experimental study on cold lap formation in tandem gas metal arc welding

54
Experimental Study on Cold Lap Formation in Tandem Gas Metal Arc Welding peigang li Department of Materials and Manufacturing Technology chalmers university of technology Gothenburg, Sweden 2011 peigang li Experimental Study on Cold Lap Formation in Tandem Gas Metal Arc Welding 2011

Upload: milan-cetrovic

Post on 05-Nov-2015

28 views

Category:

Documents


9 download

DESCRIPTION

Experimental Study onCold Lap Formation in Tandem GasMetal Arc Welding

TRANSCRIPT

  • chalmers university of technologyse - 412 96 Gothenburg, SwedenTelephone: + 46 - (0)31 772 10 00www.chalmers.se

    Experimental Study on Cold Lap Formation in Tandem Gas Metal Arc Welding

    peigang li

    Department of Materials and Manufacturing Technologychalmers university of technologyGothenburg, Sweden 2011

    peig

    an

    g l

    i Experim

    ental Study on Cold L

    ap Formation in Tandem

    Gas M

    etal Arc W

    elding 2011

  • Exp

    THESI

    perimen

    Dep

    IS FOR TH

    ntalStud

    De

    partmentoCHAL

    E DEGREE

    dyonCoMetal

    P

    partmentUNI

    TROLLH

    ofMateriaLMERSUNIGOTHENB

    E OF LICEN

    oldLapFlArcWe

    PEIGANG

    ofEngineeIVERSITYWTTAN,SWE

    alsandManIVERSITYOBURG,SWE

    NTIATE OF

    Formatielding

    LI

    eringScienWESTEDEN2011

    nufacturinOFTECHNOLDEN2011

    F ENGINEE

    ioninT

    nce

    ngTechnolLOGY

    ERING

    Tandem

    logy

    Gas

  • ExperimentalStudyonColdLapFormationinTandemGasMetalArcWeldingPeigangLiPeigangLi,2011.TechnicalReportno69/2011.ISSN:16528891DepartmentofMaterialsandManufacturingTechnologyChalmersUniversityofTechnologySE41296Gothenburg,SwedenTel:+46(0)317721000.PrintedbyChalmersReproserviceGothenburg,Sweden2011

  • To Xiaolin and my coming baby

  • v

    AbstractTandemgasmetalarcwelding(GMAW)isahighproductivityweldingprocesswhichisappliedinmanyindustries.However,atypeofimperfection,knownascoldlap,wasrevealedthatmostlyaccompaniesthetandemGMAWprocess.Coldlapisasmalllackoffusioninsizeattheweldtoewhichcanhaveanegativeinfluenceonthefatiguelifeoftheweld[1,2].Itgenerallyrunsparalleltothesurfaceoftheparentplate.Duetoitssmallsize,ithasnotbeensuccessfultodetectcoldlapbyanynondestructivetest(NDT)method.Withalotofwork,ithasbeennoticedthatitishardtoproduceaweldwithoutcoldlaps.Evenforsomeposttreatmentmethods,e.g.TIGdressing,coldlapcannotbeeliminatedcompletely[2].Therefore,abetterunderstandingoftheformationmechanismisrequiredtobeabletoavoidtheirformation.Themainobjectivesofthisthesisaretoclassifycoldlaps,tocharacterisecoldlapinterfaces,andtoinvestigatethemaininfluencingfactorsoncoldlapformation.Forthispurpose,severalseriestandemGMAWexperimentswereperformed.Domex355MCwasusedasthebasemetalandOKAutrod12.511.2wasusedastheconsumablematerial.Differentshieldinggases(pureargonandpurecarbondioxide)andsurfaceconditions(blastedsurfaceandmilledsurface)ofthebasemetalwereapplied.Asealedchamberwasusedintheexperimenttoensureanonoxidisingoroxidisingweldingenvironment.Crosssectionsofthecoldlapswerepreparedbyaconventionalmetallographicmethod,e.g.cutting,mounting,polishing,andetching(ifnecessary).Themetallographicsampleswereevaluatedwiththehelpofbothalightopticalmicroscopeandascanningelectronmicroscope(SEM)withanattachedenergydispersivespectroscopy(EDS).Also,theinterfacebetweenspatterandbasemetalwasinvestigatedusingthesamemethodasanassistantstudyofcoldlaps.Theresultsshowedthreetypesofcoldlaps,i.e.spattercoldlap,overlapcoldlap,andspatteroverlapcoldlap.Thecoldlapismostlycomposedofvoidsandoxides.Forthematerials(weldingconsumablesandparentmaterials)usedintheexperiments,theoxideswereshowntobemanganesesiliconoxides(MnSioxides).ItwasalsofoundthatMnSioxideshaveasignificantinfluenceontheoccurrenceofoverlapcoldlap.Theblastedsurfaceconditioncanhaveaminoreffectonenhancingcoldlaps.Bystudyingthespatter/basemetalinterface,itisbelievedthattemperature/energyaretheotherimportantfactorsfortheformationofcoldlaps.Keywords:tandemGMAW,coldlap,imperfection,lackoffusion,spatter,overlap,overflow,manganese,silicon,oxides,temperature/energy.

