human intervention occurs.

When actively engaged in flying, the pilot provides guidance, navigation, and control (GNC) functions. Autopilots can provide regulation of some of these functions, but they are not autonomous functions, they are regulators. Autonomous functions feature a decision making capability that attempts to replicate or even improve upon piloted operations. For the commercial sUAS operations to be successful in beyond visual line of sight use cases, the vehicles must operate in a predominantly autonomous mode of operation.

3. Common Mission Task Elements

For a given sUAS type (i.e., fixed wing, multi-rotor, or helicopter), there are select mission task elements that are common to any mission. These are exemplified by those listed in Table 3. A quick review of the listings exposes some of the differences between fixed wing and rotary wing missions. In general, the fixed wing aircraft will have a longer range and endurance than the rotary wing sUAS, but the fixed wing aircraft may require a more refined terminal area for launch and recovery. This may be as simple as a relatively flat terrain that has been reasonably groomed. Rotary wing aircraft, on the other hand, can launch and recover from a wide variety of terminal areas that are not available to fixed wing aircraft. On the surface, the common maneuvers for sUAS multi-rotors and helicopters are the same. However, the capabilities and limitations of the aircraft may result in unique performance requirements between the types. As these MTEs are evaluated in flight, there may also be slight modifications required for the task descriptions. Examples of common MTEs are provided in Table 4. The MTE descriptions and performance requirements were derived from fixed wing (see Ref. [22]) and rotorcraft (see Ref. [18]) handling qualities analogs. Until these MTES are evaluated in flight, the task descriptions and performance criteria must be considered preliminary.

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 13: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

13

Table 3. Common Mission Task Elements

Fixed Wing Multi-Rotor Helicopter

Takeoff & Climb Takeoff Takeoff

Altitude Change Precision Hover Precision Hover

Flightpath Capture (Climb/Descent) Vertical Maneuver (Vertical Altitude Change)

Vertical Maneuver (Vertical Altitude Change)

Pitch/Roll Attitude Capture Lateral Reposition Lateral Reposition

Heading Capture Pullup/Pushover (Obstacle Avoidance) Pullup/Pushover (Obstacle Avoidance)

Obstacle Avoidance Descent to Landing Descent to Landing

Landing Landing Landing

Hovering Turn Hovering Turn

Table 4. Example Common Mission Task Elements

Fixed Wing Multi-Rotor Helicopter

MTE: Bank Angle Capture MTE: Vertical Maneuver MTE: Lateral Reposition

Objectives:

• Evaluate ability to roll and capture a bank angle.

• Identify maneuverability limitations and oscillation tendencies.

Objectives:

• Evaluate heave damping, i.e., the ability to precisely start and stop a vertical rate.

• Evaluate vertical control power. • Identify undesirable coupling

between collective and the pitch, roll, and yaw axes.

Objectives:

• Assess roll axis and heave axis response during moderately aggressive maneuvering.

• Identify undesirable coupling between the roll controller and the other axes.

Description: • From steady, wings level flight

roll and capture a bank angle of 45 and maintain this bank angle within the specified tolerance for 5 seconds or until stable.

• Capture the 45 bank angle before achieving a maximum heading change of 10.

• Then capture and hold a bank angle of -45 and maintain this bank angle within the specified tolerance for 5 seconds or until stable.

• Finally, return to steady, wings level flight and maintain within the specified tolerance for 5 seconds or until stable.

Description:

• From a stabilized hover at an altitude of 10 ft, initiate a vertical ascent of 25 ft, stabilize for 5 seconds.

• Descend back to the initial hover position and stabilize for at least 5 seconds.

• Maintain initial heading throughout the maneuver.

Description:

• Start in a stabilized hover at 25 ft with the longitudinal axis of the rotorcraft oriented 90 degrees to a reference line marked on the ground.

• Initiate a lateral acceleration to approximately 25 kts groundspeed followed by a deceleration to laterally reposition the rotorcraft in a stabilized hover 100 ft down the course.

• The acceleration and deceleration phases shall be accomplished as single smooth maneuvers.

• The maneuver is complete when a stabilized hover is achieved.

• Maintain initial heading throughout the maneuver.

Desired Performance:

• 5 bank angle. • No more than one bank angle

overshoot for each capture. Magnitude of overshoot remains within the desired region.

• No undesirable motions that impact task performance.

Desired Performance:

• Maintain start/finish altitude within ±2 ft.

• Maintain longitudinal and lateral position within ±5 ft of a point on the ground

Desired Performance:

• The rotorcraft terminates the reposition within ±5 ft of the endpoint during the deceleration, terminating in a stable hover within this band.

• Maintain longitudinal track within ±10 ft.

• Maintain altitude within ±5 ft.

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 14: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

14

• Actual heading should be aligned with reference heading within ±5 deg throughout maneuver.

• Actual heading should be aligned with reference heading within ±5 deg throughout maneuver.

Adequate Performance:

• 10 bank angle. • No more than one bank angle

overshoot for each capture. Magnitude of overshoot remains within the adequate region.

• No oscillations (PIO if remotely piloted or limit cycles if autonomous) that impact system stability or safety of flight.

Adequate Performance:

• Maintain start/finish altitude within ±5 ft.

• Maintain longitudinal and lateral position within ±10 ft of a point on the ground.

• Actual heading should be aligned with reference heading within ±10 deg throughout maneuver.

Adequate Performance:

• The rotorcraft terminates the reposition within ±10 ft of the endpoint during the deceleration, terminating in a stable hover within this band.

• Maintain longitudinal track within ±20 ft.

• Maintain altitude within ±10 ft. • Actual heading should be aligned

with reference heading within ±10 deg throughout maneuver.

Note:

Tests should be conducted under Calm Wind Conditions (i.e., Winds with a Steady Component of Less than 5 kts.)

Note:

Tests should be conducted under Calm Wind Conditions (i.e., Winds with a Steady Component of Less than 5 kts.)

Note:

Tests should be conducted under Calm Wind Conditions (i.e., Winds with a Steady Component of Less than 5 kts.)

4. Specialized Mission Task Elements

For a given mission, there will be those MTEs that are unique or specialized to that mission. Examples are listed in Table 5 for fixed wing, multi-rotor, and helicopter sUAS. Similar to the common MTE set, the fixed wing specialized MTEs, in general, feature longer range and endurance. The rotary wing sUAS, on the other hand, feature specialized MTEs that take advantage of their low speed flight and hovering capabilities. Examples of specialized MTEs are provided in Table 6. As was true for the common MTEs, the task descriptions and performance criteria must be considered preliminary until these MTEs are evaluated in flight.

Table 5. Specialized Mission Task Elements

Specialized Mission Task Elements

Fixed Wing Multi-Rotor Helicopter

Precision Tracking of a Fixed Ground Reference Path

(e.g., Pipeline Inspection)

Precision Tracking of a Fixed Ground Reference Path

(e.g., Roadway Inspection)

Precision Tracking of a Moving Ground Target

(e.g., Law Enforcement)

Precision Tracking of a Fixed Ground Reference Area

(e.g., Precision Agriculture)

Precision Tracking of a Fixed Ground Reference Area

(e.g., Precision Agriculture)

Precision Tracking of a Fixed Ground Reference Area

(e.g., Search and Rescue)

Cargo Drop-Off

(e.g., Package Delivery)

Cargo Drop-Off

(e.g., Emergency Response)

Pirouette

(e.g., Search and Rescue)

 

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 15: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

15

Table 6. Example Specialized Mission Task Elements

Fixed Wing Multi-Rotor Helicopter

MTE: Precision Tracking of a Fixed Ground Reference Area (e.g., Precision Agriculture)

MTE: Precision Hover for Cargo Drop-Off (e.g., Package Delivery)

MTE: Pirouette (e.g., Search and Rescue)

Objectives:

• Evaluate ability to precisely track a prescribed grid over a ground reference area.

• Evaluate ability to precisely control flight path.

Objectives:

• Evaluate ability to transition from translating flight to a stabilized hover over the target drop zone with precision and a reasonable amount of aggressiveness.

• Evaluate ability to maintain precise position, heading, and altitude over the target drop zone.

Objectives:

• Evaluate the ability to control position as the relative wind continuously changes with respect to heading.

• Evaluate the ability to precisely control flight path in all axes.

Description: • Initiate the maneuver in steady

level flight. • Follow a prescribed grid over a

ground reference area at the required altitude and airspeed for nominal mission operation.

• Initiate turns as geofence is approached to remain within prescribed boundaries while ensuring complete coverage of the grid area.

• Maintain required flight path throughout the maneuver.

Description:

• From a forward flight of 5 kts and at an altitude of 10 ft, attain a stabilized hover over the defined drop zone.

• Maintain the stabilized hover over the drop zone for the time duration established in the performance requirements.

Description:

• Initiate the maneuver from a stabilized hover over a point on the circumference of a 10 ft radius circle with the nose of the sUAS pointed at a reference point at the center of the circle at an altitude of approximately 10 ft.

• Accomplish a lateral translation around the circle, keeping the nose of the sUAS pointed at the reference point.

• Maintain a constant lateral groundspeed throughout the maneuver.

• Terminate the maneuver with a stabilized hover over the starting point.

• Perform the maneuver in both directions.

• The maneuver shall be accomplished in calm winds and in moderate winds from the most critical direction at the starting point.

Desired Performance:

• 5 ft of target flight path. • 10 ft of target altitude. • 5 kts of target airspeed. • Remain within all prescribed

geofences throughout the maneuver.

Desired Performance:

• Attain a stabilized hover from forward flight before exiting the desired region of the drop zone.

• Maintain a stabilized hover over the desired region of the drop zone for at least 30 seconds.

• Maintain longitudinal and lateral position over the drop zone within 1 ft, where 1 ft by 1 ft box defines the desired drop zone.

• Maintain altitude above the drop zone within 1 ft.

• No undesirable motions (bobble, overshoots/undershoots) that impact task performance during the transition to hover or stabilized hover.

Desired Performance:

• Maintain a selected reference point on the sUAS within 2 ft of the circumference of the circle.

• Maintain altitude within 2 ft. • Maintain heading so that the

reference heading of the sUAS points at the center of the circle within 5 deg.

• Achieve a stabilized hover within 5 sec after returning to the starting point.

• Maintain the stabilized hover for 5 sec.

Adequate Performance:

• 10 ft of target flight path. • 20 ft of target altitude. • 10 kts of target airspeed.

Adequate Performance:

• Attain a stabilized hover from forward flight before exiting the adequate region of the drop zone.

Adequate Performance:

• Maintain a selected reference point on the sUAS within 5 ft of the circumference of the circle.

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 16: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

16

• Excursions of no more than 5 ft outside of the prescribed geofences throughout the maneuver.

• Maintain a stabilized hover over the adequate region of the drop zone for at least 30 seconds.

• Maintain longitudinal and lateral position over the drop zone within 2 ft, where 2 ft by 2 ft box defines the desired drop zone.

• Maintain altitude above the drop zone within 2 ft units (feet or meters).

• No oscillations (PIO if remotely piloted or limit cycles if autonomous) that impact system stability or safety of flight during the transition to hover or stabilized hover.

• Maintain altitude within 4 ft. • Maintain heading so that the

reference heading of the sUAS points at the center of the circle within 10 deg.

• Achieve a stabilized hover within 10 sec after returning to the starting point.

• Maintain the stabilized hover for 5 sec.

Note:

Tests should be conducted under Calm Wind Conditions (i.e., Winds with a Steady Component of Less than 5 kts.)

Note:

Tests should be conducted under Calm Wind Conditions (i.e., Winds with a Steady Component of Less than 5 kts.)

Note:

Tests should be conducted under Calm Wind Conditions (i.e., Winds with a Steady Component of Less than 5 kts.)

5. Nominal Test Scenarios by sUAS Configuration

Appendix A contains a listing of the initial set of nominal test scenarios developed to date. It should be noted that this set is still being refined and is subject to change in the final recommended set of nominal test scenarios.

6. Future Work

To ensure meaningful baseline performance specifications, the MTE process outlined in Figure 9 must be put to the test. That is, the common and specialized set MTEs must be evaluated via flight test using representative sUAS vehicle types. As part of the evaluation process, the MTE descriptions and performance requirements are expected to be refined. Furthermore, and perhaps more importantly, sUAS test procedures will be defined that address operator mode of operation (i.e., remotely piloted, remotely monitored, or autonomous), ground station requirements, data requirements (i.e., sensors and digital data storage capabilities), safety of flight requirements (e.g., “knock it off” procedures), data analysis and reporting procedures, etc. To create a robust MTE process for hazard scenario assessment, the resulting MTEs and test procedures should be repeatable from one test organization to the next given a common sUAS test platform. Any additional common or specialized MTEs will also be identified, defined, and evaluated.

C. Preliminary Hazards-Based Test Scenarios for sUAS

A set of realistic hazards-based test scenarios are needed in order to evaluate the effectiveness of hazard mitigation strategies for reducing risk in safety-critical sUAS operations. This section provides a summary of the combined hazards set defined in Ref. [3], presents an example set of risk mitigation strategies for a selected hazard, and describes the incorporation of hazards into the MTEs developed for sUAS vehicles by configuration. A preliminary set of test scenarios for off-nominal conditions are presented for this selected hazard and a subset of the associated causal & contributing factors. Prior related work for evaluating resilience under LOC conditions was performed in the context of transport aircraft safety.24 Some of the insights gained in this prior work have been applied here.

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 17: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

17

1. Summary of Vehicle Hazards Resulting from the sUAS Hazards Analysis of Ref. [3]

In order to develop a meaningful set of hazards-based test scenarios, a realistic set of hazards are needed. In Ref. [3], an analysis of sUAS mishaps was performed in order to identify current hazards and an analysis of sUAS use cases was performed to identify future potential hazards. From these analyses, a combined set of hazards was developed. A full set of combined hazards from Ref. [3] is provided in Appendix B, including causal and contributing factors as well as result, impacts, and hazardous outcomes relative to use case categories and operational state. Table 7 summarizes the combined hazards.

Table 7. Combined Vehicle-Level Hazards Set Based on

Analyses of Current and Future Hazards (Ref. [3])

Hazard No. Hazard VH-1 Aircraft Loss of Control (LOC) VH-2 Aircraft Fly-Away / Geofence Non-Conformance VH-3 Lost Communication / Control Link VH-4 Loss of Navigation Capability VH-5 Unsuccessful Landing VH-6 Unintentional / Unsuccessful Flight Termination

VH-7 Failure / Inability to Avoid Collision with Terrain and/or Fixed / Moving Obstacle

VH-8 Hostile Remote Takeover and Control of UAS VH-9 Rogue / Noncompliant UAS

VH-10 Rogue / Noncompliant UAS (Weaponized)

VH-11 Hostile Ground-Based Attack of UAS (e.g., Using High-Powered Rifle, UAS Counter Measure Devices, etc.)

VH-12 Unintentional / Erroneous Discharge of Weapons, Explosives, Chemicals, etc.

VH-13 Erroneous Autonomous Decisions / Actions by UAS Compromise Vehicle / Operational Safety

VH-14 Cascading Failures in Multi-UAS and Collaborative Missions

2. Vehicle-Level Hazards Mitigation Strategies

To illustrate the development of hazards-based test scenarios, an example set of mitigation strategies is defined for VH-1 from Table 7 relative to operational state. These mitigation strategies are illustrated in Table 8, and a full table is provided in Appendix C. Note that the identification of mitigation strategies is highly dependent on the causal and contributing factors of the hazard being mitigated as well as the operational state. Thus, the higher the risk of the operational environment the more extensive the set of mitigation strategies that is recommended (or required). For example, a resilient flight control system is recommended for suburban and urban / congested operations with an increasing level of capability as risk increases. As used in this paper, resilience refers to an ability to actively mitigate adverse conditions in real time. This property differs from robustness in that robustness typically refers to an ability to (passively) tolerate (without actively mitigating) uncertainties – which usually relate to modeling uncertainties (e.g., parameter uncertainties and/or unmodeled dynamics) but may or may not be related to adverse conditions (e.g., wind and turbulence conditions). The resilient control system capabilities listed in Table 8 should be capable of mitigating the causal and contributing factors listed in the table. Thus the test scenarios developed for evaluating the effectiveness of these systems must specifically account for these factors.

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 18: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

18

Table 8. Example Mitigation Strategies for VH-1: Aircraft Loss of Control

Hazard No.

Hazard Use Case / Category

Operational State

Selected Causal / Contributing Factors

Recommended Mitigation Strategies / Safety Requirements

to Reduce Risk

VH-1

Aircraft Loss of Control (LOC)

Any / All Use Cases Associated with:

Remote / Rural Location

(Includes Precision Agriculture,

Border Patrol, Wildfire Monitoring & Control, Package Delivery, etc.)

• Single UAS Manually Controlled by Remote Pilot under VLOS

• Low-Density Airspace

• Vehicle Failures / Impairment

• Control System Failures / Malfunctions / Inadequacy

• Propulsion System Failure / Malfunction

• Weather (Includes Rain, Snow / Icing, Thunderstorms, etc.)

• Wind / Wind Shear / Turbulence (Includes Boundary Layer Effects)

• Vehicle Upset Condition / Damage

• Automated Parachute

• Automated Flight Termination System

Any / All Use Cases Associated with:

Suburban

(Includes Package Delivery, Traffic Monitoring, Infrastructure Inspection, etc.)

• Single UAS, Semi-Autonomous Control, BVLOS

• Moderate- Density Airspace

• All Hazards Listed Above• Payload / CG Shift /

Instability

• Robustness under Varying Wind Conditions

• Resilient Flight Control System for Mitigating Wind Effects and/or Flight Control Component Failures

• Flight Termination System for Pre-Programmed Safe Landing Zones

• Automated Parachute

Any / All Use Cases Associated with:

Urban / Congested

(Includes Videography / Security at Public Events, Environmental Monitoring, etc.)

• Single / Multiple Semi- / Fully- Autonomous Control under BVLOS

• High-Density Airspace

• All Hazards Listed Above• Vehicle Damage (e.g.,

Lightning strike during long-duration missions, Damage from Explosion / Fire during Emergency Response, Radiation Exposure from HALE operations over urban areas, etc.)

• Harsh Environmental Conditions (e.g., Extreme Temperatures, etc.)

• Robustness under Varying Wind and Turbulence Conditions (Including Boundary Layer Effects)

• Resilient Flight Control System for Mitigating Wind Effects, Flight Control Component Failures, and Instabilities (e.g., CG Shifts)

• Additional Resilient Flight Control for Vehicle Impairment Conditions for Specialized Missions with High Risk of Vehicle Damage / Icing Conditions

• Flight Termination System Capable of Detecting a Safe Landing Zone in Real Time

• Automated Parachute

3. Technical Approach for the Development of Hazards-Based Test Scenarios for sUAS Operations

The technical approach for developing hazards-based test scenarios for evaluating hazards mitigation strategies for sUAS operations is illustrated in Figure 10.