  • vi

  • vii

    Acknowledgements

    InmystudiesIhavehadalotofhelpfrommanypeople.Firstofall,IwouldliketoexpressmydeepgratitudetomymainsupervisorProfessorLarsErikSvenssonforhispatience,discussions,suggestions,andhelp.IalsowouldliketogivemysincerethankstomyexmainsupervisorProfessorPerNylnforhisvaluableencouragement.MysincerethanksareduetomyassistantsupervisorNicolaieMarkocsanforhispositiveadviceandfrankdiscussion.SpecialthankstomyexaminerProfessorUtaKlementforhereffortstopushmyPhDstudyforward.MyheartfeltthanksgotoProfessorBillLucas,ProfessorYoshinoriHirata,andDr.StephanEgerlandfortheirvaluablecomments,helpfuldiscussionsandfaithfuladviceduringtheIIWconferenceandevents.Manypeoplehavegivenmesupportanddeservemythanks:Dr.NiklasJrvstrt,AssociateProfessorHkanWirdlius,Mr.ToreRonnhult,ProfessorNilsStenbacka,Dr.YimingYao,Mr.HasseOlsson,AssociateProfessorKennethHamberg,Mr.PeterNerman,Mr.JoakimHedegrd,Mr.KjellArnePersson,Mr.LarsHammar,andMr.NicolasCurry.Ithankallmycolleagueswhohelpedtocreateaninspiringandmoreinterestingworkingenvironment.WithoutthefinancialsupportfromtheLOSTandWIQprojects,thisworkwouldnothavebeenpossible.Also,IwouldliketothankVolvoConstructionEquipment(VCE)forimportantsupport.Finally,Iwouldliketodedicateallofmyloveandthisworktomywife,XiaolinSu,andmycomingbaby.Youmeantheworldtome!Trollhttan,June2011PeigangLi

  • viii

  • ix

    AbbreviationsandnotationsAbbreviations/notations Description

    Al AluminiumAr ArgonASM AmericanSocietyforMetalsBSE BackScatterElectronC CarbonCo CobaltCO CarbonmonoxideCO2 CarbondioxideCr ChromiumCTWD ContactTipWorkingDistanceEDS EnergyDispersiveSpectroscopyFe IronGMAW GasMetalArcWeldingLarc ArcLengthMAG MetalActiveGasMg MagnesiumMIG MetalInertGasMn ManganeseMnO ManganeseoxideMnS ManganesesulphurMo MolybdenumN NitrogenNb NiobiumNDT NonDestructiveTestNi NickelRLoF Ratiobetweenthelengthoflackoffusionattheinterfaceandtheentirelengthofthe

    spatter/basemetalinterfaceSE SecondaryElectronSEM ScanningElectronMicroscopySi SiliconSiO SiliconmonoxideSiO2 SilcondioxideSMAW ShieldedMetalArcWeldingSTEDV StandardDeviationTA TrochAngleTi TitaniumTIG TungstenInertGasTS TravelSpeedV VanadiumVCE VolvoConstructionEquipmentWFS WireFeedSpeed

  • x

    WireC WireCombinationWS WeldingSpeedVT VisualTestZr Zirconium

  • xi

    Contents

    Abstract.....vAcknowledgements..viiAbbreviations.ixContents.xi1 Introduction.....................................................................................................................................11.1 Background..............................................................................................................................11.2 Objective..................................................................................................................................11.3 Limitations.............................................................................................................................1

    2 GMAWprocess................................................................................................................................33 Coldlaps..........................................................................................................................................73.1 Definitionofcoldlaps..............................................................................................................73.2 Detectionofcoldlaps............................................................................................................103.3 Previousclassificationofcoldlaps........................................................................................113.4 Influencefactorsforcoldlaps...............................................................................................15

    4 OxidesinGMAWprocess..............................................................................................................235 Experimentaltechniques...............................................................................................................275.1 Steelandconsumablematerials...........................................................................................275.2 Shieldinggases......................................................................................................................275.3 Sealedchamber.....................................................................................................................285.4 SEMandEDS..........................................................................................................................28