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 19: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

19

Figure 10. Technical Approach for Hazards-Based Test Scenario Development for sUAS Operations

The goal is to be able to evaluate mitigation system effectiveness over the entire mission and for all key causal and

contributing factors associated with the hazard being mitigated. Coverage of all aspects of the mission is accomplished through the use of mission task elements, as described in Sections III.A and III.B, which were developed from the use case categories and specified by vehicle configuration. Coverage of the causal and contributing factors associated with the hazard is accomplished by designing them into the test scenarios. The performance / safety specifications being proposed in this paper will need to be validated via simulation evaluations, experimental flight testing, and input obtained from subject matter experts (SMEs). Thus, the flight test capability described in Section II will support the validation of the performance / safety requirements being specified in these scenarios. It is emphasized again that the scenarios presented in this paper are considered preliminary. The test scenarios should also be comprehensive enough to facilitate the identification of limitations in the mitigation system – either relative to hazard coverage or mission coverage. An example set of hazards-based test scenarios is presented in the next subsection for the resilient flight control system capabilities recommended in Table 8.

4. Example Hazards-Based Test Scenarios for VH-1: Aircraft Loss of Control

An initial set of hazards-based test scenarios is developed to assess the effectiveness of the resilient flight control mitigation system for VH-1 relative to the key causal and contributing factors provided in Table 8. Safety requirements are considered for increasing levels of population density (i.e., suburban and urban/congested). Table 9 provides a summary of the preliminary hazards-based test scenarios for each vehicle configuration, and Table 10 provides an example scenario. A set of initial test scenarios for VH-1 is provided in Appendix D. The hazards-based scenario format follows that used for the nominal MTEs developed in Sections III.B.3 and III.B.4. A preliminary format for describing minimum performance capability in degraded conditions is shown in Table 10. Two performance levels (labeled as Desired and Adequate) are proposed to enable the quantification of hazards effects (and mitigation system effectiveness) relative to the nominal performance specification for each mission task. Further research is needed to fully define these tasks and the minimum acceptable performance for various scenarios. It should be noted that the scenarios illustrated in Tables 9 and 10 and those provided in Appendix D are preliminary and subject to review and potential refinement by SMEs. Moreover, the desired and adequate performance requirements are initial estimates and still need to be validated via simulation and flight testing, as depicted in Figure 10.

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 20: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

20

Table 9. Summary of Initial Hazards-Based Test Scenarios for VH-1: Aircraft Loss of Control

Scenario Fixed Wing (FW) Multi-Rotor (MR) Helicopter (UH)

Robustness under Wind & Turbulence Conditions

• Varying Wind Speed & Direction

• Varying Turbulence Levels

• Varying Wind Speed & Direction

• Varying Turbulence Levels

• Varying Wind Speed & Direction

• Varying Turbulence Levels

Resilience to Flight Control Component Failures

• Loss of Control Effectiveness (Elevator, Rudder, Aileron, Thrust)

• Stuck Actuator (Elevator, Rudder, Aileron)

• Loss of Control Effectiveness (Rotors)

• Stuck Rotor Speed

• Loss of Control Effectiveness (Main & Tail Rotors)

• Stuck Rotor Speed

Resilience to Shifts in Center of Gravity (C.G.) Position

(e.g., Package Delivery)

• Longitudinal C.G. Shifts

• Lateral C.G. Shifts

• Vertical C.G. Shifts

• Longitudinal C.G. Shifts

• Lateral C.G. Shifts

• Vertical C.G. Shifts

• Longitudinal C.G. Shifts

• Lateral C.G. Shifts

• Vertical C.G. Shifts

Resilience to Vehicle Impairment Conditions

(e.g., due to lifting / control surface contamination, damage, etc. related to missions in harsh / extreme conditions)

• Lifting / Control Surface Contamination Effects

• Lifting / Control Surface Damage Effects (with and without associated C.G. shifts)

• Vehicle Contamination Effects

• Vehicle Damage Effects (with and without associated C.G. shifts)

• Vehicle Contamination Effects

• Vehicle Damage Effects (with and without associated C.G. shifts)

Resilience to Control Component Failures, Vehicle Instabilities, and Vehicle Impairment Conditions

(e.g., for high-risk missions in harsh / extreme conditions)

• Flight Control Component Failures

• C.G. Shifts

• Vehicle Impairment Conditions

• Wind / Turbulence Conditions

• Flight Control Component Failures

• C.G. Shifts

• Vehicle Impairment Conditions

• Wind / Turbulence Conditions

• Flight Control Component Failures

• C.G. Shifts

• Vehicle Impairment Conditions

• Wind / Turbulence Conditions

Table 10. Example Hazards-Based Test Scenario for Resilience to Flight Control Component Failures

Fixed Wing (FW) Multi-Rotor (MR) Helicopter (UH)

Resilience to Flight Control Component Failures

Objectives:

• Evaluate ability to detect / mitigate flight control component failures during all mission tasks.

• Identify resilience coverage and limitations under flight control component failures (in terms of failure type / severity and MTE effectiveness).

• Determine control limits and maneuverability constraints under control component failures.

Objectives:

• Evaluate ability to detect / mitigate flight control component failures during all mission tasks.

• Identify resilience coverage and limitations under flight control component failures (in terms of failure type / severity and MTE effectiveness).

• Determine control limits and maneuverability constraints under control component failures.

Objectives:

• Evaluate ability to detect / mitigate flight control component failures during all mission tasks.

• Identify resilience coverage and limitations under flight control component failures (in terms of failure type / severity and MTE effectiveness).

• Determine control limits and maneuverability constraints under control component failures.

Description:

• Initiate each nominal MTE and randomly inject an emulated control component failure (elevator, rudder, aileron, and engine

Description:

• Initiate each nominal MTE and randomly inject an emulated control component failure

Description:

• Initiate each nominal MTE and randomly inject an emulated control component failure (main and tail rotor failures), as

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 21: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

21

thrust), as follows (and in accordance with the aircraft configuration being tested).

• Evaluate loss of control effectiveness (elevator, rudder, aileron, and engine thrust) incrementally from 0% to 100%.

• Evaluate resilience (i.e., mitigation effectiveness) to stuck control surface effects incrementally from neutral to hard-over positions (elevator, rudder, and aileron).

• Evaluate with no winds and nominal wind conditions (no turbulence)

(rotor failures), as follows (and in accordance with the aircraft configuration being tested).

• Evaluate loss of control effectiveness (rotor speed) incrementally from 0% to 100%.

• Evaluate resilience (i.e., mitigation effectiveness) to stuck rotor-speed effects incrementally from neutral to maximum levels.

• Evaluate with no winds and nominal wind conditions (no turbulence)

follows (and in accordance with the aircraft configuration being tested).

• Evaluate loss of control effectiveness (rotor speed) incrementally from 0% to 100%.

• Evaluate resilience (i.e., mitigation effectiveness) to stuck rotor-speed effects incrementally from neutral to maximum levels.

• Evaluate with no winds and nominal wind conditions (no turbulence)

Flight Conditions:

All FW Nominal Common MTEs Selected FW Nominal Specialized MTEs, as

Appropriate

Flight Conditions:

• All MR Nominal Common MTEs • Selected MR Nominal Specialized MTEs, as

Appropriate

Flight Conditions:

• All UH Nominal Common MTEs • Selected UH Nominal Specialized MTEs, as

Appropriate

Hazard Condition: Single Component Failure

Loss of Control Effectiveness (elevator, rudder, aileron, and engine thrust): 0%, 10%, 20%, …, 100%

Stuck Control Surface (elevator, rudder, aileron) Increments from Neutral: ±2 deg, ±4 deg, …, ± hard-over

Hazard Condition: Single Rotor Failure

Loss of Control Effectiveness (rotor speed): 0%, 10%, 20%, …, 100%

Stuck Rotor Speed Increments from Nominal: ±10%, ±20%, …, ± 100% (positive and negative values represent increments above or below the nominal value)

Hazard Condition: Single Rotor Failure

Loss of Control Effectiveness (main and tail rotor thrust): 0%, 10%, 20%, …, 100%

Stuck Rotor Speed Increments from Nominal: ±10%, ±20%, …, ± 100% (positive and negative values represent increments above or below the nominal value)

Environmental Conditions: No wind Varying levels and directions of sustained

wind conditions up to 10% above the rated wind level for vehicle operation

Environmental Conditions:

No wind Varying levels and directions of sustained

wind conditions up to 10% above the rated wind level for vehicle operation

Environmental Conditions:

No wind Varying levels and directions of sustained

wind conditions up to 10% above the rated wind level for vehicle operation

Desired Performance:

• ≥ 80% of Nominal Performance (Suburban)

• ≥ 90% of Nominal Performance (Urban / Congested)

Desired Performance:

• ≥ 80% of Nominal Performance (Suburban)

• ≥ 90% of Nominal Performance (Urban / Congested)

Desired Performance:

• ≥ 80% of Nominal Performance (Suburban)

• ≥ 90% of Nominal Performance (Urban / Congested)

Adequate Performance:

• ≥ 70% of Nominal Performance (Suburban)

• ≥ 80% of Nominal Performance (Urban / Congested)

Adequate Performance:

• ≥ 70% of Nominal Performance (Suburban)

• ≥ 80% of Nominal Performance (Urban / Congested)

Adequate Performance:

• ≥ 70% of Nominal Performance (Suburban)

• ≥ 80% of Nominal Performance (Urban / Congested)

Test Variations:

• Tests at varying initial conditions within each MTE

• For Dual-Engine Vehicle Configurations, Include Single Engine Out Conditions

• Multiple Failures can be Considered to Determine Level of Available Control Redundancy

Test Variations:

• Tests at varying initial conditions within each MTE

• Multiple Rotor Failures Can be Considered to Evaluate Level of Available Control Redundancy

• Failures Involving Reversal of Rotor Rotational Direction Should be Considered if a Failure Mode Resulting in this Behavior is Identified

Test Variations:

• Tests at varying initial conditions within each MTE

• Realistic Combinations Involving Main and Tail Rotor Failures Should be Considered if a Failure Mode Resulting in this Behavior is Identified

• Failures Involving Reversal of Rotor Rotational Direction (Main or Tail Rotor) Should be Considered if a Failure Mode Resulting in this Behavior is Identified

Notes:

Evaluations should predominantly be performed using a simulation capable of characterizing off-nominal condition effects; Selected simulation results should be validated in flight testing

Notes:

Evaluations should predominantly be performed using a simulation capable of characterizing off-nominal condition effects; Selected simulation results should be validated in flight testing

Notes:

Evaluations should predominantly be performed using a simulation capable of characterizing off-nominal condition effects; Selected simulation results should be validated in flight testing

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 22: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

22

5. Future Work

This section has described the technical approach for developing hazards-based test scenarios for use in evaluating the effectiveness and coverage of hazard mitigation systems and strategies throughout the sUAS mission. Some initial test scenarios were provided to illustrate this process for a selected vehicle-level hazard. It should be noted, however, that this initial set is still being refined and is subject to change in the final recommended set of hazards-based test scenarios being developed. Further work is needed in defining failure modes and their effects for sUAS25, 26, 27, especially multirotor configurations, and in the development of a full set of hazards-based test scenarios at the vehicle level. Test scenarios designed to assess operational safety under off-nominal and hazardous conditions and the effectiveness of contingency management systems designed to ensure operational safety are also needed.

IV. Future Directions in Experimental Flight Testing: Multi-UAS Operations As stated previously, the operation of sUAS within the UTM system is expected to migrate toward high-risk

environments associated with suburban and urban settings. It is also anticipated that future demand will necessitate a shift toward multi-UAS operations in which a single operator will be responsible for the safe operation of multiple sUAS simultaneously. This section discusses the need for establishing a multi-UAS flight test environment that facilitates integrated research and technology evaluations involving autonomy, real-time risk management and safety assurance, human-automation teaming, and V&V of increasingly autonomous systems.

A. Multi-sUAS Operations Associated with the proliferation of civil applications for sUAS is a paradigm shift to BVLOS operations with

increasing use of autonomous systems and operations under increasing levels of urban development and airspace usage. It is also anticipated that increasing demand for sUAS operations in multiple application domains will necessitate a paradigm shift towards multi-UAS operations and the use of advanced technologies that enable real-time risk assessment and safety assurance and effective dynamic human-automation teaming for real-time contingency management at the operational level. Multi-sUAS operations may involve simultaneous operation of heterogeneous vehicle types, collaborative missions, and coordinated missions involving manned air and ground vehicles. As risk increases for ensuring the safety of manned aircraft and persons on the ground (e.g., in suburban and urban environments), these operations become safety-critical and may require advanced technologies for ensuring safety under off-nominal conditions (both anticipated and unexpected). These technologies include resilient autonomous systems, real-time risk assessment and safety assurance systems, and effective human-automation teaming systems that are effective under off-nominal and hazardous conditions. Evaluation of these technologies will require new methods and tools that facilitate the exposure of system limitations and weaknesses in a research environment – so that weakness are not exposed in practice during a safety-critical operation. One such method is a flight test environment that enables integrated technology development and evaluations for multi-UAS safety-critical operations.

In order to define a multi-UAS flight test capability, the kinds of testing that would require support must be considered. Table 11 illustrates two examples of multi-UAS flight testing aimed at safety / risk evaluations, and Appendix E provides a phased build-up of these flight test capabilities from single UAS operations to the multi-UAS operations illustrated in Table 11. As illustrated in these tables, various features of the flight test capability are considered, including the Basic Idea, Use Cases supported, Hazards being considered, Mitigation / Contingency Systems being evaluated, and safety / risk indicators to be monitored (and managed). Moreover, the two examples of multi-UAS testing support increasing levels of operational complexity (in terms of density of operations) and increasing levels of operational risk (in terms of population density).

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 23: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

23

Table 11. Examples of Multi-UAS Flight Testing for Safety / Risk Evaluations

Flight Test Features Multiple Heterogeneous Vehicles in Suburban Operations

High-Density Urban Operations

Basic Idea

• Multiple Vehicle Flight Test (BVLOS) • Use of BRS or Second Ground Station

for Safety / Risk Monitoring • Other Vehicles in Close Proximity - Actual sUAS - Simulated Manned Aircraft

• Higher-Density Multiple Vehicles (BVLOS) • Use of MOS for - Multiple Vehicle Operations - Safety / Risk Monitoring / Management • Use of BRS for Large-Scale Safety / Risk &

Contingencies Management

Use Cases • Infrastructure Inspection • Public Safety (Emulated Search /

Surveillance)

• Infrastructure Inspection • News Gathering / Traffic Monitoring • Package Delivery

Hazards

• Mid-Air Collision (MAC) • sUAS LOC and Impact of LOC

Trajectory on other sUAS / Aircraft • sUAS Fly-Away under LOC or GPS

Failure • Others

• Mid-Air Collision (MAC) • sUAS LOC and Impact of LOC Trajectory on

other sUAS / Aircraft and Urban Environment • Widespread GPS Malfunction / Failure (e.g.,

Loss or Corrupted Data) • Others

Mitigation / Contingency Actions

• Sense and Avoid (SAA) / Detect and Avoid (DAA) / Collision Avoidance System

• Flight Termination / Land System Pre-Programmed with Safe Landing Zone(s)

• Return to Base & Land (Commanded by UTM System)

• Resilient Flight Control System for LOC Prevention / Recovery

• Other

• SAA / DAA / Collision Avoidance System • Flight Termination / Land System that

Identifies Safe Landing Zone in Real Time • Rerouting of nominal UAS to accommodate

uncertain trajectory of off-nominal UAS • All Land (Commanded by UTM) • Resilient Flight Control System for LOC

Prevention / Recovery • Others

Safety Indicators

• Vehicle Health • Flight Path Compliance • Geofence / Flight Termination

Containment • Current / Predicted Trajectory under

LOC • Predicted Collision Point / Probability

• Current / Predicted Trajectories of Multiple UAS (Nominal & Off-Nominal)

• Current / Predicted Proximity to other UAS / Aircraft

• Others

Risk Indicators

• Current / Predicted LOC Trajectory • Predicted Impact Point / Area Relative to

Ground Assets and People • Predicted Collision Point / Area for

MAC

• Current / Predicted LOC Trajectory Relative to Ground & Other UAS

• Predicted Flight Termination Path Relative to Other UAS

An example concept for a test environment based on the above considerations is presented in the next section.

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 24: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

24

B. Example Concept for Multi-UAS Experimental Testing The Airborne Subscale Transport Aircraft Research (AirSTAR) Testbed was developed for testing dynamically

scaled transport aircraft under loss of control (LOC) conditions.28, 29, 30 Figure 11 shows the current AirSTAR Testbed infrastructure. As indicated in Figure 11, the AirSTAR capability includes not only the vehicle being flown but ground infrastructure that supports experimental flight testing. This infrastructure includes a Mobile Operations Station (MOS) and a Base Research Station (BRS). The BRS enables pre-deployment testing, and the MOS is deployed to the test range to conduct the flight tests. The AirSTAR infrastructure, which currently supports single sUAS operations, could be expanded for multi-UAS operations.

Figure 11. AirSTAR Testbed Infrastructure

One potential concept for multi-UAS flight testing using the AirSTAR infrastructure is illustrated in Figures 12 – 14.

Figure 12. Utilization of the AirSTAR Mobile Operations Station (MOS) for Multi-UAS Testing

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 25: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

25

Figure 13. Potential Utilization of MOS Engineering Stations for Multi-UAS Operations

Figure 14. Potential Utilization of AirSTAR BRS for Multi-UAS Operations

Figure 12 illustrates the interior layout of the AirSTAR MOS and provides some key test requirements. Specifically, it is proposed that the current capability of manually flying from the pilot station of the MOS be retained, and that the smaller engineering stations be utilized for managing multiple multi-UAS operations. An interconnection to a large-scale sUAS simulation is also proposed to enable high-density testing with a mix of actual and virtual vehicles being flown. Figure 13 provides an interior view of the MOS stations and illustrates a dual use for the pilot station. One potential concept is to use the pilot station as a safety management center representative of either an operator or a UTM regional safety manager. The station would provide the ability to monitor all flights simultaneously or pull up key flights of interest, and would interface with the UTM system, sUAS simulation labs, and Air Traffic Control / Air Traffic Management (ATC/ATM) emulations facilities (if needed). Another option would be to utilize the pilot station to fly a larger UAS in close proximity to the sUAS operations in order to evaluate nominal and off-nominal impacts between the two operations. Figure 14 illustrates the use of the AirSTAR BRS as part of a multi-UAS test environment. The BRS pilot station could be used to emulate higher-level real-time risk assessment and safety assurance functions (e.g., across multiple emulated / simulated regions of operation). The smaller stations in

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 26: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

26

the BRS could be used to emulate (or host) UTM support service providers, FAA / ATC functions, and to facilitate interactions with ATM labs.

C. Future Work The preceding sections presented research considerations and a concept for multi-UAS flight testing. Much work

remains to be done in realizing such a capability and in ensuring effective support in the development and evaluation of integrated technologies that enable resilient autonomous vehicle and operational systems as well as human-automation teaming. Hardware and software considerations must also be considered (e.g., modularity).

V. Conclusion This paper summarized experimental test capabilities needed to ensure the safety of sUAS operations particularly

for safety-critical applications operating in high-risk environments. Some initial flight tests were described for evaluating the safety of several vehicle configurations under adverse conditions. These tests focused on single-UAS operations and considered control component and GPS system failures. In order to evaluate the effectiveness of hazards mitigation systems, a set of hazards-based test scenarios will be needed. An approach for developing these scenarios using Mission Task Elements was presented as well as some initial test scenarios that were defined to illustrate the approach. Further work is needed in refining the nominal MTEs (common and/or specialized) and in developing a full set of hazards-based test scenarios. This will involve obtaining input from subject matter experts, and validating the performance and safety requirements via simulation and flight testing. Finally, safety considerations were discussed for experimental testing under multi-UAS operations. An initial concept for multi-sUAS flight testing was presented, but further work is needed in realizing such a capability.

 

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 27: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

27

Appendix A: Initial Set of Nominal Test Scenarios for Fixed Wing (FW), Multirotor (MR), and Unmanned Helicopter (UH) sUAS

 

Type Weight

FW‐N‐1 Common

Analysis, 

Simulation, Flight 

Testing

All Fixed Wing All (≤ 55 lbs) Takeoff & Climb

• Evaluate ability to perform 

takeoff ground roll in nominal 

and gusty conditions.

• Evaluate handling qualities in 

rotation.

• Evaluate ability to attain 

reference attitude and airspeed 

following takeoff.

• Evaluate ability to achieve 

smooth, continuous pitch rate 

to climb attitude.

• From hold position on runway centerline, 

apply takeoff power and perform normal 

takeoff.  

• At rotation speed, rapidly attain reference 

takeoff attitude.  

• Adjust power to maintain climb airspeed 

and continue to climb until cruise altitude is 

attained.

FW‐N‐2 Common

Analysis, 

Simulation, Flight 

Testing

All Fixed Wing All (≤ 55 lbs) Altitude Change• Evaluate ability to accurately 

change altitude

• Initiate the maneuver in steady level flight. 

Smoothly pitch up to a steady climb rate of at 

least TBD fpm and maintain this rate until 

within 10 ft of the target altitude.  

• Level off at an altitude 100 ft above the 

initial altitude and maintain steady 

conditions for a minimum of 15 seconds.  

• Then push over to return to the initial 

altitude at a steady descent rate of at least 

TBD fpm and maintain this rate until within 

10 ft of the initial altitude.  

• Level off at the initial altitude and maintain 

steady conditions for a minimum of 15 

seconds.  

• Maintain bank angle, heading, and power 

throughout the maneuver.

FW‐N‐3 Common

Analysis, 

Simulation, Flight 

Testing

All Fixed Wing All (≤ 55 lbs)Flightpath Capture 

(Climb/Descent)

• Evaluate ability to maintain 

airspeed during initiation of 

climbs and descents.

• Evaluate coupling between 

airspeed and flightpath.

• From steady level flight, rapidly pitch over 

and reduce power to attain a steady dive 

angle of ‐5° within the specified tolerances.  

• After an altitude loss of 100 ft, rapidly pitch 

up and increase power to attain a steady 

climb angle of 5° within the specified 

tolerances.  

• Smoothly level off at the initial altitude.  

• Repeat the maneuver by first climbing and 

then diving.

FW‐N‐4 Common

Analysis, 

Simulation, Flight 

Testing

All Fixed Wing All (≤ 55 lbs) Pitch Attitude Capture

• Evaluate ability to pitch and 

capture an attitude.

• Identify maneuverability 

limitations and oscillation 

tendencies.

• From steady level flight rapidly capture a 

pitch attitude of at least 5° above trim and 

maintain this attitude within the specified 

tolerances for 5 seconds or until stable.  

• Then perform subsequent captures of the 

initial trim attitude, ‐5° below trim, and trim 

attitude to complete the maneuver. 

• Before proceeding to the next capture, 

maintain each attitude within the specified 

tolerances for 5 seconds or until stable.  

• Maintain wings level flight within the 

specified tolerances throughout the 

maneuver.

Scenario Set No.

Recommended Evaluation Methods

Use Case Mission Task Element (MTE) Identifier

Vehicle ClassScenario Type

Task Objectives Mission Task Element (MTE) Description

None

None

None

None

Hazard

Desired Adequate

VLOS / BVLOS

All (Remote/Rural, 

Suburban / Urban, 

Congested)

• ±2 ft deviation of UAS 

centerline from runway 

centerline throughout takeoff 

roll.

• ±2° deviation from reference 

climb attitude (or flightpath 

angle if appropriate) or �2.5 kts 

deviation from climb airspeed.

• ±5° maximum bank angle.

• ±2.5° deviation from runway 

heading.

• ±5 ft deviation of UAS centerline 

from runway centerline throughout 

takeoff roll.

• ±4° deviation from reference climb 

attitude (or flightpath angle if 

appropriate) or �5 kts deviation from 

climb airspeed.

• ±10° maximum bank angle.

• ±5° deviation from runway 

heading.

VLOS / BVLOS

All (Remote/Rural, 

Suburban / Urban, 

Congested)

• ±5 ft of target altitude.

• ±2° bank angle deviation from 

wings level.

• ±2° deviation in heading.

• ±10 ft of target altitude.

• ±5° bank angle deviation from 

wings level.

• ±5° deviation in heading.

VLOS / BVLOS

All (Remote/Rural, 

Suburban / Urban, 

Congested)

• ±1° deviation in flightpath 

angle.

• Attain target descent and climb 

angles with no more than one 

overshoot.  Magnitude of 

overshoot remains within the 

desired region.

• ±5 kt deviation in airspeed.

• ±2° deviation in flightpath angle.

• Attain target descent and climb 

angles with no more than one 

overshoot.  Magnitude of overshoot 

remains within the adequate region.

• ±10 kt deviation in airspeed.

VLOS / BVLOS

All (Remote/Rural, 

Suburban / Urban, 

Congested)

• ±1° pitch attitude.

• ±2° deviation in bank angle.

• No more than one pitch 

attitude overshoot for each 

capture. Magnitude of overshoot 

remains within the desired 

region.

• No undesirable motions that 

impact task performance.

• ±2° pitch attitude.

• ±5° deviation in bank angle.

• No more than one pitch attitude 

overshoot for each capture. 

Magnitude of overshoot remains 

within the adequate region.

• No oscillations (PIO if remotely 

piloted or limit cycles if 

autonomous) that impact system 

stability or safety of flight.

Performance RequirementsOperational Mode 

Operational Environment

Tests should be conducted 

under Calm Wind Conditions 

(i.e., Winds with a Steady 

Component of Less than 5 kts.)

Tests should be conducted 

under Calm Wind Conditions 

(i.e., Winds with a Steady 

Component of Less than 5 kts.)

Tests should be conducted 

under Calm Wind Conditions 

(i.e., Winds with a Steady 

Component of Less than 5 kts.)

Tests should be conducted 

under Calm Wind Conditions 

(i.e., Winds with a Steady 

Component of Less than 5 kts.)

Notes

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 28: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

28

 

   

Type Weight

Scenario Set No.

Recommended Evaluation Methods

Use Case Mission Task Element (MTE) Identifier

Vehicle ClassScenario Type

Task Objectives Mission Task Element (MTE) Description Hazard

Desired Adequate

Operational Mode 

Operational Environment

Performance Requirements Notes

FW‐N‐5 Common

Analysis, 

Simulation, Flight 

Testing

All Fixed Wing All (≤ 55 lbs) Bank Angle Capture

• Evaluate ability to roll and 

capture a bank angle.

• Identify maneuverability 

limitations and oscillation 

tendencies.

• From steady, wings level flight roll and 

capture a bank angle of 45° and maintain this 

bank angle within the specified tolerance for 

5 seconds or until stable.  

• Capture the 45° bank angle before 

achieving a maximum heading change of 10°.  

• Then capture and hold a bank angle of ‐45° 

and maintain this bank angle within the 

specified tolerance for 5 seconds or until 

stable.  

• Finally, return to steady, wings level flight 

and maintain within the specified tolerance 

for 5 seconds or until stable.

FW‐N‐6 Common

Analysis, 

Simulation, Flight 

Testing

All Fixed Wing All (≤ 55 lbs) Heading Capture• Evaluate ability to accurately 

change heading.

• Initiate the maneuver from steady level 

flight.  

• Perform a 10° heading change to the right 

with a bank angle of 30° and maintain this 

new heading within the specified tolerances 

for 10 seconds or until stable.  

• Repeat the maneuver back to the original 

heading, to the left 10°, and back again to the 

original heading.

FW‐N‐7 Common

Analysis, 

Simulation, Flight 

Testing

All Fixed Wing All (≤ 55 lbs) Landing

• Evaluate ability to control 

horizontal and vertical 

flightpath and airspeed for 

landing.

• Evaluate ability to manage 

sink rate and attitude in the 

flare.

• Initiate the maneuver on final, on the 

nominal approach conditions in landing 

configuration.  

• The approach angle (glideslope) shall be as 

appropriate for the aircraft being tested.  

• Touch down within the prescribed 

touchdown parameters with the aircraft 

centerline. 

FW‐N‐8 Common

Analysis, 

Simulation, Flight 

Testing

All Fixed Wing All (≤ 55 lbs) Avoidance Maneuver

• Evaluate ability to rapidly, i.e., 

aggressively, climb/descend to 

avoid an obstacle.

• Evaluate ability to return to 

stabilized flight at a new 

altitude.

Climb Description

From a safety of flight point of view, the best 

obstacle avoidance flightpath will typically 

be to climb to a higher altitude.

• From steady level flight rapidly capture and 

maintain a climb rate of TBD fpm for an 

altitude change of 50 ft.  

• Level off and stabilize at a new altitude 

above the designated obstacle avoidance 

altitude. 

• Minimize deviations in other axes 

throughout the climb.

Descend Description

Though less desirable from a safety of flight 

point of view, the best obstacle avoidance 

flightpath may be to descend to a lower 

altitude.

• From steady level flight rapidly capture and 

maintain a descent rate of TBD fpm for an 

altitude change of 50 ft.  

• Level off and stabilize at a new altitude 

below the designated obstacle avoidance 

altitude. 

• Minimize deviations in other axes 

throughout the climb.

None

None

None

None

VLOS / BVLOS

All (Remote/Rural, 

Suburban / Urban, 

Congested)

• ±5° bank angle.

• No more than one bank angle 

overshoot for each capture. 

Magnitude of overshoot remains 

within the desired region.

• No undesirable motions that 

impact task performance.

• ±10° bank angle.

• No more than one bank angle 

overshoot for each capture. 

Magnitude of overshoot remains 

within the adequate region.

• No oscillations (PIO if remotely 

piloted or limit cycles if 

autonomous) that impact system 

stability or safety of flight.

VLOS / BVLOS

All (Remote/Rural, 

Suburban / Urban, 

Congested)

• ±2° deviation from target 

heading.

• No more than one heading 

overshoot. Magnitude of 

overshoot remains within the 

desired region.

• No undesirable motions that 

impact task performance.

• ±4° deviation from target heading.

• No more than one heading 

overshoot. Magnitude of overshoot 

remains within the adequate region.

• No oscillations (PIO if remotely 

piloted or limit cycles if 

autonomous) that impact system 

stability or safety of flight.

VLOS / BVLOS

All (Remote/Rural, 

Suburban / Urban, 

Congested)

• Touch down within ±2.5 kts of 

landing airspeed.

• Touch down within ±10 ft of 

the longitudinal aim point along 

the runway centerline and ±5 ft 

laterally of the runway 

centerline.

• No bounce and no hard landing 

if touchdown sink rate is difficult 

to measure).

• Touch down within ±5 kts of 

landing airspeed.

• Touch down within ±20 ft of the 

longitudinal aim point along the 

runway centerline and ±10 ft 

laterally of the runway centerline.

• No more than one bounce and no 

hard landing.

VLOS / BVLOS

All (Remote/Rural, 

Suburban / Urban, 

Congested)

• ± TBD deviation in climb or sink 

rate.

• ±10 ft deviation the new target 

altitude.

• ± TBD deviation in climb or sink 

rate.

• ±20 ft deviation the new target 

altitude.

Tests should be conducted 

under Calm Wind Conditions 

(i.e., Winds with a Steady 

Component of Less than 5 kts.)

Tests should be conducted 

under Calm Wind Conditions 

(i.e., Winds with a Steady 

Component of Less than 5 kts.)

Tests should be conducted 

under Calm Wind Conditions 

(i.e., Winds with a Steady 

Component of Less than 5 kts.)

Tests should be conducted 

under Calm Wind Conditions 

(i.e., Winds with a Steady 

Component of Less than 5 kts.)

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 29: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

29

 

 

 

 

 

Type Weight

Scenario Set No.

Recommended Evaluation Methods

Use Case Mission Task Element (MTE) Identifier

Vehicle ClassScenario Type

Task Objectives Mission Task Element (MTE) Description Hazard

Desired Adequate

Operational Mode 

Operational Environment

Performance Requirements Notes

FW‐N‐9 Specialized

Analysis, 

Simulation, Flight 

Testing

Specific Use Cases 

(e.g., Pipeline 

Inspection) 

Fixed Wing All (≤ 55 lbs)

Precision Tracking of a 

Fixed Ground Reference 

Path (e.g., Pipeline 

Inspection)

• Evaluate ability to precisely 

track a ground path.

• Evaluate ability to precisely 

control flightpath.

• Initiate the maneuver in steady level flight. 

• Follow a prescribed ground path (e.g., 

pipeline, roadway, canal, etc.) for a 

minimum of 2 minutes at the required 

altitude and airspeed for nominal sensor 

operation.  

• Maintain required flightpath throughout 

the maneuver. 

FW‐N‐10 Specialized

Analysis, 

Simulation, Flight 

Testing

Specific Use Cases 

(e.g., Precision 

Agriculture) 

Fixed Wing All (≤ 55 lbs)

Precision Tracking of a 

Fixed Ground Reference 

Area (e.g., Precision 

Agriculture)

• Evaluate ability to precisely 

track a prescribed grid over a 

ground reference area.

• Evaluate ability to precisely 

control flightpath.

• Initiate the maneuver in steady level flight. 

• Follow a prescribed grid over a ground 

reference area at the required altitude and 

airspeed for nominal mission operation.

• Initiate turns as geofence is approached to 

remain within prescribed boundaries while 

ensuring complete coverage of the grid area.

• Maintain required flightpath throughout 

the maneuver.

None

None

VLOS / BVLOS

All (Remote/Rural, 

Suburban / Urban, 

Congested)

• ±5 ft of target flightpath.

• ±10 ft of target altitude.

• ±5 kts of target airspeed.

• ±10 ft of target flightpath.

• ±20 ft of target altitude.

• ±10 kts of target airspeed.

VLOS / BVLOS

All (Remote/Rural, 

Suburban / Urban, 

Congested)

• ±5 ft of target flightpath.

• ±10 ft of target altitude.

• ±5 kts of target airspeed.

• Remain within all prescribed 

geofences throughout the 

maneuver.

• ±10 ft of target flightpath.

• ±20 ft of target altitude.

• ±10 kts of target airspeed.

•  Excursions of no more than 5 ft 

outside of the prescribed geofences 

throughout the maneuver.

Tests should be conducted 

under Calm Wind Conditions 

(i.e., Winds with a Steady 

Component of Less than 5 kts.)

Tests should be conducted 

under Calm Wind Conditions 

(i.e., Winds with a Steady 

Component of Less than 5 kts.)

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 30: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

30

Type Weight

MR‐N‐1 Common

Analysis, 

Simulation, Flight 

Testing

All Multi‐Rotor All (≤ 55 lbs) Takeoff 

Evaluate ability to takeoff and 

vertically ascend to waypoint 

transition altitude.

Liftoff and vertically ascend to 30m.

MR‐N‐2 Common

Analysis, 

Simulation, Flight 

Testing

All Multi‐Rotor All (≤ 55 lbs) Precision Hover

• Evaluate ability to transition from 

translating flight to a stabilized 

hover over the target hover zone 

with precision and a reasonable 

amount of aggressiveness.

• Evaluate ability to maintain 

precise position, heading, and 

altitude over the target hover 

zone.

• From a forward flight of 5 kts and at an 

altitude of 10 ft, attain a stabilized hover 

over the defined target hover zone.

• Maintain the stabilized hover over the 

hover zone for the time duration 

established in the performance 

requirements.

MR‐N‐3 Common

Analysis, 

Simulation, Flight 

Testing

All Multi‐Rotor All (≤ 55 lbs)

Vertical Maneuver 

(Vertical Altitude 

Change)

• Evaluate heave damping, i.e., the 

ability to precisely start and stop a 

vertical rate.

• Evaluate vertical control power.

• Identify undesirable coupling 

between collective and the pitch, 

roll, and yaw axes.

• From a stabilized hover at an altitude of 

10 ft, initiate a vertical ascent of 25 ft, 

stabilize for 5 seconds.

• Descend back to the initial hover 

position and stabilize for at least 5 

seconds. 

• Maintain initial heading throughout the 

maneuver.

MR‐N‐4 Common

Analysis, 

Simulation, Flight 

Testing

All Multi‐Rotor All (≤ 55 lbs) Lateral Reposition

• Assess roll axis and heave axis 

response during moderately 

aggressive maneuvering.

• Identify undesirable coupling 

between the roll controller and 

the other axes.

• Start in a stabilized hover at 25 ft with 

the longitudinal axis of the rotorcraft 

oriented 90 degrees to a reference line 

marked on the ground. 

• Initiate a lateral acceleration to 

approximately 25 kts groundspeed 

followed by a deceleration to laterally 

reposition the rotorcraft in a stabilized 

hover 100 ft down the course. 

• The acceleration and deceleration 

phases shall be accomplished as single 

smooth maneuvers. 

• The maneuver is complete when a 

stabilized hover is achieved.

• Maintain initial heading throughout the 

maneuver.

Scenario Type

Scenario Set No.

Recommended Evaluation 

Use Case Vehicle Class Mission Task Element (MTE) Identifier

Task Objectives Mission Task Element (MTE) Description

None

None

None

None

HazardDesired Adequate

VLOS / BVLOS

All (Remote/Rural, 

Suburban / Urban, 

Congested)

• Maintain target altitude within ±3 ft.