    6 Summaryofappendedpapers......................................................................................................316.1 PaperI....................................................................................................................................316.2 PaperII...................................................................................................................................326.3 PaperIII..................................................................................................................................32

    7 Conclusionsandfuturework.........................................................................................................358 References.....................................................................................................................................379 Appendedpapers..........................................................................................................................39

  • xii

  • 1

    1 Introduction

    1.1 BackgroundThisthesiscontributestowardsthefundamentalunderstandingoftheformationofcoldlap,whichisatypeofweldingdefect,tobeexplainedlater.Weldingisveryimportantinmodernmanufacturingindustry.GasMetalArcWelding(GMAW)isespeciallyutilizedinoffshoreindustryandvehiclemanufactureduetoitshighweldingproductivity.ItiswellknownthatsomeimperfectionsgeneratedintheGMAWprocess,suchaspores,inclusions,undercuts,etc,areinevitableincivilindustrialmanufacture.Theseimperfectionscaninfluencethepropertiesoftheweldedstructures,especiallythefatigueproperties.Fatigueisalocalphenomenoninwhichthelocalstressleveland/orlocaldefectscaninfluencetheservicelifeofthematerialsseverely.Thefatiguepropertiesoftheweldedstructuresalwaysneedtobeimprovedforthedevelopmentofnewproducts,whichmustusuallyfeatureincreasedloadcapacity,highertravelspeedsandlongerlife.Sincethelastcentury,manyfatiguetestshavebeenperformedandevaluatedonweldedsamplesusingdifferentweldingmethods,fillermaterials,parentmaterials,weldingparameters,shieldinggases,jointtypes,andfatigueloadings[16].Besidesweldgeometry,coldlapwasrevealedasanotherimportantfactorwhichcanhaveadetrimentaleffectonthefatiguelifeoftheweldedstructures.Recently,anewcorporatestandardwasdevelopedwithinVolvoConstructionEquipment(VCE),inwhichcoldlapwasfirstlygivenandrelatedtodifferentqualityclasses[7].However,verylimitedknowledgeaboutcoldlapisavailableinliterature.Eventhedetectionofcoldlapisanobstacleforstudyingit.PreviousinvestigationshaveshownthatitisverydifficulttoproduceaweldwithoutcoldlapwhenusingGMAW.Therefore,itisimportanttounderstandcoldlapfundamentally,e.g.classification,characterisation,mechanismofformation,etc.

    1.2 ObjectiveTheobjectiveofthisongoingworkistostudycoldlapsinordertobetterunderstandthephenomenabehindtheirformationandthemechanismsinvolved.First,aclassificationofcoldlapsisgiven.Physicalcharacterisationofthecoldlapinterfaceisasecondimportantpartofthisthesis.Thirdly,thefactorsthataresupposedtohaveasignificantinfluenceoncoldlapformationarepresented.Regardingtheweldingprocess,differentinfluencefactorsareillustratedtoexplainthecoldlapformation.

    1.3 LimitationsInthisstudy,thedetectionofcoldlapshascontinuedtobeanobstacle.Sincecoldlapsaresmallinsize,allstandardNDT(NonDestructiveTest)methodshavefailedindetectingthem,andonlyvisualtests(asapreliminarytest)anddestructivetestswerefoundtobeefficientandreliablemethods.Blastedsurfacesofthebasematerialshavebeenbroadlyintroducedinindustry.Therefore,thisstudyonlyfocusesonblastedorburrgrindingsurfaceconditions.Accordingtopreviousstudies,thesolidwirecangivethehighestfrequencyofcoldlapintheweldingprocess.Onetypeofbothweldingfillermaterial(solidwire)andbasemetalwereusedinthisstudy.

  • 2

    Onlytwotypesofjointwereusedinthisstudy,i.e.buttjointandbeadonplate,toreducetheuncertaintiesoftheweldingprocess.TandemGMAWwasselectedastheweldingprocessinthisstudysinceitwasmostlyappliedintheworkshopofVCE.Itisalsoimportanttopointoutthatthecoldlapsdiscussedinthisthesisonlyrefertolocalcoldlaps,whicharecomparedwithatypeofcoldlapduetoalackoffusionalongtheentireweldtoeinthelongitudinaldirection.Usually,thecoldlapsalongtheentireweldtoeareduetoincorrectweldingsetuporaverythickoxidelayeronthebasemetalsurface.Therefore,itisbelievedthatthecoldlapalongtheentireweldcanbeeasilyavoidedinthemodernGMAWprocess.

  • 3

    2 GMAWprocessGasMetalArcWelding(GMAW)referstoanarcweldingprocessusinganarcbetweenacontinuouslyfillingelectrodeandtheweldingpoolwithashieldinggas.GMAWwasintroducedinthe1920s,butitwasnotuntil1948thatitwasmadecommerciallyavailable.Whenusingdifferentshieldinggases,GMAWisalsocalledMIG(MetalInertGas)/MAG(MetalActiveGas)iftheshieldinggasisaninertoractivegas.InEuropetheprocessisalsosimplycalledMIGwelding.TheuseofGMAWcanbringmanyadvantages.Itcanbeusedforalmostallcommercialmetalsandalloys;itcanbedoneinallpositions;continuouswirefeedingispossible;depositionratesaresignificantlyhigh;itiseasytoautomatewelding;andminimalpostweldcleaningisrequired.Therefore,GMAWisutilizedbroadlyinindustry.ThetypicalequipmentsforGMAWincludepowersource,wiresupplyreel,wirefeedingdriverollers,flexibleconduit,hosepackage,weldinggun,contacttube,gasnozzle,andshieldinggas,etc[8].

    Figure1TypicalGMAWequipment.(1:Arc;2:Metalwireelectrode;3:Wiresupplyreel;4:Wirefeedingdriverollers;5:Flexibleconduit;6:Hosepackage;7:Weldinggun;8:Powersource;9:Contacttube;10:Shieldinggas;11:Gasnozzle;12:Weldpool.)(Adaptedfrom[8])TheGMAWweldingprocessisdependentonanumberofweldingparameters,themostcommonvariablesbeing[8]:

    Electrodediameter Voltage Wirefeedspeedandcurrent Weldingspeed Electrodestickout Choiceofshieldinggasandgasflowrate Torchandjointposition

    Toensuregoodweldingperformance,mostoftheseparametersmustbeoptimizedandmatchedtoeachother.Theworkingpointmustbewithintheworkingrangeortoleranceboxfortheparticularweldingsituation.Generally,thesizeofelectrodeischosenaccordingtotheweldingcurrent.Whenahigherweldingcurrentisused,anelectrodewithahigherdiametershouldbechosen.Regardingvoltage,increasedvoltageincreasesthearclengthandgivesa

  • 4

    widerweldbead.Buttoohighavoltagewillbringtheriskofundercut.Ifshortarcweldingisused,ahighervoltagereducestheshortcircuitfrequency,whichwillgivelargerdropsandmorespatter.Ontheotherhand,toolowavoltagewillincreasetheriskofstubbingandpoorstartperformance.Normallythevoltageshouldbesetforastabilityarc.ForGMAW,thecurrentissetindirectlybythewirefeedspeedanddiameter.Currentisthemainparameterforweldingtoachievesufficientweldingpenetration.However,itisalsoimportanttostrikeabalancewithweldingspeed,voltagewithrespecttothearcstability,andweldquality.Whensettingweldingspeed,thisalsohasaconsiderableeffectontheshapeandpenetrationoftheweld.Therefore,ahigherweldingspeedalwaysaccompanieshighercurrentandvoltageandmayresultinpoorstability.Electrodeextension,alsocalledstickout,referstothedistancefromthecontacttiptothemeltedelectrodetip.Practically,itiseasytousethedistancefromthecontacttiptotheworkpiece(CTWD)toexpresselectrodeextension.Therelationshipbetweenstickout,CTWDandarclengthisshowninFigure2.Toosmallastickoutincreasestheriskofburnback,wherethearcwillweldtheelectrodetogetherwiththecontacttip.Toolongadistancewillincreasetheriskofstubbing,especiallyatthestart.Thecontacttiptoworkdistancealsohasaninfluenceonthecurrentandpenetrationprofile.Iftheelectrodeextensionisincreased,thecurrentandheatinputdecreasewhiletheamountofdepositedmetalremainsthesame.Thisreducesthepenetration,andevenifitwasunintentionalariskofalackoffusionarises.Therefore,thestickoutisusuallykeptconstantduringtheweldingoperation.Torchanglesrelativetothejointarealsoanimportantweldingparameter.Ifthetorch/wireisdirectedawayfromthefinishedpartoftheweld(forehandtechnique),thismakesthepenetrationprofilemoreshallowandthewidthoftheseamwider.Ontheotherhand,ifitisdirectedtowardsthefinishedpartoftheweld(backhandtechnique),thepenetrationwillbedeeperandtheseamwidthwillbenarrower[810].