• Maintain longitudinal and lateral position 

within ±6 ft of transition waypoint

• Heading at start of transition should be 

within ±2 deg of reference heading.

• Maintain target altitude within ±5 ft.

• Maintain longitudinal and lateral 

position within ±10 ft of transition 

waypoint.

• Heading at start of transition should be  

within ±5 deg of reference heading.

VLOS / BVLOS

All (Remote/Rural, 

Suburban / Urban, 

Congested)

• Attain a stabilized hover from forward 

flight before exiting the desired region of 

the hover zone.

• Maintain a stabilized hover over the 

desired region of the hover zone for at least 

30 seconds.

• Maintain longitudinal and lateral position 

over the hover zone within ±1 ft, where ±1 ft 

by ±1 ft box defines the desired hover zone.

• Maintain altitude above the hover zone 

within ± 1 ft.

• No undesirable motions (bobble, 

overshoots/undershoots) that impact task 

performance during the transition to hover 

or stabilized hover.

• Attain a stabilized hover from forward 

flight before exiting the adequate region 

of the hover zone.

• Maintain a stabilized hover over the 

adequate region of the hover zone for at 

least 30 seconds.

• Maintain longitudinal and lateral 

position over the hover zone within ±2 ft, 

where ±2 ft by ±2 ft box defines the 

desired hover zone.

• Maintain altitude above the hover zone 

within ± 2 ft units (feet or meters).

• No oscillations (PIO if remotely piloted 

or limit cycles if autonomous) that impact 

system stability or safety of flight during 

the transition to hover or stabilized 

hover.

VLOS / BVLOS

All (Remote/Rural, 

Suburban / Urban, 

Congested)

• Maintain start/finish altitude within ±2 ft.

• Maintain longitudinal and lateral position 

within ±5 ft of a point on the ground

• Actual heading should be aligned with 

reference heading within ±5 deg throughout 

maneuver.

• Maintain start/finish altitude within ±5 

ft.

• Maintain longitudinal and lateral 

position within ±10 ft of a point on the 

ground.

• Actual heading should be aligned with 

reference heading within ±10 deg 

throughout maneuver.

VLOS / BVLOS

All (Remote/Rural, 

Suburban / Urban, 

Congested)

• The rotorcraft terminates the reposition 

within ±5 ft of the endpoint during the 

deceleration, terminating in a stable hover 

within this band.

• Maintain longitudinal track within ±10 ft.

• Maintain altitude within ±5 ft.

• Actual heading should be aligned with 

reference heading within ±5 deg throughout 

maneuver.

• The rotorcraft terminates the reposition 

within ±10 ft of the endpoint during the 

deceleration, terminating in a stable 

hover within this band.

• Maintain longitudinal track within ±20 

ft.

• Maintain altitude within ±10 ft.

• Actual heading should be aligned with 

reference heading within ±10 deg 

throughout maneuver.

Performance RequirementsOperational Mode 

Operational Environment

Tests should be conducted under 

Calm Wind Conditions (i.e., 

Winds with a Steady Component 

of Less than 5 kts.)

1. Tests should be conducted 

under Calm Wind Conditions 

(i.e., Winds with a Steady 

Component of Less than 5 kts.)

2. The hover point / zone is a 

repeatable, ground‐referenced 

point / zone from which the UAS 

deviations are measured.

Tests should be conducted under 

Calm Wind Conditions (i.e., 

Winds with a Steady Component 

of Less than 5 kts.)

Tests should be conducted under 

Calm Wind Conditions (i.e., 

Winds with a Steady Component 

of Less than 5 kts.)

Notes

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 31: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

31

Type WeightScenario Type

Scenario Set No.

Recommended Evaluation 

Use Case Vehicle Class Mission Task Element (MTE) Identifier

Task Objectives Mission Task Element (MTE) Description

HazardDesired Adequate

Performance RequirementsOperational Mode 

Operational Environment

Notes

MR‐N‐5 Common

Analysis, 

Simulation, Flight 

Testing

All Multi‐Rotor All (≤ 55 lbs)Pullup / Pushover 

(Obstacle Avoidance)

• Evaluate response at elevated 

and reduced load factors and 

during transition between 

elevated and reduced load factors.

• Identify undesirable coupling 

between pitch, roll, and yaw for 

aggressive maneuvering in forward 

flight.

• Evaluate ability to avoid 

obstacles.

• From level unaccelerated flight that is 

less than the maximum level flight 

airspeed at maximum continuous power 

(VH), attain a sustained positive load 

factor in a symmetrical pullup.   

• Transition, via a symmetrical pushover, 

to a sustained negative load factor.  

• Recover to level flight as rapidly as 

possible.

MR‐N‐6 Common

Analysis, 

Simulation, Flight 

Testing

All Multi‐Rotor All (≤ 55 lbs) Descent / Landing

• Evaluate ability to precisely 

control the rotorcraft position 

during the final descent to a 

precision landing point.

• Starting from an altitude of greater than 

10 ft, maintain an essentially steady 

descent to a prescribed landing point, 

while maintaining reference heading. 

• It is acceptable for the remote pilot or 

autonomous system to arrest sink rate 

momentarily to make last minute 

corrections before touchdown.

MR‐N‐7 Common

Analysis, 

Simulation, Flight 

Testing

All Multi‐Rotor All (≤ 55 lbs) Landing

• Evaluate ability to control 

horizontal and vertical flightpath 

and airspeed for landing.

• Evaluate ability to manage sink 

rate and attitude in the flare.

• Initiate the maneuver on final, on the 

nominal approach conditions in landing 

configuration.  

• The approach angle (glideslope) shall be 

as appropriate for the aircraft being 

tested.  

• Touch down within the prescribed 

touchdown parameters with the aircraft 

centerline. 

MR‐N‐8 Common

Analysis, 

Simulation, Flight 

Testing

All Multi‐Rotor All (≤ 55 lbs) Hovering Turn

• Identify any undesirable vehicle 

characteristics that may impact 

task performance in a moderately 

aggressive hovering turn.

• Evaluate ability to recover from a 

moderate rate hovering turn with 

reasonable precision.

• Identify any undesirable 

interaxis coupling.

• From a stabilized hover at an altitude of 

less than 20 ft, complete a 180 degree 

turn. 

• Perform the maneuver in both 

directions. 

None

None

None

None

VLOS / BVLOS

All (Remote/Rural, 

Suburban / Urban, 

Congested)

• Attain a normal load factor of at least the 

positive limit of the OFE (nL(+)) within 1 

second from the initial control input.

• Maintain at least nL(+) for at least 2 

seconds.

• Accomplish transition from nL(+) pullup to 

a pushover of not greater than the negative 

normal load factor limit of the OFE (nL(‐)) 

within 2 seconds.

• Maintain at least nL(‐) for at least 2 

seconds.

• Maintain angular deviations in roll and yaw 

within ±5 degrees from the initial 

unaccelerated level flight condition to 

completion of the maneuver.

• Attain a normal load factor of at least 

the positive limit of the OFE (nL(+)) 

within 2 seconds from the initial control 

input.

• Maintain at least nL(+) for at least 1 

second.

• Accomplish transition from nL(+) pullup 

to a pushover of not greater than the 

negative normal load factor limit of the 

OFE (nL(‐)) within 5 seconds.

• Maintain at least nL(‐) for at least 1 

second.

• Maintain angular deviations in roll and 

yaw within ±10 degrees from the initial 

unaccelerated level flight condition to 

completion of the maneuver.

VLOS / BVLOS

All (Remote/Rural, 

Suburban / Urban, 

Congested)

• Accomplish a gentle landing with a smooth 

continuous descent and no undesirable 

motions that may impact task performance.

• Touchdown within ±1 ft longitudinally and 

±1 ft laterally of the desired touchdown 

zone.

• Actual heading at touchdown should be 

aligned with the reference heading within ±5 

deg.

• Accomplish landing with no system 

oscillations.

• Touchdown within ±2 ft longitudinally 

and ±2 ft laterally of the desired 

touchdown zone.

• Actual heading at touchdown should be 

aligned with the reference heading 

within ±10 deg.

VLOS / BVLOS

All (Remote/Rural, 

Suburban / Urban, 

Congested)

• Touch down within ±2.5 kts of landing 

airspeed.

• Touch down within ±10 ft of the 

longitudinal aim point along the runway 

centerline and ±5 ft laterally of the runway 

centerline.

• No bounce and no hard landing if 

touchdown sink rate is difficult to measure).

• Touch down within ±5 kts of landing 

airspeed.

• Touch down within ±20 ft of the 

longitudinal aim point along the runway 

centerline and ±10 ft laterally of the 

runway centerline.

• No more than one bounce and no hard 

landing.

VLOS / BVLOS

All (Remote/Rural, 

Suburban / Urban, 

Congested)

• Maintain longitudinal and lateral position 

within ± 3 ft of a point on the ground.

• Maintain altitude within ±3 ft.

• Stabilized final UAS heading at 180 deg. 

From initial heading ± 3 deg.

• Complete turn to a stabilized hover (within 

the desired window) with 10 sec. from 

initiation of maneuver.

• Maintain longitudinal and lateral 

position within ± 6 ft of a point on the 

ground.

• Maintain altitude within ±6 ft.

• Stabilized final UAS heading at 180 deg. 

From initial heading ± 6 deg.

• Complete turn to a stabilized hover 

(within the desired window) with 15 sec. 

from initiation of maneuver.

Tests should be conducted under 

Calm Wind Conditions (i.e., 

Winds with a Steady Component 

of Less than 5 kts.)

Tests should be conducted under 

Calm Wind Conditions (i.e., 

Winds with a Steady Component 

of Less than 5 kts.)

Tests should be conducted under 

Calm Wind Conditions (i.e., 

Winds with a Steady Component 

of Less than 5 kts.)

Tests should be conducted under 

Calm Wind Conditions (i.e., 

Winds with a Steady Component 

of Less than 5 kts.)

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 32: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

32

Type WeightScenario Type

Scenario Set No.

Recommended Evaluation 

Use Case Vehicle Class Mission Task Element (MTE) Identifier

Task Objectives Mission Task Element (MTE) Description

HazardDesired Adequate

Performance RequirementsOperational Mode 

Operational Environment

Notes

MR‐N‐9 Specialized

Analysis, 

Simulation, Flight 

Testing

Specific Use Cases 

(e.g., Power Line 

Inspection, 

Pipeline 

Inspection) 

Multi‐Rotor All (≤ 55 lbs)

Precision Tracking of a 

Fixed Ground Reference 

Path

• Evaluate ability to precisely track 

a ground path.

• Evaluate ability to precisely 

control flightpath.

• Initiate the maneuver in steady level 

flight. 

• Follow a prescribed ground path (e.g., 

pipeline, roadway, canal, etc.) for a 

minimum of 2 minutes at the required 

altitude and airspeed for nominal sensor 

operation.  

• Maintain required flightpath throughout 

the maneuver. 

MR‐N‐10 Specialized

Analysis, 

Simulation, Flight 

Testing

Specific Use Cases 

(e.g., Search & 

Rescue, Precision 

Agriculture) 

Multi‐Rotor All (≤ 55 lbs)

Precision Tracking of a 

Fixed Ground Reference 

Area 

• Evaluate ability to precisely track 

a prescribed grid over a ground 

reference area.

• Evaluate ability to precisely 

control flightpath.

• Initiate the maneuver in steady level 

flight. 

• Follow a prescribed grid over a ground 

reference area at the required altitude 

and airspeed for nominal mission 

operation.

• Initiate turns as geofence is approached 

to remain within prescribed boundaries 

while ensuring complete coverage of the 

grid area.

• Maintain required flightpath throughout 

the maneuver.

MR‐N‐11 Specialized

Analysis, 

Simulation, Flight 

Testing

Specific Use Cases 

(e.g., Package 

Delivery)

Multi‐Rotor All (≤ 55 lbs)Precision Hover for Cargo 

Drop‐Off

• Evaluate ability to transition from 

translating flight to a stabilized 

hover over the target drop zone 

with precision and a reasonable 

amount of aggressiveness.

• Evaluate ability to maintain 

precise position, heading, and 

altitude over the target drop zone.

• From a forward flight of 5 kts and at an 

altitude of 10 ft, attain a stabilized hover 

over the defined drop zone.

• Maintain the stabilized hover over the 

drop zone for the time duration 

established in the performance 

requirements.

None

None

None

VLOS / BVLOS

All (Remote/Rural, 

Suburban / Urban, 

Congested)

• ±5 ft of target flightpath.

• ±10 ft of target altitude.

• ±5 kts of target airspeed.

• ±10 ft of target flightpath.

• ±20 ft of target altitude.

• ±10 kts of target airspeed.

VLOS / BVLOS

All (Remote/Rural, 

Suburban / Urban, 

Congested)

• ±5 ft of target flightpath.

• ±10 ft of target altitude.

• ±5 kts of target airspeed.

• Remain within all prescribed geofences 

throughout the maneuver.

• ±10 ft of target flightpath.

• ±20 ft of target altitude.

• ±10 kts of target airspeed.

•  Excursions of no more than 5 ft outside 

of the prescribed geofences throughout 

the maneuver.

VLOS / BVLOS

All (Remote/Rural, 

Suburban / Urban, 

Congested)

• Attain a stabilized hover from forward 

flight before exiting the desired region of 

the drop zone.

• Maintain a stabilized hover over the 

desired region of the drop zone for at least 

30 seconds.

• Maintain longitudinal and lateral position 

over the drop zone within ±1 ft, where ±1 ft 

by ±1 ft box defines the desired drop zone.

• Maintain altitude above the drop zone 

within ± 1 ft.

• No undesirable motions (bobble, 

overshoots/undershoots) that impact task 

performance during the transition to hover 

or stabilized hover.

• Attain a stabilized hover from forward 

flight before exiting the adequate region 

of the drop zone.

• Maintain a stabilized hover over the 

adequate region of the drop zone for at 

least 30 seconds.

• Maintain longitudinal and lateral 

position over the drop zone within ±2 ft, 

where ±2 ft by ±2 ft box defines the 

desired drop zone.

• Maintain altitude above the drop zone 

within ± 2 ft units (feet or meters).

• No oscillations (PIO if remotely piloted 

or limit cycles if autonomous) that impact 

system stability or safety of flight during 

the transition to hover or stabilized 

hover.

Tests should be conducted under 

Calm Wind Conditions (i.e., 

Winds with a Steady Component 

of Less than 5 kts.)

Tests should be conducted under 

Calm Wind Conditions (i.e., 

Winds with a Steady Component 

of Less than 5 kts.)

Tests should be conducted under 

Calm Wind Conditions (i.e., 

Winds with a Steady Component 

of Less than 5 kts.)

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 33: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

33

Type Weight

UH‐N‐1 Common

Analysis, 

Simulation, Flight 

Testing

AllUnmanned 

HelicopterAll (≤ 55 lbs) Takeoff 

Evaluate ability to takeoff and 

vertically ascend vertically to 

waypoint transition altitude.

Liftoff and vertically ascend to 30m.

UH‐N‐2 Common

Analysis, 

Simulation, Flight 

Testing

AllUnmanned 

HelicopterAll (≤ 55 lbs) Precision Hover

• Evaluate ability to transition 

from translating flight to a 

stabilized hover over the target 

hover zone with precision and a 

reasonable amount of 

aggressiveness.

• Evaluate ability to maintain 

precise position, heading, and 

altitude over the target hover 

zone.

• From a forward flight of 5 kts and at 

an altitude of 10 ft, attain a stabilized 

hover over the defined target hover 

zone.

• Maintain the stabilized hover over 

the hover zone for the time duration 

established in the performance 

requirements.

UH‐N‐3 Common

Analysis, 

Simulation, Flight 

Testing

AllUnmanned 

HelicopterAll (≤ 55 lbs)

Vertical Maneuver 

(Vertical Altitude Change)

• Evaluate heave damping, i.e., 

the ability to precisely start and 

stop a vertical rate.

• Evaluate vertical control 

power.

• Identify undesirable coupling 

between collective and the 

pitch, roll, and yaw axes.

• From a stabilized hover at an altitude 

of 10 ft, initiate a vertical ascent of 25 

ft, stabilize for 5 seconds.

• Descend back to the initial hover 

position and stabilize for at least 5 

seconds. 

• Maintain initial heading throughout 

the maneuver.

UH‐N‐4 Common

Analysis, 

Simulation, Flight 

Testing

AllUnmanned 

HelicopterAll (≤ 55 lbs) Lateral Reposition

• Assess roll axis and heave axis 

response during moderately 

aggressive maneuvering.

• Identify undesirable coupling 

between the roll controller and 

the other axes.

• Start in a stabilized hover at 25 ft with 

the longitudinal axis of the rotorcraft 

oriented 90 degrees to a reference line 

marked on the ground. 

• Initiate a lateral acceleration to 

approximately 25 kts groundspeed 

followed by a deceleration to laterally 

reposition the rotorcraft in a stabilized 

hover 100 ft down the course. 

• The acceleration and deceleration 

phases shall be accomplished as single 

smooth maneuvers. 

• The maneuver is complete when a 

stabilized hover is achieved.

• Maintain initial heading throughout 

the maneuver.

Scenario Type

Scenario Set No.

Recommended Evaluation 

Use CaseVehicle Class Mission Task Element 

(MTE) IdentifierTask Objectives

Mission Task Element (MTE) Description

None

None

None

None

HazardDesired Adequate

VLOS / BVLOS

All (Remote/Rural, 

Suburban / Urban, 

Congested)

• Maintain target altitude within ±3 ft.

• Maintain longitudinal and lateral position 

within ±6 ft of transition waypoint

• Heading at start of transition should be 

within ±2 deg of reference heading.

• Maintain target altitude within ±5 ft.

• Maintain longitudinal and lateral position 

within ±10 ft of transition waypoint.

• Heading at start of transition should be  

within ±5 deg of reference heading.

VLOS / BVLOS

All (Remote/Rural, 

Suburban / Urban, 

Congested)

• Attain a stabilized hover from forward 

flight before exiting the desired region of 

the hover zone.

• Maintain a stabilized hover over the 

desired region of the hover zone for at least 

30 seconds.

• Maintain longitudinal and lateral position 

over the hover zone within ±1 ft, where ±1 ft 

by ±1 ft box defines the desired hover zone.

• Maintain altitude above the hover zone 

within ± 1 ft.

• No undesirable motions (bobble, 

overshoots/undershoots) that impact task 

performance during the transition to hover 

or stabilized hover.

• Attain a stabilized hover from forward 

flight before exiting the adequate region 

of the hover zone.

• Maintain a stabilized hover over the 

adequate region of the hover zone for at 

least 30 seconds.

• Maintain longitudinal and lateral position 

over the hover zone within ±2 ft, where ±2 

ft by ±2 ft box defines the desired hover 

zone.

• Maintain altitude above the hover zone 

within ± 2 ft units (feet or meters).

• No oscillations (PIO if remotely piloted 

or limit cycles if autonomous) that impact 

system stability or safety of flight during 

the transition to hover or stabilized hover.

VLOS / BVLOS

All (Remote/Rural, 

Suburban / Urban, 

Congested)

• Maintain start/finish altitude within ±2 ft.

• Maintain longitudinal and lateral position 

within ±5 ft of a point on the ground

• Actual heading should be aligned with 

reference heading within ±5 deg throughout 

maneuver.

• Maintain start/finish altitude within ±5 ft.

• Maintain longitudinal and lateral position 

within ±10 ft of a point on the ground.

• Actual heading should be aligned with 

reference heading within ±10 deg 

throughout maneuver.

VLOS / BVLOS

All (Remote/Rural, 

Suburban / Urban, 

Congested)

• The rotorcraft terminates the reposition 

within ±5 ft of the endpoint during the 

deceleration, terminating in a stable hover 

within this band.

• Maintain longitudinal track within ±10 ft.

• Maintain altitude within ±5 ft.

• Actual heading should be aligned with 

reference heading within ±5 deg throughout 

maneuver.

• The rotorcraft terminates the reposition 

within ±10 ft of the endpoint during the 

deceleration, terminating in a stable hover 

within this band.

• Maintain longitudinal track within ±20 ft.

• Maintain altitude within ±10 ft.

• Actual heading should be aligned with 

reference heading within ±10 deg 

throughout maneuver.

Operational Mode 

Operational Environment

Performance Requirements

Tests should be conducted under 

Calm Wind Conditions (i.e., 

Winds with a Steady Component 

of Less than 5 kts.)

1.) Tests should be conducted 

under Calm Wind Conditions 

(i.e., Winds with a Steady 

Component of Less than 5 kts.)

2.) The hover point / zone is a 

repeatable, ground‐referenced 

point / zone from which the UAS 

deviations are measured.

Tests should be conducted under 

Calm Wind Conditions (i.e., 

Winds with a Steady Component 

of Less than 5 kts.)

Tests should be conducted under 

Calm Wind Conditions (i.e., 

Winds with a Steady Component 

of Less than 5 kts.)

Notes

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 34: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

34

Type WeightScenario Type

Scenario Set No.

Recommended Evaluation 

Use Case Vehicle Class Mission Task Element (MTE) Identifier

Task Objectives Mission Task Element (MTE) Description

HazardDesired Adequate

Operational Mode 

Operational Environment

Performance Requirements Notes

UH‐N‐5 Common

Analysis, 

Simulation, Flight 

Testing

AllUnmanned 

HelicopterAll (≤ 55 lbs)

Pullup/Pushover 

(Obstacle Avoidance)

• Evaluate response at elevated 

and reduced load factors and 

during transition between 

elevated and reduced load 

factors.

• Identify undesirable coupling 

between pitch, roll, and yaw for 

aggressive maneuvering in 

forward flight.

• Evaluate ability to avoid 

obstacles.

• From level unaccelerated flight that 

is less than the maximum level flight 

airspeed at maximum continuous 

power (VH), attain a sustained positive 

load factor in a symmetrical pullup.   

• Transition, via a symmetrical 

pushover, to a sustained negative load 

factor.  

• Recover to level flight as rapidly as 

possible.

UH‐N‐6 Common

Analysis, 

Simulation, Flight 

Testing

AllUnmanned 

HelicopterAll (≤ 55 lbs) Descent / Landing

• Evaluate ability to precisely 

control the rotorcraft position 

during the final descent to a 

precision landing point.

• Starting from an altitude of greater 

than 10 ft, maintain an essentially 

steady descent to a prescribed landing 

point, while maintaining reference 

heading. 

• It is acceptable for the remote pilot 

or autonomous system to arrest sink 

rate momentarily to make last minute 

corrections before touchdown.

UH‐N‐7 Common

Analysis, 

Simulation, Flight 

Testing

AllUnmanned 

HelicopterAll (≤ 55 lbs) Landing

• Evaluate ability to control 

horizontal and vertical 

flightpath and airspeed for 

landing.

• Evaluate ability to manage 

sink rate and attitude in the 

flare.

• Initiate the maneuver on final, on the 

nominal approach conditions in 

landing configuration.  

• The approach angle (glideslope) shall 

be as appropriate for the aircraft being 

tested.  

• Touch down within the prescribed 

touchdown parameters with the 

aircraft centerline. 

UH‐N‐8 Common

Analysis, 

Simulation, Flight 

Testing

AllUnmanned 

HelicopterAll (≤ 55 lbs) Hovering Turn

• Identify any undesirable 

vehicle characteristics that may 

impact task performance in a 

moderately aggressive hovering 

turn.

• Evaluate ability to recover 

from a moderate rate hovering 

turn with reasonable precision.

• Identify any undesirable 

interaxis coupling.

• From a stabilized hover at an altitude 

of less than 20 ft, complete a 180 

degree turn. 

• Perform the maneuver in both 

directions. 

• The maneuver shall be accomplished 

in calm winds and in moderate winds 

from the most critical direction. If a 

critical direction has not been defined, 

the turn shall begin with the wind on 

the nose of the UAS.

None

None

None

None

VLOS / BVLOS

All (Remote/Rural, 

Suburban / Urban, 

Congested)

• Attain a normal load factor of at least the 

positive limit of the OFE (nL(+)) within 1 

second from the initial control input.

• Maintain at least nL(+) for at least 2 

seconds.

• Accomplish transition from nL(+) pullup to 

a pushover of not greater than the negative 

normal load factor limit of the OFE (nL(‐)) 

within 2 seconds.

• Maintain at least nL(‐) for at least 2 

seconds.

• Maintain angular deviations in roll and yaw 

within ±5 degrees from the initial 

unaccelerated level flight condition to 

completion of the maneuver.

• Attain a normal load factor of at least the 

positive limit of the OFE (nL(+)) within 2 

seconds from the initial control input.

• Maintain at least nL(+) for at least 1 

second.

• Accomplish transition from nL(+) pullup 

to a pushover of not greater than the 

negative normal load factor limit of the 

OFE (nL(‐)) within 5 seconds.

• Maintain at least nL(‐) for at least 1 

second.

• Maintain angular deviations in roll and 

yaw within ±10 degrees from the initial 

unaccelerated level flight condition to 

completion of the maneuver.

VLOS / BVLOS

All (Remote/Rural, 

Suburban / Urban, 

Congested)

• Accomplish a gentle landing with a smooth 

continuous descent and no undesirable 

motions that may impact task performance.

• Touchdown within ±1 ft longitudinally and 

±1 ft laterally of the desired touchdown 

zone.

• Actual heading at touchdown should be 

aligned with the reference heading within ±5 

deg.

• Accomplish landing with no system 

oscillations.

• Touchdown within ±2 ft longitudinally 

and ±2 ft laterally of the desired 

touchdown zone.

• Actual heading at touchdown should be 

aligned with the reference heading within 

±10 deg.

VLOS / BVLOS

All (Remote/Rural, 

Suburban / Urban, 

Congested)

• Touch down within ±2.5 kts of landing 

airspeed.

• Touch down within ±10 ft of the 

longitudinal aim point along the runway 

centerline and ±5 ft laterally of the runway 

centerline.

• No bounce and no hard landing if 

touchdown sink rate is difficult to measure).

• Touch down within ±5 kts of landing 

airspeed.

• Touch down within ±20 ft of the 

longitudinal aim point along the runway 

centerline and ±10 ft laterally of the 

runway centerline.

• No more than one bounce and no hard 

landing.

VLOS / BVLOS

All (Remote/Rural, 

Suburban / Urban, 

Congested)

• Maintain longitudinal and lateral position 

within ± 3 ft of a point on the ground.

• Maintain altitude within ±3 ft.

• Stabilized final UAS heading at 180 deg. 

From initial heading ± 3 deg.

• Complete turn to a stabilized hover (within 

the desired window) with 10 sec. from 

initiation of maneuver.

• Maintain longitudinal and lateral position 

within ± 6 ft of a point on the ground.

• Maintain altitude within ±6 ft.

• Stabilized final UAS heading at 180 deg. 

From initial heading ± 6 deg.

• Complete turn to a stabilized hover 

(within the desired window) with 15 sec. 

from initiation of maneuver.

1.) Tests should be conducted 

under Calm Wind Conditions 

(i.e., Winds with a Steady 

Component of Less than 5 kts.)

2.) This MTE as written is not 

applicable to teetering rotor 

sUAS unmanned helicopters, and 

could cause vehicle damage if 

applied to such a configuration.

Tests should be conducted under 

Calm Wind Conditions (i.e., 

Winds with a Steady Component 

of Less than 5 kts.)

Tests should be conducted under 

Calm Wind Conditions (i.e., 

Winds with a Steady Component 

of Less than 5 kts.)

Tests should be conducted under 

Calm Wind Conditions (i.e., 

Winds with a Steady Component 

of Less than 5 kts.)

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 35: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

35

Type WeightScenario Type

Scenario Set No.

Recommended Evaluation 

Use Case Vehicle Class Mission Task Element (MTE) Identifier

Task Objectives Mission Task Element (MTE) Description

HazardDesired Adequate

Operational Mode 

Operational Environment

Performance Requirements Notes

UH‐N‐9 Specialized

Analysis, 

Simulation, Flight 

Testing

Specific Use Cases 

(e.g., Following a 

Roadway for Law 

Enforcement, 

Pipeline 

Inspection, etc.) 

Unmanned 

HelicopterAll (≤ 55 lbs)

Precision Tracking of a 

Fixed Ground Reference 

Path 

• Evaluate ability to precisely 

track a ground path.

• Evaluate ability to precisely 

control flightpath.

• Initiate the maneuver in steady level 

flight. 

• Follow a prescribed ground path 

(e.g., pipeline, roadway, canal, etc.) for 

a minimum of 2 minutes at the 

required altitude and airspeed for 

nominal sensor operation.  

• Maintain required flightpath 

throughout the maneuver. 

UH‐N‐10 Specialized

Analysis, 

Simulation, Flight 

Testing

Specific Use Cases 

(e.g., Search & 

Rescue, Precision 

Agriculture, etc.) 

Unmanned 

HelicopterAll (≤ 55 lbs)

Precision Tracking of a 

Fixed Ground Reference 

Area 

• Evaluate ability to precisely 

track a prescribed grid over a 

ground reference area.

• Evaluate ability to precisely 

control flightpath.

• Initiate the maneuver in steady level 

flight. 

• Follow a prescribed grid over a 

ground reference area at the required 

altitude and airspeed for nominal 

mission operation.

• Initiate turns as geofence is 

approached to remain within 

prescribed boundaries while ensuring 

complete coverage of the grid area.

• Maintain required flightpath 

throughout the maneuver.

UH‐N‐11 Specialized

Analysis, 

Simulation, Flight 

Testing

Specific Use Cases 

(e.g., Emergency 

Response, Package 

Delivery, etc.)

Unmanned 

HelicopterAll (≤ 55 lbs)

Precision Hover for Cargo 

Drop‐Off 

• Evaluate ability to transition 

from translating flight to a 

stabilized hover over the target 

drop zone with precision and a 

reasonable amount of 

aggressiveness.

• Evaluate ability to maintain 

precise position, heading, and 

altitude over the target drop 

zone.

• From a forward flight of 5 kts and at 

an altitude of 10 ft, attain a stabilized 

hover over the defined drop zone.

• Maintain the stabilized hover over 

the drop zone for the time duration 

established in the performance 

requirements.

UH‐N‐12 Specialized

Analysis, 

Simulation, Flight 

Testing

Specific Use Cases 

(e.g., Search & 

Rescue)

Unmanned 

HelicopterAll (≤ 55 lbs) Pirouette

• Evaluate the ability to control 

position as the relative wind 

continuously changes with 

respect to heading.

• Evaluate the ability to 

precisely control flightpath in all 

axes.

• Initiate the maneuver from a 

stabilized hover over a point on the 

circumference of a 10 ft radius circle 

with the nose of the sUAS pointed at a 

reference point at the center of the 

circle at an altitude of approximately 

10 ft.

• Accomplish a lateral translation 

around the circle, keeping the nose of 

the sUAS pointed at the reference 

point. 

• Maintain a constant lateral 

groundspeed throughout the 

maneuver. 

• Terminate the maneuver with a 

stabilized hover over the starting 

point. 

• Perform the maneuver in both 

directions. 

None

None

None

None

VLOS / BVLOS

All (Remote/Rural, 

Suburban / Urban, 

Congested)

• ±5 ft of target flightpath.

• ±10 ft of target altitude.

• ±5 kts of target airspeed.

• ±10 ft of target flightpath.

• ±20 ft of target altitude.

• ±10 kts of target airspeed.

VLOS / BVLOS

All (Remote/Rural, 

Suburban / Urban, 

Congested)

• ±5 ft of target flightpath.

• ±10 ft of target altitude.

• ±5 kts of target airspeed.

• Remain within all prescribed geofences 

throughout the maneuver.

• ±10 ft of target flightpath.

• ±20 ft of target altitude.

• ±10 kts of target airspeed.

•  Excursions of no more than 5 ft outside 

of the prescribed geofences throughout 

the maneuver.

VLOS / BVLOS

All (Remote/Rural, 

Suburban / Urban, 

Congested)

• Attain a stabilized hover from forward 

flight before exiting the desired region of 

the drop zone.

• Maintain a stabilized hover over the 

desired region of the drop zone for at least 

30 seconds.

• Maintain longitudinal and lateral position 

over the drop zone within ±1 ft, where ±1 ft 

by ±1 ft box defines the desired drop zone.

• Maintain altitude above the drop zone 

within ± 1 ft.

• No undesirable motions (bobble, 

overshoots/undershoots) that impact task 

performance during the transition to hover 

or stabilized hover.

• Attain a stabilized hover from forward 

flight before exiting the adequate region 

of the drop zone.

• Maintain a stabilized hover over the 

adequate region of the drop zone for at 

least 30 seconds.

• Maintain longitudinal and lateral position 

over the drop zone within ±2 ft, where ±2 

ft by ±2 ft box defines the desired drop 

zone.

• Maintain altitude above the drop zone 

within ± 2 ft units (feet or meters).

• No oscillations (PIO if remotely piloted 

or limit cycles if autonomous) that impact 

system stability or safety of flight during 

the transition to hover or stabilized hover.

VLOS / BVLOS

All (Remote/Rural, 

Suburban / Urban, 

Congested)

• Maintain a selected reference point on the 

sUAS within ±2 ft of the circumference of the 

circle.

• Maintain altitude within ±2 ft.

• Maintain heading so that the reference 

heading of the sUAS points at the center of 

the circle within ±5 deg.

• Achieve a stabilized hover within 5 sec 

after returning to the starting point.

• Maintain the stabilized hover for ±5 sec.

• Maintain a selected reference point on 

the sUAS within ±5 ft of the circumference 

of the circle.

• Maintain altitude within ±4 ft.

• Maintain heading so that the reference 

heading of the sUAS points at the center of 

the circle within ±10 deg.

• Achieve a stabilized hover within 10 sec 

after returning to the starting point.

• Maintain the stabilized hover for ±5 sec.

Tests should be conducted under 

Calm Wind Conditions (i.e., 

Winds with a Steady Component 

of Less than 5 kts.)

Tests should be conducted under 

Calm Wind Conditions (i.e., 

Winds with a Steady Component 

of Less than 5 kts.)

Tests should be conducted under 

Calm Wind Conditions (i.e., 

Winds with a Steady Component 

of Less than 5 kts.)

Tests should be conducted under 

Calm Wind Conditions (i.e., 

Winds with a Steady Component 

of Less than 5 kts.)

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 36: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

36

Appendix B: Combined Hazards Set from Ref. [3]

 

Table B.3-a. Combined Hazards Set (1)  

 

 

   

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 37: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

37

Table B.3-b. Combined Hazards Set (2)  

 

 

   

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 38: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

38

Table B.3-c. Combined Hazards Set (3)  

 

 

   

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 39: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

39

Table B.3-d. Combined Hazards Set (4)  

 

 

   

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 40: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

40

Table B.3-e. Combined Hazards Set (5)  

 

 

   

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 41: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

41

Table B.3-f. Combined Hazards Set (6)  

 

 

   

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 42: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

42

Table B.3-g. Combined Hazards Set (7)  

 

 

   

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 43: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

43

Table B.3-h. Combined Hazards Set (8)  

 

 

   

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 44: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

44

Table B.3-i. Combined Hazards Set (9)  

 

 

 

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 45: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

45

Appendix C: Example Mitigation Strategies for VH-1 

Hazard No.

Hazard Use Case / Category

Operational State

Causal / Contributing Factors Result Impacts Hazardous Outcomes

Recommended Mitigation Strategies / Safety Requirements

to Reduce Risk

VH-1

Aircraft Loss of Control (LOC)

Any / All Use Cases Associated with:

Remote / Rural Location

(Includes Precision Agriculture,

Border Patrol, Wildfire Monitoring & Control, Package Delivery, etc.)

• Single UAS Manually Controlled by Remote Pilot under VLOS

• Low-Density Airspace

• Vehicle Failures / Impairment • Control System Failures /

Malfunctions / Inadequacy • Propulsion System Failure /

Malfunction • Weather (Includes Rain, Snow / Icing,

Thunderstorms, etc.) • Wind / Wind Shear / Turbulence

(Includes Boundary Layer Effects) • Vehicle Upset Condition / Damage • Pilot Error • Power Loss / Fuel Exhaustion • Electromagnetic Interference (EMI) • Unsuccessful Launch • Flight Control System Design /

Validation Errors / Inadequacy • Flight Control System Software

Implementation / Verification Error / Inadequacy

• Unexpected Obstacle Encounter Results in Unstable / Aggressive Avoidance Maneuver

• Bird Strike • Others

• Undesired Flight Trajectory that is Difficult to Predict

• Unpredictable / Unstable Control Response

• Uncontrolled Descent

• Vehicle Exits Assigned Geofence

• Uncontrolled Descent / Landing

• Uncontrolled Descent into Terrain / Water

• Vehicle Damage / Break-Up

• Mid-Air Collision with UAS

• Mid-Air Collision with Manned Aircraft

• Crash into Building / Obstacle Injures People

• Crash Debris Injures People on Ground

• Damage to Ground Asset Causes Fire

• Automated Parachute

• Automated Flight Termination System

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 46: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

46

Any / All Use Cases Associated with:

Suburban

(Includes Package Delivery, Traffic Monitoring, Infrastructure Inspection, etc.)

• Single UAS, Semi-Autonomous Control, BVLOS

• Moderate- Density Airspace

• All Hazards Listed Above • Payload / CG Shift / Instability • Inadequate Resilience in Flight

Control System to Key LOC Hazards (Including Failures, Wind / Weather, etc.)