    Figure2Relationshipbetweenstickout,CTWDandarclengthinGMAWSolidwiresandcoredwiresarethetwotypesofwiresusedinGMAW.Thelattertypeconsistsofametallicoutersheath,filledwithfluxormetalpowder.Thefluxcoredwirescanhaveeitherarutileorbasicfilling.Theycanalsobeselfshieldedforusewithoutshieldinggas.Thecostper

  • unitsupcoregiviGMwel

    Forthemat

    Tanwelareareindicomwelmag

    Figu

    Moparadist

    tofcoredwiperiortosolidedwires.Basngatougha

    MAWissmalleding.ThewiGMAW,thearc.OnecanterialtranspondemGMAWdingspeedcmeltedintousedfortheividually.Homplicatedanddingparamegneticarcblo

    ure3Tandemreover,dueametersneetancebetwee

    iresisconsiddwires.Ahigsicfluxcoredandcrackresercomparedireisusuallyestabilityoftndistinguishort:thespra

    Wisregardedcanbeobtainonecommoewires.Therwever,becaddifficulttoetersettingwoweffect.

    GMAWwithtoanadditioedtobesetfenthewires

    derablyhigheghdepositiodwireshavesistantweldmdwiththatus0.9mmto1thearcdepeessentiallybayarcandthasatypeofnbyusingthonweldpoolrefore,thewusethetwosettheweldwillincrease

    twoindividuonalwirebeiforthetande,andtherat

    erthanthatnrateandgesimilarperfmetal[8].Gesedforsubm1.6mmindiaendslargelyobetweentwoeshortarc(fhighefficienhedoublewiusingtwoa

    weldingparamarcsareverdingcurrenttheriskofin

    ualwiresandaingintroduceemGMAW,etioofcurrent

    ofsolidwireoodsidewaformancetoenerally,themergedarcaameter[9].onhowthemodifferenttyshortcircuitncyGMAWwre.Intandemrcs,asshowmetersforeayclosetoeaandvoltagenterference

    arcsedintothewe.g.theangletandvoltage

    s,buttheyallpenetratiobasicmanuasizeoftheendmanuals

    moltenmetaypesofarcs,ingarc)[8,9weldingprocmGMAW,twninFigure3achwirecanachother,itiforeachwirbetweenthe

    weldingprocebetweenthebetweenth

    areinsomeronarefeaturalstickelectrelectrodeusestickelectrod

    alistransferr,dependingo9].cessinwhichwoindividua3.Twopowenbesetcompismuchmorre.Anincorretwoarcsth

    cess,morewhetwowireshetwowires

    5

    respectsesofrodes,edforde

    redinonthe

    hhigherlwiresrunitspletelyreecthrough

    weldings,thes.

  • 6

  • 7

    3 ColdlapsColdlapisarelativelynewwordtodescribeanimperfectionattheweldtoe.Theimperfectionwasfirstdiscoveredinthe1990sduringexperimentalworktoimprovethefatiguepropertiesofwelds.Itwasalsoobservedatthattimethatcoldlapscanhaveanimportantinfluenceonthefatiguelifeoftheweldedstructures.However,intermsofavailableliterature,therearealimitednumberofpublicationspresentingstudiesonweldprocessinfluenceoncoldlapformationorphenomenawhichpromotecoldlaps.Inthischapter,thefewavailablearticlesaresummarizedinordertogiveabriefoverviewofcoldlaps.

    3.1 DefinitionofcoldlapsInthisthesis,coldlapreferstoacracklikeimperfectionattheweldtoewhichhasanegativeinfluenceonthefatiguepropertiesoftheweld.ThecoldlapwasfoundinfatiguetestscarriedoutbyLopezMartinezandKorsgren[1]inthe1990s.Intheirfatigueinvestigation,twoweldingmethodswereevaluated,i.e.ShieldedMetalArcWelding(SMAW)andGasMetalArcWelding(GMAW).Theweldingrunswereperformedinthebestweldingposition(1G).Fourdifferenttypesofweldingconsumablematerialswereinvolved:OK48.00,abasiccoatedelectrode;PZ6130,abasicfluxcoredwire;PZ6111,arutilefluxcoredwire;andOK12.51,asolidwire.ForGMAW,twotypesofshieldinggaseswereappliedintheweldingexperiments.Differentweldingparameters,i.e.weldingcurrent,weldingvoltage,andinterpasstemperature,wereusedduetothedifferentmethodsanddifferentdiametersoftheelectrodes.ThedetailsareshowninTable1.Twoparentmaterialswereused,i.e.Domex350XPandWeldox900.