• Vehicle Instability Resulting from Attempted Retrieval of Objects of Unknown size/weight

• Vehicle Instability Resulting from Failure/Malfunction of Object Retrieval System

• Launch/Landing Instability on Water-Based Platform

• Propulsion or Vision Systems Failure / Inadequacy under Harsh Conditions (Fire, Smoke, Ash, Smog, Salty Sea Air, etc.)

• Above Results

• Potential for LOC Involving Multiple UAS under Common Causal Conditions (e.g., Unexpected Wind / Weather)

• Above Impacts Involving Multiple (Potentially Many) UAS

• Mid-Air Collision with One or More Manned Aircraft

• One or More Collisions with Critical Infrastructure

• Above Outcomes on Potentially Large Scale

• People on the Ground are Injured / Killed in Potentially Large Region or Multiple Regions

• People in One or More Manned Aircraft are Injured / Killed

• One or More Critical Infrastructure(s) are Damaged / Destroyed

• Robustness under Varying Wind Conditions

• Resilient Flight Control System for Mitigating Wind Effects and/or Flight Control Component Failures

• Flight Termination System for Pre-Programmed Safe Landing Zones

• Automated Parachute

Any / All Use Cases Associated with:

Urban / Congested

(Includes Videography / Security at Public Events, Environmental Monitoring, etc.)

• Single / Multiple Semi- / Fully- Autonomous Control under BVLOS

• High-Density Airspace

• All Hazards Listed Above • Vehicle Damage (e.g., Lightning strike

during long-duration missions, Damage from Explosion / Fire during Emergency Response, Radiation Exposure from HALE operations over urban areas, etc.)

• Harsh Environmental Conditions (e.g., Extreme Temperatures, etc.)

• Cascading Factors Involving Multi-UAS Operations

• Unexpected Battery Depletion

• Above Results

• Potential for LOC Involving Many UAS (Particularly from Design / Validation Inadequacy that Affects Multiple UAS and Multi-UAS Operations)

• Robustness under Varying Wind and Turbulence Conditions (Including Boundary Layer Effects)

• Resilient Flight Control System for Mitigating Wind Effects, Flight Control Component Failures, and Instabilities (e.g., CG Shifts)

• Additional Resilient Flight Control for Vehicle Impairment Conditions for Specialized Missions with High Risk of Vehicle Damage / Icing Conditions

• Flight Termination System Capable of Detecting a Safe Landing Zone in Real Time

• Automated Parachute

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 47: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

47

Appendix D: Initial Set of Hazards-Based Test Scenarios for FW, MR, and UH sUAS to Address VH-1: Aircraft Loss of Control

 

 

 

 

 

 

Type Weight Vehicle  Infrastructure Environmental Operational UTM System Desired Adequate

Test VariationsHazard NotesScenario Set No.

Recommended Evaluation Methods

Use Case Mission Task Element (MTE) Identifier

Hazard Causal & Contributing Conditions Operational Mode 

Operational Environment

Flight ConditionVehicle ClassScenario Type

Task Objectives Mission Task Element (MTE) Description Performance Requirements

FW‐H‐01Hazards‐

Based

Analysis, 

Simulation, Flight 

Testing

All (via Common 

MTEs) & Specific 

(via Specialized 

MTEs)

Fixed Wing All (≤ 55 lbs)Robustness under Wind & 

Turbulence Conditions

• Evaluate flight control 

performance under varying 

wind conditions

• Evaluate flight control 

performance under varying 

wind and turbulence effects

• Determine control limits and 

maneuverability constraints 

under varying wind and 

turbulence effects

• Initiate each nominal MTE  and randomly 

inject varying wind speeds up to 10% above 

the  maximum sustained wind conditions 

rated for vehicle operation and under 

varying wind directions 

• Repeat the above with turbulence 

conditions representative of realistic 

operational conditions and boundary layer 

effects

• All FW Nominal 

Common MTEs;

• Selected FW 

Nominal 

Specialized MTEs, 

as Appropriate

Wind & 

Turbulence None None

1.) Varying levels and 

directions of sustained 

wind conditions up to 

10% above the rated 

wind level for vehicle 

operation

2.) The above sustained 

wind conditions plus 

varying levels of 

turbulence 

representative of 

ambient and boundary‐

layer conditions

None None BVLOSSuburban / Urban / 

Congested

 ≥ 90% of Nominal Performance 

(Suburban)

 ≥ 95% of Nominal Performance 

(Urban / Congested) 

 ≥ 80% of Nominal Performance 

(Suburban)

 ≥ 90% of Nominal Performance 

(Urban / Congested) 

Tests at varying initial 

conditions within each MTE

Evaluations should 

predominantly be performed 

using a simulation capable of 

characterizing off‐nominal 

condition effects;  Selected 

simulation results should be 

validated in flight testing

FW‐H‐02Hazards‐

Based

Analysis, 

Simulation, Flight 

Testing

All (via Common 

MTEs) & Specific 

(via Specialized 

MTEs)

Fixed Wing All (≤ 55 lbs)

Resilience to Flight 

Control Component 

Failures

• Evaluate ability to detect / 

mitigate flight control 

component failures during all 

mission tasks.

• Identify resilience coverage  

and limitations under flight 

control component failures (in 

terms of failure type / severity 

and MTE effectiveness)

• Determine control limits and 

maneuverability constraints 

under control component 

failures

• Initiate each nominal MTE and randomly 

inject an emulated control componet failure 

(elevator, rudder, aileron, and engine 

thrust), as follows (and in accordance with 

the aircraft configuration being tested)

• Evaluate loss of control effectiveness 

(elevator, rudder, aileron, and engine thrust) 

incrementally from 0% to 100%.

• Evaluate resilience (i.e., mitigation 

effectiveness) to stuck control surface 

effects incrementally from neutral to hard‐

over positions (elevator, rudder, aileron).  

• Evaluate with no winds and nominal wind 

conditions (no turbulence) 

• All FW Nominal 

Common MTEs;

• Selected FW 

Nominal 

Specialized MTEs, 

as Appropriate

Flight Control 

Component 

Failure

Single Control Component 

Failure

• Loss of Control Effectiveness 

(elevator, rudder, aileron, and 

engine thrust): 0%, 10%, 20%, 

…, 100%

• Stuck Control Surface 

(elevator, rudder, aileron) 

Increments from Neutral:   

±2 deg, ±4 deg, …, ± hard‐over

None

1.) No Winds

2.) Varying levels and 

directions of sustained 

wind conditions up to 

10% above the rated 

wind level for vehicle 

operation

Note: No turbulence

None None BVLOSSuburban / Urban / 

Congested

 ≥ 80% of Nominal Performance 

(Suburban)

 ≥ 90% of Nominal Performance 

(Urban / Congested) 

 ≥ 70% of Nominal Performance 

(Suburban)

 ≥ 80% of Nominal Performance 

(Urban / Congested) 

1.) Tests at varying initial 

conditions within each MTE

2.) For Dual‐Engine Vehicle 

Configurations, Include Single 

Engine Out Conditions;

3.) Multiple Failures can be 

Considered to Determine Level 

of Available Control 

Redundancy

Evaluations should 

predominantly be performed 

using a simulation capable of 

characterizing off‐nominal 

condition effects;  Selected 

simulation results should be 

validated in flight testing

FW‐H‐03Hazards‐

Based

Analysis, 

Simulation, Flight 

Testing

Missions Inolving 

Changes in Mass 

and/or C.G. 

Location (e.g., 

Package / Cargo 

Delivery)

Fixed Wing All (≤ 55 lbs)

Resilience to Shifts in 

Vehicle Center of Gravity 

(C.G.) Position

• Evaluate ability to mitigate 

potential vehicle instabilities 

(e.g., shifts in c.g. position)  

during all mission tasks.

• Identify resilience coverage  

and limitations under vehicle 

instabilities (in terms of c.g. 

shift severity and MTE 

effectiveness)

• Determine control limits and 

maneuverability constraints 

under vehicle instability 

conditions

• Initiate each nominal MTE  and randomly 

inject emulated vehicle instability 

conditions (e.g., representative of shifts in 

c.g. location under shifting and released 

cargo) as follows and in accordance with the 

aircraft configuration being tested

• Evaluate resilience to c.g. shifts 

implemented incrementally to longitudinal, 

lateral, and vertical limits  

• Evaluate with no winds and nominal wind 

conditions (no turbulence) 

• All FW Nominal 

Common MTEs;

• Selected FW 

Nominal 

Specialized MTEs, 

as Appropriate

Vehicle Instability 

Conditions

Vehicle Instability Conditions

• Aerodynamic changes 

representative of shifts in c.g. 

position implemented 

incrementally from design 

point to longitudinal limits

•  Aerodynamic changes 

representative of shifts in c.g. 

position implemented 

incrementally from design 

point to lateral limits

•  Aerodynamic changes 

representative of shifts in c.g. 

position implemented 

incrementally from design 

point to vertical limits

None

1.) No Winds

2.) Varying levels and 

directions of sustained 

wind conditions up to 

10% above the rated 

wind level for vehicle 

operation

Note: No turbulence

None None BVLOS

Suburban / Urban, 

Congested for Applicable 

High‐Risk Missions (e.g., 

Package / Cargo Delivery, 

Disaster / Emergency 

Response, etc.)

 ≥ 80% of Nominal Performance 

(Suburban)

 ≥ 90% of Nominal Performance 

(Urban / Congested) 

 ≥ 70% of Nominal Performance 

(Suburban)

 ≥ 80% of Nominal Performance 

(Urban / Congested) 

1.) Tests at varying initial 

conditions within each MTE

2.) Simultaneous Longitudinal, 

Lateral, and Vertical C.G. Shifts 

(Combinations Should Include 

the Worst‐Case Condition in 

Each Direction)

Evaluations should 

predominantly be performed 

using a simulation capable of 

characterizing off‐nominal 

condition effects;  Selected 

simulation results should be 

validated in flight testing

FW‐H‐04Hazards‐

Based

Analysis, 

Simulation, Flight 

Testing

Missions Inolving 

Harsh / Extreme 

Conditions & High 

Risk of Vehicle 

Impairment

Fixed Wing All (≤ 55 lbs)

Resilience to Vehicle 

Impairment Conditions 

(e.g., due to lifting / 

control surface 

contamination, damage, 

etc.)

• Evaluate ability to detect / 

mitigate vehicle impairment 

conditions during all mission 

tasks.

• Identify resilience coverage  

and limitations under vehicle 

impairment conditions (in terms 

of impairment type / severity 

and MTE effectiveness)

• Determine control limits and 

maneuverability constraints 

under vehicle impairment 

conditions

• Initiate each nominal MTE  and randomly 

inject emulated vehicle impairment 

conditions (e.g., representative of lifting / 

control surface contamination, damage, etc.) 

as follows and in accordance with the aircraft 

configuration being tested

• Evaluate resilience (i.e., detection / 

mitigation effectiveness) to changes in flight 

dynamics and control characteristics under 

realistic vehicle impairment conditions 

representative of specific high‐risk missions 

(e.g., Maritime Surveillance in Alaska, 

Disaster / Emergency Response under Harsh 

Environmental Conditions, etc.)

• Evaluate resilience to c.g. shifts 

representative of and combined with vehicle 

damage  

• Evaluate with no winds and nominal wind 

conditions (no turbulence) 

• All FW Nominal 

Common MTEs;

• Selected FW 

Nominal 

Specialized MTEs, 

as Appropriate

Vehicle 

Impairment 

Conditions

Vehicle Impairment 

Conditions

• Aerodynamic changes 

representative of 

contaminated lifting / control 

surfaces (e.g., acretion of ice, 

volcanic ash, etc.)

• Aerodynamic changes and 

control surface loss 

representative of vehicle 

damage conditions combined 

with underlying system 

damage (e.g., flight control 

component failures, sensor 

failures, etc.) and associated 

c.g. shifts

None

1.) No Winds

2.) Varying levels and 

directions of sustained 

wind conditions up to 

10% above the rated 

wind level for vehicle 

operation

Note: No turbulence

None None BVLOS

Suburban / Urban, 

Congested for Applicable 

High‐Risk Missions (e.g., 

Package / Cargo Delivery, 

Disaster / Emergency 

Response, Law 

Enforcement, etc.)

 ≥ 80% of Nominal Performance 

(Suburban)

 ≥ 90% of Nominal Performance 

(Urban / Congested) 

 ≥ 70% of Nominal Performance 

(Suburban)

 ≥ 80% of Nominal Performance 

(Urban / Congested) 

1.) Tests at varying initial 

conditions within each MTE

2.) For Operation in Harsh 

Environments, Include 

Reduced Engine Performance 

(Loss of Thrust Effectiveness) 

Conditions

Evaluations should 

predominantly be performed 

using a simulation capable of 

characterizing off‐nominal 

condition effects;  Selected 

simulation results should be 

validated in flight testing

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 48: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

48

 

  

 

 

 

 

 

 

 

Type Weight Vehicle  Infrastructure Environmental Operational UTM System Desired AdequateTest VariationsHazard Notes

Scenario Set No.

Recommended Evaluation Methods

Use CaseMission Task Element 

(MTE) IdentifierHazard Causal & Contributing Conditions Operational 

Mode Operational Environment

Flight ConditionVehicle ClassScenario 

TypeTask Objectives Mission Task Element (MTE) Description

Performance Requirements

FW‐H‐05Hazards‐

Based

Analysis, 

Simulation, Flight 

Testing

Missions Inolving 

Harsh / Extreme 

Conditions & High 

Risk of Vehicle 

Impairment

Fixed Wing All (≤ 55 lbs)

Resilience to Control 

Component Failures, 

Vehicle Instabilities, and 

Vehicle Impairment 

Conditions (e.g., due to 

lifting / control surface 

contamination, damage, 

etc.)

• Evaluate ability to detect / 

mitigate combinations of 

adverse vehicle conditions 

during all mission tasks.

• Identify resilience coverage  

and limitations under 

combinations of adverse vehicle 

conditions (in terms of 

impairment type / severity and 

MTE effectiveness)

• Determine control limits and 

maneuverability constraints 

under combinations of adverse 

vehicle  conditions

• Evaluate under varying wind 

and turbulence conditions  

• Initiate each nominal MTE  and randomly 

inject emulated adverse vehicle conditions 

(as defined under FW‐H‐02 through FW‐H‐

04) in realistic combinations as described 

below and in accordance with the aircraft 

configuration being tested

  ‐ Emulated flight control component 

failures (loss of effectiveness, stuck surface) 

  ‐ c.g. shifts implemented incrementally to 

logitudinal, lateral, and vertical limits (and 

worst‐case combinations) 

  ‐ Emulated vehicle impairment conditions 

(e.g., contaminated and/or damaged lifting / 

control surfaces, engine impairment)

  ‐ Varying Wind / Turbulence Conditions 

representative of ambient and boundary 

layer effects

• All FW Nominal 

Common MTEs 

(FW‐N‐1 through 

FW‐N‐8);

• Selected FW 

Nominal 

Specialized MTEs, 

as Appropriate

Adverse Vehicle 

Hazard 

Combinations 

from FW‐HB‐01 ‐ 

FW‐HB‐04

Realistic Hazard Combinations 

as Specified under FW‐H‐02 

through FW‐H‐04 and Selected 

in Accordance with 

Mission/Safety‐Critical 

Requirements

None

1.) Varying levels and 

directions of sustained 

wind conditions up to 

10% above the rated 

wind level for vehicle 

operation

2.) The above sustained 

wind conditions plus 

varying levels of 

turbulence 

representative of 

ambient and boundary‐

layer conditions

None None BVLOS

Urban /Congested and 

High‐Density Mission‐

Critical Operations

 ≥ 70% of Nominal Performance 

(Urban / Congested) 

 ≥ 60% of Nominal Performance 

(Urban / Congested) 

1.) Tests at varying initial 

conditions within each MTE

2.) Could also apply selected 

combinations for mission‐

critical suburban operations

Evaluations should 

predominantly be performed 

using a simulation capable of 

characterizing off‐nominal 

condition effects;  Selected 

simulation results should be 

validated in flight testing

Type Weight Vehicle  Infrastructure Environmental Operational UTM System Desired AdequatePerformance Requirements Test Variations NotesScenario 

TypeScenario Set No.

Recommended Evaluation 

Use Case Vehicle Class Mission Task Element (MTE) Identifier

Task Objectives Mission Task Element (MTE) Description

Flight Condition Hazard Hazard Causal & Contributing Conditions Operational Mode 

Operational Environment

MR‐H‐01 Hazards‐Based

Analysis, 

Simulation, Flight 

Testing

All (via Common 

MTEs) & Specific 

(via Specialized 

MTEs)

Multi‐Rotor All (≤ 55 lbs)Robustness under Wind 

& Turbulence Conditions

• Evaluate flight control 

performance under varying wind 

conditions

• Evaluate flight control 

performance under varying wind 

and turbulence effects

• Determine control limits and 

maneuverability constraints under 

varying wind and turbulence 

effects

• Initiate each nominal MTE  and randomly 

inject varying wind speeds up to 10% 

above the  maximum sustained wind 

conditions rated for vehicle operation and 

under varying wind directions 

• Repeat the above with turbulence 

conditions representative of realistic 

operational conditions and boundary layer 

effects

• All MR Nominal 

Common MTEs 

• Selected MR 

Nominal 

Specialized MTEs, 

as Appropriate

Wind & 

Turbulence None None

1.) Varying levels and 

directions of 

sustained wind 

conditions up to 10% 

above the rated wind 

level for vehicle 

operation

2.) The above 

sustained wind 

conditions plus 

varying levels of 

turbulence 

representative of 

ambient and 

boundary‐layer 

conditions

None None BVLOSSuburban / Urban / 

Congested

 ≥ 90% of Nominal Performance (Suburban)

 ≥ 95% of Nominal Performance (Urban / 

Congested) 

 ≥ 80% of Nominal Performance 

(Suburban)

 ≥ 90% of Nominal Performance (Urban / 

Congested) 

Tests at varying initial conditions 

(I.C.s) within each MTE

Evaluations should 

predominantly be performed 

using a simulation capable of 

characterizing off‐nominal 

condition effects;  Selected 

simulation results should be 

validated in flight testing

MR‐H‐02 Hazards‐Based

Analysis, 

Simulation, Flight 

Testing

All (via Common 

MTEs) & Specific 

(via Specialized 

MTEs)

Multi‐Rotor All (≤ 55 lbs)

Resilience to Flight 

Control Component 

Failures

• Evaluate ability to detect / 

mitigate flight control component 

failures during all mission tasks.

• Identify resilience coverage  and 

limitations under flight control 

component failures (in terms of 

failure type / severity and MTE 

effectiveness)

• Determine control limits and 

maneuverability constraints under 

control component 

• Initiate each nominal MTE and randomly 

inject an emulated control component 

failure (rotor failures), as follows (and in 

accordance with the aircraft configuration 

being tested)

• Evaluate loss of control effectiveness 

(rotor thrust) incrementally from 0% to 

100%.

• Evaluate resilience (i.e., mitigation 

effectiveness) to stuck rotor‐speed effects 

incrementally from neutral to maximum 

levels.  

• Evaluate with no winds and nominal 

wind conditions (no turbulence) 

• All MR Nominal 

Common MTEs 

• Selected MR 

Nominal 

Specialized MTEs, 

as Appropriate

Flight Control 

Component 

Failure

Single Rotor Failure

• Loss of Control 

Effectiveness (rotor thrust): 

0% (No Loss), 10%, 20%, …, 

100% (Full Loss)

•  Stuck Rotor Speed 

Increments from Nominal:   

±10%, ±20%, …, ±100% 

(Positive and negative 

values represent 

increments above and 

below nominal value)

None

1.) No Winds

2.) Varying levels and 

directions of 

sustained wind 

conditions up to 10% 

above the rated wind 

level for vehicle 

operation

Note: No turbulence

None None BVLOSSuburban / Urban / 

Congested

 ≥ 80% of Nominal Performance (Suburban)

 ≥ 90% of Nominal Performance (Urban / 

Congested) 

 ≥ 70% of Nominal Performance 

(Suburban)

 ≥ 80% of Nominal Performance (Urban / 

Congested) 

1.) Tests at varying initial conditions 

within each MTE 

2.) Multiple Rotor Failures Can be 

Considered in Various Combinations 

to Evaluate Level of Available Control 

Redundancy

3.) Failures Involving Reversal of 

Rotor Rotational Direction Should be 

Considered if a Failure Mode 

Resulting in this Behavior is 

Identified

Evaluations should 

predominantly be performed 

using a simulation capable of 

characterizing off‐nominal 

condition effects;  Selected 

simulation results should be 

validated in flight testing

MR‐H‐03 Hazards‐Based

Analysis, 

Simulation, Flight 

Testing

Missions Inolving 

Changes in Mass 

and/or C.G. 

Location (e.g., 

Package / Cargo 

Delivery)

Multi‐Rotor All (≤ 55 lbs)

Resilience to Shifts in 

Vehicle Center of Gravity 

(C.G.) Position

• Evaluate ability to mitigate 

potential vehicle instabilities (e.g., 

shifts in c.g. position)  during all 

mission tasks.

• Identify resilience coverage  and 

limitations under vehicle 

instabilities (in terms of c.g. shift 

severity and MTE effectiveness)

• Determine control limits and 

maneuverability constraints under 

vehicle instability conditions

• Initiate each nominal MTE  and randomly 

inject emulated vehicle instability 

conditions (e.g., representative of shifts in 

c.g. location under shifting and released 

cargo) as follows and in accordance with 

the aircraft configuration being tested

• Evaluate resilience to c.g. shifts 

implemented incrementally to 

longitudinal, lateral, and vertical limits

• Evaluate with no winds and nominal 

wind conditions (no turbulence)   

• All MR Nominal 

Common MTEs 

• Selected MR 

Nominal 

Specialized MTEs, 

as Appropriate, 

But Including 

MR‐N‐11

Vehicle Instability 

Conditions

Vehicle Instability 

Conditions

• Aerodynamic changes 

representative of shifts in 

c.g. position implemented 

incrementally from design 

point to longitudinal limits

•  Aerodynamic changes 

representative of shifts in 

c.g. position implemented 

incrementally from design 

point to lateral limits

•  Aerodynamic changes 

representative of shifts in 

c.g. position implemented 

incrementally from design 

point to vertical limits

None

1.) No Winds

2.) Varying levels and 

directions of 

sustained wind 

conditions up to 10% 

above the rated wind 

level for vehicle 

operation

Note: No turbulence

None None BVLOS

Suburban / Urban, 

Congested for 

Applicable High‐Risk 

Missions (e.g., Package 

/ Cargo Delivery, 

Disaster / Emergency 

Response, etc.)

 ≥ 80% of Nominal Performance (Suburban)

 ≥ 90% of Nominal Performance (Urban / 

Congested) 

 ≥ 70% of Nominal Performance 

(Suburban)

 ≥ 80% of Nominal Performance (Urban / 

Congested) 

1.) Tests at varying initial conditions 

within each MTE

2.) Simultaneous Longitudinal, 

Lateral, and Vertical C.G. Shifts 

(Combinations Should Include the 

Worst‐Case Condition in Each 

Direction)

Evaluations should 

predominantly be performed 

using a simulation capable of 

characterizing off‐nominal 

condition effects;  Selected 

simulation results should be 

validated in flight testing

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 49: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

49

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Type Weight Vehicle  Infrastructure Environmental Operational UTM System Desired AdequatePerformance Requirements Test Variations NotesScenario 

TypeScenario Set No.

Recommended Evaluation 

Use Case Vehicle Class Mission Task Element (MTE) Identifier

Task Objectives Mission Task Element (MTE) Description

Flight Condition Hazard Hazard Causal & Contributing Conditions Operational Mode 

Operational Environment

MR‐H‐04 Hazards‐Based

Analysis, 

Simulation, Flight 

Testing

Missions Inolving 

Harsh / Extreme 

Conditions & High 

Risk of Vehicle 

Impairment

Multi‐Rotor All (≤ 55 lbs)

Resilience to Vehicle 

Impairment Conditions 

(e.g., due to lifting 

surface contamination, 

damage, etc.)

• Evaluate ability to detect / 

mitigate vehicle impairment 

conditions during all mission tasks.

• Identify resilience coverage  and 

limitations under vehicle 

impairment conditions (in terms of 

impairment type / severity and 

MTE effectiveness)

• Determine control limits and 

maneuverability constraints under 

vehicle impairment conditions

• Initiate each nominal MTE  and randomly 

inject emulated vehicle impairment 

conditions (e.g., representative of lifting 

surface contamination, damage, etc.) as 

follows and in accordance with the aircraft 

configuration being tested

• Evaluate resilience (i.e., detection / 

mitigation effectiveness) to changes in 

flight dynamics and control characteristics 

under realistic vehicle impairment 

conditions representative of specific high‐

risk missions (e.g., Maritime Surveillance 

in Alaska, Disaster / Emergency Response 

under Harsh Environmental Conditions, 

etc.)

• Evaluate resilience to c.g. shifts 

representative of and combined with 

vehicle damage  

• Evaluate with no winds and nominal 

wind conditions (no turbulence) 

• All MR Nominal 

Common MTEs 

• Selected MR 

Nominal 

Specialized MTEs, 

as Appropriate

Vehicle 

Impairment 

Conditions

Vehicle Impairment 

Conditions

• Aerodynamic changes 

representative of 

contaminated lifting 

surfaces (e.g., acretion of 

ice, volcanic ash, etc.)

• Aerodynamic changes and 

control surface loss 

representative of vehicle 

damage conditions 

combined with underlying 

system damage (e.g., flight 

control component failures, 

sensor failures, etc.) and 

associated c.g. shifts

None

1.) No Winds

2.) Varying levels and 

directions of 

sustained wind 

conditions up to 10% 

above the rated wind 

level for vehicle 

operation

Note: No turbulence

None None BVLOS

Suburban / Urban, 

Congested for 

Applicable High‐Risk 

Missions (e.g., Package 

/ Cargo Delivery, 

Disaster / Emergency 

Response, Law 

Enforcement, etc.)

 ≥ 80% of Nominal Performance (Suburban)

 ≥ 90% of Nominal Performance (Urban / 

Congested) 

 ≥ 70% of Nominal Performance 

(Suburban)

 ≥ 80% of Nominal Performance (Urban / 

Congested) 

1.) Tests at varying initial conditions 

within each MTE

2.) For Operation in Harsh 

Environments, Include Reduced Rotor 

Performance (Loss of Thrust 

Effectiveness) Conditions

Evaluations should 

predominantly be performed 

using a simulation capable of 

characterizing off‐nominal 

condition effects;  Selected 

simulation results should be 

validated in flight testing

MR‐H‐05 Hazards‐Based

Analysis, 

Simulation, Flight 

Testing

Missions Inolving 

Harsh / Extreme 

Conditions & High 

Risk of Vehicle 

Impairment

Multi‐Rotor All (≤ 55 lbs)

Resilience to Control 

Component Failures, 

Vehicle Instabilities, and 

Vehicle Impairment 

Conditions (e.g., due to 

lifting surface 

contamination, damage, 

etc.)

• Evaluate ability to detect / 

mitigate combinations of adverse 

vehicle conditions during all 

mission tasks.

• Identify resilience coverage  and 

limitations under combinations of 

adverse vehicle  conditions (in 

terms of impairment type / 

severity and MTE effectiveness)

• Determine maneuverability 

constraints under combinations of 

adverse vehicle  conditions

• Evaluate under varying wind and 

turbulence conditions 

• Initiate each nominal MTE  and randomly 

inject emulated adverse vehicle 

conditions (as defined under MR‐H‐02 

through MR‐H‐04) in realistic 

combinations as described below and in 

accordance with the aircraft configuration 

being tested

  ‐ Emulated flight control component 

failures (loss of effectiveness, stuck rotor 

speed) 

  ‐ c.g. shifts implemented incrementally 

to logitudinal, lateral, and vertical limits 

(and worst‐case combinations)   

  ‐ Emulated vehicle impairment 

conditions (e.g., contaminated and/or 

damaged lifting surfaces, rotor thrust 

impairment)

  ‐ Varying Wind / Turbulence Conditions 

representative of ambient and boundary 

layer effects

• All MR Nominal 

Common MTEs 

• Selected MR 

Nominal 

Specialized MTEs, 

as Appropriate

Adverse Vehicle 

Hazard 

Combinations 

from MR‐H‐01 ‐ 

MR‐H‐04

Realistic Hazard 

Combinations as Specified 

under MR‐H‐02 through MR‐

H‐04 and Selected in 

Accordance with 

Mission/Safety‐Critical 

Requirements

None

1.) Varying levels and 

directions of 

sustained wind 

conditions up to 10% 

above the rated wind 

level for vehicle 

operation

2.) The above 

sustained wind 

conditions plus 

varying levels of 

turbulence 

representative of 

ambient and 

boundary‐layer 

conditions

None None BVLOS

Urban /Congested and 

High‐Density Mission‐

Critical Operations

 ≥ 70% of Nominal Performance (Urban / 

Congested) 

 ≥ 60% of Nominal Performance (Urban / 

Congested) 

1.) Tests at varying initial conditions 

within each MTE

2.) Could also apply selected 

combinations for mission‐critical 

suburban operations

Evaluations should 

predominantly be performed 

using a simulation capable of 

characterizing off‐nominal 

condition effects;  Selected 

simulation results should be 

validated in flight testing

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 50: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

50

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Type Weight Vehicle  Infrastructure Environmental Operational UTM System Desired AdequateTest Variations NotesScenario 

TypeScenario Set No.

Recommended Evaluation 

Use Case Vehicle Class Mission Task Element (MTE) Identifier

Task Objectives Mission Task Element (MTE) Description

Flight Condition Hazard Hazard Causal & Contributing Conditions Operational Mode 

Operational Environment

Performance Requirements

UH‐H‐01Hazards‐

Based

Analysis, 

Simulation, Flight 

Testing

All (via Common 

MTEs) & Specific 

(via Specialized 

MTEs)

Unmanned 

HelicopterAll (≤ 55 lbs)

Robustness under Wind & 

Turbulence Conditions

• Evaluate flight control 

performance under varying 

wind conditions

• Evaluate flight control 

performance under varying 

wind and turbulence effects

• Determine control limits and 

maneuverability constraints 

under varying wind and 

turbulence effects

• Initiate each nominal MTE  and 

randomly inject varying wind speeds 

up to 10% above the  maximum 

sustained wind conditions rated for 

vehicle operation and under varying 

wind directions 

• Repeat the above with turbulence 

conditions representative of realistic 

operational conditions and boundary 

layer effects

• All UH Nominal 

Common MTEs;

• Selected UH Nominal 

Specialized MTEs, as 

Appropriate

Wind & 

Turbulence None None

1.) Varying levels 

and directions of 

sustained wind 

conditions up to 

10% above the 

rated wind level 

for vehicle 

operation

2.) The above 

sustained wind 

conditions plus 

varying levels of 

turbulence 

representative of 

ambient and 

boundary‐layer 

conditions

None None BVLOSSuburban / Urban / 

Congested

 ≥ 90% of Nominal Performance (Suburban)

 ≥ 95% of Nominal Performance (Urban / 

Congested) 

 ≥ 80% of Nominal Performance (Suburban)

 ≥ 90% of Nominal Performance (Urban / 

Congested) 

Tests at varying initial conditions 

(I.C.s) within each MTE

Evaluations should 

predominantly be performed 

using a simulation capable of 

characterizing off‐nominal 

condition effects;  Selected 

simulation results should be 

validated in flight testing

UH‐H‐02Hazards‐

Based

Analysis, 

Simulation, Flight 

Testing

All (via Common 

MTEs) & Specific 

(via Specialized 

MTEs)

Unmanned 

HelicopterAll (≤ 55 lbs)

Resilience to Flight 

Control Component 

Failures

• Evaluate ability to detect / 

mitigate flight control 

component failures during all 

mission tasks.

• Identify resilience coverage  

and limitations under flight 

control component failures (in 

terms of failure type / severity 

and MTE effectiveness)

• Determine control limits and 

maneuverability constraints 

under control component 

failures

• Initiate each nominal MTE and 

randomly inject an emulated control 

component failure (main and tail rotor 

failures), as follows (and in accordance 

with the aircraft configuration being 

tested)

• Evaluate loss of control effectiveness 

(main rotor thrust, tail rotor thrust) 

incrementally from 0% to 100%.

• Evaluate resilience (i.e., mitigation 

effectiveness) to stuck rotor‐speed 

effects incrementally from neutral to 

maximum levels. 

• Evaluate with no winds and nominal 

wind conditions (no turbulence)  

• All UH Nominal 

Common MTEs;

• Selected UH Nominal 

Specialized MTEs, as 

Appropriate

Flight Control 

Component 

Failure

Single Rotor Failure

• Loss of Control 

Effectiveness (main rotor 

thrust, tail rotor thrust): 

0% (No Loss), 10%, 20%, …, 

100% (Full Loss)

• Stuck Rotor Speed 

Increments from Nominal:   

±10%, ±20%, …, ±100% 

(Positive and negative 

values represent 

increments above or 

below nominal value)

None

1.) No Winds

2.) Varying levels 

and directions of 

sustained wind 

conditions up to 

10% above the 

rated wind level 

for vehicle 

operation 

(Including 

Potentially 

Destabilizing Wind 

Directions)

Note: No 

turbulence

None None BVLOSSuburban / Urban / 

Congested

 ≥ 80% of Nominal Performance (Suburban)

 ≥ 90% of Nominal Performance (Urban / 

Congested) 

 ≥ 70% of Nominal Performance (Suburban)

 ≥ 80% of Nominal Performance (Urban / 

Congested) 

1.) Tests at varying initial conditions 

within each MTE

2.) Realistic Combinations Involving 

Main and Tail Rotor Failures Should 

be Considered if a Failure Mode 

Resulting in this Behavior is Identified

3.) Failures Involving Reversal of 

Rotor Rotational Direction (Main or 

Tail Rotor) Should be Considered if a 

Failure Mode Resulting in this 

Behavior is Identified

Evaluations should 

predominantly be performed 

using a simulation capable of 

characterizing off‐nominal 

condition effects;  Selected 

simulation results should be 

validated in flight testing

UH‐H‐03Hazards‐

Based

Analysis, 

Simulation, Flight 

Testing

Missions Inolving 

Changes in Mass 

and/or C.G. 

Location (e.g., 

Package / Cargo 

Delivery)

Unmanned 

HelicopterAll (≤ 55 lbs)

Resilience to Shifts in 

Vehicle Center of Gravity 

(C.G.) Position

• Evaluate ability to mitigate 

potential vehicle instabilities 

(e.g., shifts in c.g. position)  

during all mission tasks.

• Identify resilience coverage  

and limitations under vehicle 

instabilities (in terms of c.g. 

shift severity and MTE 

effectiveness)

• Determine control limits and 

maneuverability constraints 

under vehicle instability 

conditions

• Initiate each nominal MTE  and 

randomly inject emulated vehicle 

instability conditions (e.g., 

representative of shifts in c.g. location 

under shifting and released cargo, 

including sling loads) as follows and in 

accordance with the aircraft 

configuration being tested

• Evaluate resilience to c.g. shifts 

implemented incrementally to 

longitudinal, lateral, and vertical limits 

with and without potentially 

destabilizing wind conditions

• Evaluate with no winds and nominal 

wind conditions (no turbulence) 

• All UH Nominal 

Common MTEs;

• Selected UH Nominal 

Specialized MTEs, as 

Appropriate, but 

Including UH‐N‐11

Vehicle Instability 

Conditions

Vehicle Instability 

Conditions

• Aerodynamic changes 

representative of shifts in 

c.g. position implemented 

incrementally from design 

point to longitudinal limits

•  Aerodynamic changes 

representative of shifts in 

c.g. position implemented 

incrementally from design 

point to lateral limits

•  Aerodynamic changes 

representative of shifts in 

c.g. position implemented 

incrementally from design 

point to vertical limits

None

1.) No Winds

2.) Varying levels 

and directions of 

sustained wind 

conditions up to 

10% above the 

rated wind level 

for vehicle 

operation 

(Including 

Potentially 

Destabilizing Wind 

Directions)

Note: No 

turbulence

None None BVLOS

Suburban / Urban, 

Congested for 

Applicable High‐Risk 

Missions (e.g., Package 

/ Cargo Delivery, 

Disaster / Emergency 

Response, etc.)

 ≥ 80% of Nominal Performance (Suburban)

 ≥ 90% of Nominal Performance (Urban / 

Congested) 

 ≥ 70% of Nominal Performance (Suburban)

 ≥ 80% of Nominal Performance (Urban / 

Congested) 

1.) Tests at varying initial conditions 

within each MTE

2.) For operations involvg sling loads, 

c.g. shifts should represent 

reasonable variations that may be 

outside of the vehicle, as well as 

dynamic changes that represent a 

swinging load

Evaluations should 

predominantly be performed 

using a simulation capable of 

characterizing off‐nominal 

condition effects;  Selected 

simulation results should be 

validated in flight testing

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 51: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

51

 

 

 

 

 

 

Type Weight Vehicle  Infrastructure Environmental Operational UTM System Desired AdequateTest Variations NotesScenario 

TypeScenario Set No.