    Table1ExperimentdetailsofLopezMartinezandKorsgrensinvestigation[1]Weldmethod MMA GMAFillermetal OK48.00 PZ6130 PZ6111 OK12.51

    Gas Mison25,15l/minFogon20,14l/min

    Mison25,8l/min

    Weldingposition 1G 1G 1G 1GThroatthickness 5mmNominal 5mmNominal

    5.5mmMeasured

    34mmNominal

    ElectrodeSize(mm) 4 1.6 1.6 1.0

    Current(A) 185 185 257 140Voltage(V) 24 23 25 20Heatinput(kJ/mm) 2.0 1.6 1.3 0.6Interpass

    Temperature()25,110,125,

    13025,125,135,

    80 20,20,20,20 20,20,20,20Investigation

    points 712 720 5824 2896Numberofspotswithdefects(Coldlaps)

    38 83 112 475Percentage 5.3 12 1.9 35

    Twotestingmethodswereinvolvedintheinvestigation:onewasfatiguetestingandtheotherwastheseparatetest.

  • 8

    Inthefatiguetest,thefracturesurfaceswereinvestigated.Atypeofmicrodefectwasidentifiedattheweldtoeasthefatigueinitialspotinalmost70%oftheexaminedfracturesurfaces.Thesesocalledcoldlapsareparalleltoandatthesamelevelastheoriginalparentplatesurface.Coldlapsappearedasplanardefectsattheweldtoeanddifferedinshape.Thedefectscanbeverydifferentindepth(transversetoweldlongitudinaldirection)andlength(inweldlongitudinaldirection).Inthestudy[1],twocaseswereidentifiedregardingcoldlaps:oneisthecoldlapscreatedbyshrinkagecrackintheweldingprocessandanotheristhecoldlapswithoutanyinfluencefromshrinkagecrackintheweldingprocess;seeFigure4.Forthedetectedcoldlaps,twodimensionsweredefinedasdepthandlength,asmentionedabove.Theresultsshowedthatthecoldlapcanvarybetween0.1mmand3.5mminlengthand0.05mmand0.8mmindepth[1]seeTable2.

    Figure4TwocasesofcoldlapsidentifiedinLopezMartinezandKorsgrensinvestigation:a)Coldlapscreatedbyshrinkagecrack;andb)Coldlapswithoutinfluencefromshrinkagecrack.(Adaptedfrom[1])

    Table2DimensionsofthecoldlapsfoundinLopezMartinezandKorsgrensstudy[1].

    Dimensionsketchofacoldlap(a:dimensioninlongitudinaldirection;b:

    dimensionindepthdirection/transversedirection)

    Samplenumber a(mm) b(mm) Remarks11 0.8 0.15 13 1.0 0.5 14 3.5 0.5 Nodefects.Shapeofearlycrack16 1.0 0.5 18 1.5 0.4 21 2.0 0.8 22 0.3 0.3 Twocoldlapswerefoundforsample2222 1.5 0.4 Twocoldlapswerefoundforsample2233 0.25 0.125 34 N.A.

  • 9

    Intheseparatetest,theweldwascutandthecrosssectionsweremilled,polished(downto3m),andetched(3%Nital).Newcrosssectionswerepreparedusingthesameprocedure2mmawayfromtheformercrosssection.Amicroscopewasusedtoexaminethedefectsonthecrosssectionattwomagnifications(50xand200xmagnification).Thdepth(d)andorientation()ofdefectswereevaluated,asshowninFigure5[1].

    d

    d

    = 0

    Figure5Depth(d)andorientation()ofthetestedsample(Adaptedfrom[1])Thenumberofcrosssections(investigationpoints)fordifferentweldingspecimensislistedinTable3.InLopezMartinezandKorsgrenspaper[1],itisstatedthatthedefectsfoundinseparatetestscanberegardedascoldlapsbasedonthediscoveryinthefatiguetest.However,thecoldlapsfoundinthefatiguetestwerestatedtobemainlyparalleltotheparentmetalsurface.Thedefectsof90oorientationcanbeanexceptionofcoldlaps,ortheymaybeduetheshrinkagecrack[1].Also,theirformationcouldbedifferent.Therefore,thedefectswith90oarenotconsideredinthisthesis.Toillustratethefrequencyofdefectsfordifferentweldingmethodsandmaterials,thepercentageofinvestigatedpointswithdefectswasevaluated.Themeanvalueofthedefectlengthofthecrosssectionwasrecordandcalculated.TheresultsareshowninTable3.