Recommended Evaluation 

Use Case Vehicle Class Mission Task Element (MTE) Identifier

Task Objectives Mission Task Element (MTE) Description

Flight Condition Hazard Hazard Causal & Contributing Conditions Operational Mode 

Operational Environment

Performance Requirements

UH‐H‐04Hazards‐

Based

Analysis, 

Simulation, Flight 

Testing

Missions Inolving 

Harsh / Extreme 

Conditions & High 

Risk of Vehicle 

Impairment

Unmanned 

HelicopterAll (≤ 55 lbs)

Resilience to Vehicle 

Impairment Conditions 

(e.g., due to lifting 

surface contamination, 

damage, etc.)

• Evaluate ability to detect / 

mitigate vehicle impairment 

conditions during all mission 

tasks.

• Identify resilience coverage  

and limitations under vehicle 

impairment conditions (in terms 

of impairment type / severity 

and MTE effectiveness)

• Determine control limits and 

maneuverability constraints 

under vehicle impairment 

conditions

• Initiate each nominal MTE  and 

randomly inject emulated vehicle 

impairment conditions (e.g., 

representative of lifting surface 

contamination, damage, etc.) as 

follows and in accordance with the 

aircraft configuration being tested

• Evaluate resilience (i.e., detection / 

mitigation effectiveness) to changes in 

flight dynamics and control 

characteristics under realistic vehicle 

impairment conditions representative 

of specific high‐risk missions (e.g., 

Maritime Surveillance in Alaska, 

Disaster / Emergency Response under 

Harsh Environmental Conditions, etc.)

• Evaluate resilience to c.g. shifts 

representative of emulated vehicle 

damage (as appropriate) 

• Evaluate under realistic and 

potentially destabilizing wind 

conditions

• All UH Nominal 

Common MTEs;

• Selected UH Nominal 

Specialized MTEs, as 

Appropriate

Vehicle 

Impairment 

Conditions

Vehicle Impairment 

Conditions

• Aerodynamic changes 

representative of 

contaminated rotors or 

support components (e.g., 

acretion of ice, volcanic 

ash, etc.)

• Aerodynamic changes 

and control component 

loss of effectiveness 

representative of vehicle 

damage conditions (e.g., 

rotor damage) combined 

with underlying system 

damage (e.g., flight control 

component failures, 

hydraulic failure, drive 

shaft failure, sensor 

failures, etc.) and any 

associated c.g. shifts

None

1.) No Winds

2.) Varying levels 

and directions of 

sustained wind 

conditions up to 

10% above the 

rated wind level 

for vehicle 

operation 

(Including 

Potentially 

Destabilizing Wind 

Directions)

Note: No 

turbulence

None None BVLOS

Suburban / Urban, 

Congested for 

Applicable High‐Risk 

Missions (e.g., Package 

/ Cargo Delivery, 

Disaster / Emergency 

Response, Law 

Enforcement, etc.)

 ≥ 80% of Nominal Performance (Suburban)

 ≥ 90% of Nominal Performance (Urban / 

Congested) 

 ≥ 70% of Nominal Performance (Suburban)

 ≥ 80% of Nominal Performance (Urban / 

Congested) 

1.) Tests at varying initial conditions 

within each MTE

2.) For operations involvg sling loads, 

c.g. shifts should represent 

reasonable variations that may be 

outside of the vehicle, as well as 

dynamic changes that represent a 

swinging load

Evaluations should 

predominantly be performed 

using a simulation capable of 

characterizing off‐nominal 

condition effects;  Selected 

simulation results should be 

validated in flight testing

UH‐H‐05Hazards‐

Based

Analysis, 

Simulation, Flight 

Testing

Missions Inolving 

Harsh / Extreme 

Conditions & High 

Risk of Vehicle 

Impairment

Unmanned 

HelicopterAll (≤ 55 lbs)

Resilience to Control 

Component Failures, 

Vehicle Instabilities, and 

Vehicle Impairment 

Conditions (e.g., due to  

contamination, damage, 

etc.)

• Evaluate ability to detect / 

mitigate combinations of 

adverse vehicle conditions 

during all mission tasks.

• Identify resilience coverage  

and limitations under 

combinations of adverse vehicle 

conditions (in terms of 

impairment type / severity and 

MTE effectiveness)

• Determine control limits and 

maneuverability constraints 

under combinations of adverse 

vehicle  conditions

• Evaluate under varying wind 

and turbulence conditions 

• Initiate each nominal MTE  and 

randomly inject emulated adverse 

vehicle conditions (as defined under 

MR‐H‐02 through MR‐H‐04) in realistic 

combinations as described below and 

in accordance with the aircraft 

configuration being tested and mission 

being implemented

  ‐ Emulated flight control component 

failures (loss of effectiveness, stuck 

rotor speed) 

  ‐ c.g. shifts implemented 

incrementally to logitudinal, lateral, 

and vertical limits (and worst‐case 

combinations)  

  ‐ Emulated vehicle impairment 

conditions (e.g., contaminated and/or 

damaged rotors, rotor thrust 

impairment, etc.)

  ‐ Varying Wind / Turbulence 

Conditions representative of ambient 

and boundary layer effects

• All UH Nominal 

Common MTEs;

• Selected UH Nominal 

Specialized MTEs, as 

Appropriate

Adverse Vehicle 

Hazard 

Combinations 

from MR‐H‐01 ‐ 

MR‐H‐04

Realistic Hazard 

Combinations as Specified 

under MR‐H‐02 through 

MR‐H‐04 and Selected in 

Accordance with 

Mission/Safety‐Critical 

Requirements

None

1.) Varying levels 

and directions of 

sustained wind 

conditions up to 

10% above the 

rated wind level 

for vehicle 

operation 

(Including 

Potentially 

Destabilizing Wind 

Directions)

2.) The above 

sustained wind 

conditions plus 

varying levels of 

turbulence 

representative of 

ambient and 

boundary‐layer 

conditions

None None BVLOS

Urban /Congested and 

High‐Density Mission‐

Critical Operations

 ≥ 70% of Nominal Performance (Urban / 

Congested) 

 ≥ 60% of Nominal Performance (Urban / 

Congested) 

1.) Tests at varying initial conditions 

within each MTE

2.) Could also apply selected 

combinations for mission‐critical 

suburban operations

3.) For operations involvg sling loads, 

c.g. shifts should represent 

reasonable variations that may be 

outside of the vehicle, as well as 

dynamic changes that represent a 

swinging load

Evaluations should 

predominantly be performed 

using a simulation capable of 

characterizing off‐nominal 

condition effects;  Selected 

simulation results should be 

validated in flight testing

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 52: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

52

Appendix E: Multi-UAS Phased Flight Testing for Evaluation of Real-Time Risk Management Technologies

Phased Flight

Testing I. Single Vehicle II. Multiple Vehicles III. Multiple Heterogeneous Vehicles

in Suburban Operations IV. Higher Density Urban Operations

Basic Idea

• Single Vehicle Flight Test (VLOS/BVLOS)

• Use of Second Ground Station for Safety / Risk Monitoring

• Two Vehicle Flight Test -- #1: Autonomous / BVLOS -- #2: Hand-Flown / VLOS • Use of BRS or Second

Ground Station for Safety / Risk Monitoring

• Multiple Vehicle Flight Test (BVLOS)

• Use of BRS or Second Ground Station for Safety / Risk Monitoring

• Other Vehicles in Close Proximity - Actual sUAS - Simulated Manned Aircraft

• Higher-Density Multiple Vehicles (BVLOS)

• Use of MOS for - Multiple Vehicle Operations - Safety / Risk Monitoring / Management • Use of BRS for Large-Scale Safety / Risk

& Contingencies Management

Use Cases • None • Infrastructure Inspection • Fire Spotting

• Infrastructure Inspection • Public Safety (Emulated Search /

Surveillance)

• Infrastructure Inspection • News Gathering / Traffic Monitoring • Package Delivery

Hazards

• Onboard System Failure

• Vehicle Loss of Control (LOC)

• GPS System Failure • Others

• Changing No-Fly Zone(s) • Mid-Air Collision (MAC):

Non-Cooperative Vehicle #2 Entry into Vehicle #1 Airspace

• Departure from Geofence - Onboard System Failure - GPS System Failure

• Mid-Air Collision (MAC) • sUAS LOC and Impact of LOC

Trajectory on other sUAS / Aircraft • sUAS Fly-Away under LOC or GPS

Failure • Others

• Mid-Air Collision (MAC) • sUAS LOC and Impact of LOC Trajectory

on other sUAS / Aircraft and Urban Environment

• Widespread GPS Malfunction / Failure (e.g., Loss or Corrupted Data)

• Others

Mitigation / Contingency Actions

• Return to Base & Land

• Flight Termination

• SAA / DAA / Collision Avoidance System

• Flight Termination / Land System

• Risk-Based Operational Mitigation

• SAA / DAA / Collision Avoidance System

• Flight Termination / Land System Pre-Programmed with Safe Landing Zone(s)

• Return to Base & Land (Commanded by UTM System)

• Resilient Flight Control System for LOC Prevention / Recovery

• Other

• SAA / DAA / Collision Avoidance System • Flight Termination / Land System that

Identifies Safe Landing Zone in Real Time • Rerouting of nominal UAS to

accommodate uncertain trajectory of off-nominal UAS

• All Land (Commanded by UTM) • Resilient Flight Control System for LOC

Prevention / Recovery • Others

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 53: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

53

Safety Indicators

• Vehicle Health • Flight Path

Compliance • Geofence / Flight

Termination Containment

• Vehicle Health • Flight Path Compliance • Geofence Containment • Proximity to Vehicle(s) /

Infrastructure

• Vehicle Health • Flight Path Compliance • Geofence / Flight Termination

Containment • Current / Predicted Trajectory under

LOC • Predicted Collision Point /

Probability

• Current / Predicted Trajectories of Multiple UAS (Nominal & Off-Nominal)

• Current / Predicted Proximity to other UAS / Aircraft

• Others

Risk Indicators

• Current / Predicted Trajectory

• Predicted Impact Point / Area Relative to Ground Assets and People

• Current / Predicted Trajectory • Predicted Collision Point /

Probability • Predicted Impact Point / Area

Relative to Ground Assets and People

• Current / Predicted LOC Trajectory • Predicted Impact Point / Area

Relative to Ground Assets and People

• Predicted Collision Point / Area for MAC

• Current / Predicted LOC Trajectory Relative to Ground & Other UAS

• Predicted Flight Termination Path Relative to Other UAS

   

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 54: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

54

References

1 Robinsion III, John E., Johnson, Marcus, Jung, Jaewoo, Kopardekar, Parimal, Prevot, Thomas, and Rios, Joseph, “Unmanned Aerial System Traffic Management Concept of Operations,” NASA TM-2014-000000, December 2015.

2 Kopardekar, Parimal, Rios, Joseph, Prevot, Thomas, Johnson, Marcus, Jung, Jaewoo, and Robinsion III, John E., “Unmanned Aircraft System Traffic Management (UTM) Concept of Operations,” AIAA Aviation Forum, June 2016.

3 Belcastro, Christine M., Newman, Richard L., Evans, Joni K., Klyde, David H., Barr, Lawrence C., and Ancel, Ersin, “Hazards Identification and Analysis for Unmanned Aircraft System Operations,” Air Transportation Integration & Operations (ATIO) – Aerospace Traffic Management (ATM) Conference, AIAA Aviation Forum, June 2017.

4 Barr, Lawrence C., Ancel, Ersin, Newman, Richard L., Evans, Joni K., Foster, John V., and Belcastro, Christine M., “Preliminary Risk Assessment for Small Unmanned Aircraft Systems,” Air Transportation Integration & Operations (ATIO) – Aerospace Traffic Management (ATM) Conference, AIAA Aviation Forum, June 2017.

5 Consiglio, María, Muñoz, César, Hagen, George, Narkawicz, Anthony and Balachandran, Swee, “ICAROUS: Integrated Configurable Algorithms For Reliable Operations Of Unmanned Systems,” 35th Digital Avionics Systems Conference (DASC), Sacramento, CA, September 25-29, 2016.

6 Balachandran, Swee, Narkawicz, Anthony, Muñoz, César, Consiglio, María, “A Path Planning Algorithm to Enable Well-Clear Low Altitude UAS Operation Beyond Visual Line of Sight,” Twelfth USA/Europe Air Traffic Management Research and Development Seminar (ATM2017), June 26th - 30th, 2017 Seattle, WA.

7 Balachandran, Swee, Muñoz, César, and Consiglio, Maria, “Implicitly Coordinated Detect and Avoid Capability for Safe Autonomous Operation of Small UAS,” AIAA Aviation 2017 Conference, June 5th to 9th, Denver, CO, 2017.

8 Dill, E., Young, S., and Hayhurst, K., “Safeguard: An Assured Safety Net Technology for UAS,” Proceedings of the 35th AIAA/IEEE Digital Avionics Systems Conference, Sacramento, CA, Sep 25-29, 2016.

9 Yoon, Hyung-Jin, Cichella, Venanzio, and Hovakimyan, Naira, “Robust Adaptive Control Allocation for an Octocopter under Actuator Faults,” AIAA Guidance, Navigation, and Control Conference, AIAA SciTech Forum, San Diego, January 2016.

10 B. Guerreiro, C. Silvestre, R. Cunha, C. Cao, N. Hovakimyan, Adaptive Controller for Autonomous Rotorcraft,

In Proceedings of American Control Conference, St. Louis, MO, pp. 3250 - 3255 , 2009.

11 J. Wang, F. Holzapfel, E. Xargay, and N. Hovakimyan, “Non-cascaded Dynamic Inversion Design for Quadrotor

Position Control with Augmentation,” In Proceedings of CEAS Conference on Guidance, Navigation, and

Control Conference, Delft, The Netherlands, April 2013.

12 H. Jafarnejadsani, D. Sun, H. Lee, N. Hovakimyan, Optimized Adaptive Controller for Trajectory Tracking of

an Indoor Quadrotor, AIAA Journal of Guidance, Control and Dynamics, 2017.

13 Ten Harmsel, Alec J., Olson, Isaac J., and Atkins, Ella M., “Emergency Flight Planning for an Energy-Constrained Multicopter,” Journal of Intelligent Robot Systems, 2016, DOI 10. 1007/s10846-016-0370-z.

14 Hoe, G., Owens, D.B., and Denham, C.; “Forced Oscillation Wind Tunnel Testing for FASER Flight Research Aircraft,” AIAA 2012-4645, AIAA Atmospheric Flight Mechanics Conference, August 2012.

15 Denham, C., and Owens, D.B.; “Rotary Balance Wind Tunnel Testing for the FASER Flight Research Aircraft,” AIAA 2016-3105, AIAA Aviation 2016 Atmospheric Flight Mechanics Conference, June 2016.

                                                            

1L

1L

1LDow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74

Page 55: Experimental Flight Testing for Assessing the Safety of ... · corridors, dynamic geo-fencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning,

 

American Institute of Aeronautics and Astronautics

 

55

                                                                                                                                                                                                16 Foster, John V., and Hartman, David C., “High-Fidelity Multi-Rotor Unmanned Aircraft System (UAS) Simulation

Development for Trajectory Prediction under Off-Nominal Flight Dynamics,” Air Transportation Integration & Operations (ATIO) – Aerospace Traffic Management (ATM) Conference, AIAA Aviation Forum, June 2017.

17 Ancel, Ersin, Foster, John V., Capristan, Francisco M., and Condotta, Ryan, “Real-Time Risk Assessment Framework for Unmanned Aircraft System Traffic Management,” Air Transportation Integration & Operations (ATIO) – Aerospace Traffic Management (ATM) Conference, AIAA Aviation Forum, June 2017.

18 Anon., Aeronautical Design Standard, Performance Specification, Handling Qualities Requirements for Military Rotorcraft, US Army Aviation and Missile Command, ADS-33E-PRF, Mar. 2000.

19. Mitchell, David G., Roger H. Hoh, Bimal L. Aponso, and David H. Klyde, Proposed Incorporation of Mission-Oriented Flying Qualities into MIL-STD-1797A, WL-TR-94-3162, Oct. 1994

20 Cooper, George E., and Robert P. Harper, Jr., The Use of Pilot Rating in the Evaluation of Aircraft Handling Qualities, NASA TN D-5153, April 1969.

21 Klyde, D. H., B. L. Aponso, and D. G. Mitchell, Handling Qualities Demonstration Maneuvers for Fixed-Wing Aircraft, Volume I: Maneuver Development Process, WL-TR-97-3099, Oct. 1997.

22 Klyde, D. H., and D. G. Mitchell, Handling Qualities Demonstration Maneuvers for Fixed-Wing Aircraft, Volume II: Maneuver Catalog, WL-TR-97-3100, Oct. 1997.

23 Anon., Unmanned System Integrated Roadmap FY2011-2036, Reference Number 11-S-3613, Department of Defense, September 2010.

24 Belcastro, Christine M., “Validation of Safety-Critical Systems for Aircraft Loss-of-Control Prevention and Recovery,” AIAA Guidance, Navigation, and Control Conference, Minneapolis, Minnesota, August 2012

25 Olson, Isaac J., and Atkins, Ella M., “Qualitative Failure Analysis for a Small Quadrotor Unmanned Aircraft System,” AIAA Guidance, Navigation, and Control (GNC) Conference, AIAA SciTech Forum, Boston, MA, 2013.

26 Burdett, Hayley, “Functional Hazard Assessment (FHA) Report for Unmanned Aircraft Systems,” Eurocontrol, PO9005.10.5, November 2009. URL: https://www.eurocontrol.int/sites/default/files/content/documents/single-sky/uas/library/safety-uasfha-report-v2-ebeni.pdf

27 Glaab, Louis J., and Logan, Michael J., “Failure Mode Effects Analysis and Flight Testing for Small Unmanned Aerial Systems,” Air Transportation Integration & Operations (ATIO) – Aerospace Traffic Management (ATM) Conference, AIAA Aviation Forum, June 2017.

28 Jordan, T. L. and Bailey, R. M., “NASA Langley’s AirSTAR Testbed – A Subscale Flight Test Capability for Flight Dynamics and Control System Experiments,” AIAA Guidance, Navigation and Control Conference and Exhibit, 18–21 August 2008, Honolulu, Hawaii, AIAA–2008–6660.

29 Cox, David E., Cunningham, Kevin, and Jordan, Thomas, “Subscale Flight Testing for Aircraft Loss of Control: Accomplishments and Future Directions,” AIAA Guidance, Navigation, and Control Conference, 2012, Minneapolis, Minnesota.

30 Cunningham, K., Cox, D. E., Foster, J. V., Riddick, S. E., and Laughter, S., “AirSTAR Beyond Visual Range System Description and Preliminary Test Results,” AIAA Guidance, Navigation, and Control Conference, San Diego, California, 2016.

Dow

nloa

ded

by N

ASA

AM

ES

RE

SEA

RC

H C

EN

TE

R o

n Ju

ne 2

8, 2

017

| http

://ar

c.ai

aa.o

rg |

DO

I: 1

0.25

14/6

.201

7-32

74