    Table3Separatetestresultfordefectsonthepreparedcrosssections(Adaptedfrom[1])Weldmethod MMA GMAFillermetal OK48.00 PZ6130 PZ6111 OK12.51

    Investigationpoints 712 720 5824 2896Numberofspotswithdefects(coldlaps) 38 83 112 475

    Percentage(%) 5,3 12 1,9 35Meanvalueind(mm) 0.270 0.250 0.047 0.130

    STEDV 0.300 0.250 0.050 0.150FromtheresultsshowninTable3,onlyasmalldifferencebetweenOK48.00(basicelectrode)andPZ6130(basicfluxcoredwire)intermsofcoldlapmeandepthwasfound.ThePZ6111(rutilefluxcoredwire)gavethesmallestdefectsindepth.TheOK12.51(solidwire)gavethehighestfrequencyofcoldlaps.Hence,thetypeofelectrodehasthemostsignificantinfluenceoncoldlaps.Basicfillermaterialstendtogiveadeepercoldlap.Solidwirestendtogiveahigherfrequencyofcoldlaps.Incomparison,asshowninTable1,theeffectsofcurrent,voltage,andheatinputoncoldlapsareweak.AccordingtoSamuelsson[2],coldlapsarealocallackoffusion.Thisdefinitionoflackoffusionmakesiteasiertounderstandcoldlapcomprehensively.Furthermore,theimportanceofthe

  • 10

    lackoffusiondefinitionistoimplycoldlapformationastheconventionallackoffusion,e.g.lackofenergy/heat,improperpreweldcleaning,andincorrectweldingtechniques/operation,etc[11].

    3.2 DetectionofcoldlapsAsmentionedabove,coldlapsareverysmallinsize(0.1mm3.5mminlengthand0.05mm0.8mmindepth).ItisveryhardtodetectcoldlapsbyanyNDTmethod.Theconventionalmethodfordetectingcoldlapsiscutting,polishingandinvestigatingthecrosssectionbymicroscopy.However,thismethodcannotgiveinformationaboutthelengthofthecoldlapsalongtheweldbead.Also,itishardtogetanoverviewofthenumberofcoldlapsintheweld.Therefore,anewdestructivemethodwasdevelopedbyHolstetal.[5]whichcansuccessfullydetectcoldlaps.Topreparethespecimen,thefirststepistogrindagapontheoppositesideoftheweld.Thelocationofthegapistheplatethicknessplushalfthethroatthicknessfromtheedgeofthebasemetal,andthedepthishalftheplatethickness.ThepositionanddepthcanbeseenschematicallyinFigure6[5].Ifthegapistoodeeportoofarfromtheedge,thebendingwillnotoccurattherightplaceandnothingcanbegathered[5].

    Figure6Thecorrectpositionanddepthofthegap(Adaptedfrom[5]).Thelocationofthegapistheplatethicknessplushalfthethroatthicknessfromtheedgeofthebasemetalandthedepthishalftheplatethickness.Tobendthespecimen,thespecimenneedstobeplacedonplateswhichcanslideapartasthepressgoesdownuntiltheweldistorncompletely.Aspacercanbeplacedonthetoptospreadtheforceoverthespecimen.Theforceneededvarieswiththedepthofthegap,lengthofthespecimen,thicknessofplate,design,throatthickness,andgeometry.Inthefirststage,theweldtearsupattheweldtoe.Inthenextstage,thecrackpropagatesthroughthematerialandfinallythespecimensplitsintotwopieces,asshowninFigure7.Itisimportanttoprotecttheedgeofthefracturedsurface.

  • 11

    Figure7Fracturedweldtoe.(Adaptedfrom[5])Thedetectedweldtoeistornupwiththepressureandtowslideblocks.Finally,thespecimensplitsintotwopieces.Toexaminethespecimen,astereomicroscopewithmagnificationof46timesissuggested.Foramoreexactdefectsizedetermination,acameraconnectedtoacomputercanbeused.ColdlapsandspatterswereidentifiedonthefracturesurfaceoftheweldtoeintheworkofHolstetal.[5].Therefore,usingthemethodabove,itispossibletoperformadestructivetestofaspecimentoindicatecoldlaps,spatters,lackoffusionandporesforsolidelectrodeMAGwelds.Boththelengthandthedepthofthecoldlapscanbedetermined.

    3.3 PreviousclassificationofcoldlapsColdlapswerecharacterizedandcategorizedbyFarajianSohiandJrvstrt[12].Intheexperiment,tandemGMAWweldingwasused.Structuralsteel(EN10025S275JR)plateswereusedasthebasemetalandwereplasmacutintosmallercouponswiththedimensionsof12*50*300mm.Weldingwasperformedontheplate(beadonplate).AsmilledsteelplatesandweldpositionPAwerechosenfortheexperiment.Thirtyeightweldedspecimenswithdifferentweldingparameterswereproduced.Whenselectingtheweldingparameters,spraymodewasensured,evenfordifferentarclengthsengaged.Also,theratioofwirefeedspeed(WFS)andtravelspeed(TS)waskeptfixedtokeepthesamedepositionrateinwhichdifferentweldprofileswereproduced.Theinfluenceofelectrodestickoutcanbestudiedbyvaryingcontacttubetoworkpiecedistance(CTWD).Theinfluenceoftheweldingtorchangle(forwardandbackward)wasalsostudied.TheWFSoftheleadingwirewaskeptalwaysequaltothatofthetrailingwire.Twocombinationsofelectrodes,i.e.solidsolidandsolidcoredwire,wereusedintheexperiment.Adevelopedrapiddestructivemethodwasusedtodetectcoldlapsinwhichthespecimenswerehitbyapendulumtipinanimpacttestmachine.Afterbreakingthespecimens,thefracturesurfaceofthebrokenpartswasstudiedusinglightopticalandscanningelectronmicroscope.Thetestswithdifferentloadingspeedsshowedthatafasterloadingspeedandalowertemperaturecouldgiveabetterpictureoftheimperfections.Inordertofracturethepartsinabrittlemanner,thespecimenswerefirstcooleddowninacontainerfilledwithliquidnitrogenfor10minutesbeforetheimpacttest.Thetestcouponswerepreparedwiththedimension11*12*50mm.Thependulumhitsthespecimensfrombehindandbreaksthembypropagatingacrackstartingattheweldtoes.InFigure8,thespecimenpreparationandimpacttestingaredescribedschematically[12].

  • Figint[1pe

    ByanprUskn

    InshfraFighilothso

    gure8Schemtosubspecim2](Originallyermission.)ystudyingthndbasematereviousfatigusingtheseexnownasoveFigure9,ovharpcontrastacturesurfacgure9.Thedghermagnifngand0.45hebasemateolidinclusion

    maticaldescripmens.c)Hittinpublishedin

    hefracturesuerialcouldbeuetestswerxperiments,erlapandspverlapwasobtcanbeobseceoftheovedetailsofthefication.Asemmdeep.Terial.Thesubnscanbeobs

    ptionofthetengwithapendSteelResearc

    urfaces,theeobserved.ecomparedFarajianSohpatter.bservedassoervedbetweerlaps(seeFeencircledimmiellipticalTheobservatbsurfaceoftserved[12].

    est:a)Beadodulum.d)LigchInternation

    initialimperThefracture.ColdlapscahiandJrvstr

    olidifiedoveeenthebaseigure9a).Thmperfectioncracklikeimionoftheimthecoldlaps

    nplateweldhtorelectronnal,77(2006)

    fectionswhiesurfacesfroanbeobservrt[12]obse

    rflowofthematerialfra

    hreeoverlapsinFigure9a

    mperfectionwmperfectionssappearedp

    specimen.b)nmicroscopy),No.12,page

    chexistbetwomthisimpavedclearlyinervedtwotyp

    weldpoolocturesurfacswereshowareshowniwasobserveshowednomporous.Inthe

    Slicingthespofthefractures889895.W

    weentheweacttestandtnbothmethopesofcoldla

    nthebasemceandthesuwnatthewelnFigure9baedwhichis1.metallicbindelargepores

    12

    pecimenresurfaceWith

    eldtoetheods.aps,

    metal.Aubdtoeinata.5mmingwiths,some

  • Figsp(Ope

    Tosppoanoxinbo

    FigInt

    gure9OverlapecimencontaOriginallypubermission.)ostudytheepectroscopyointwheresonalysisshowexygenandcaclusionswerondinglayer

    gure10Surfaternational,7

    apfoundin[1ainingoverlaplishedinStee

    elementspre(EDS)investiolidinclusionedthatsilicoarbon,asshoretrappedbduringthew

    ceofacoldla77(2006),No.

    2].a)ScanninptypecoldlaelResearchInt

    esentontheigationusingnsweredomonandmangowninTableetweenthewweldingand

    apinvestigate.12,pages88

    ngelectronmaps.b)Magnifternational,7

    observedcogthescanninminant,asshganesewere4.Thissuggweldandthesolidification

    edusingEDS[89895.Withp

    icroscopyoftficationofthe77(2006),No

    oldlapsurfacngelectronmowninFigurpresentont

    geststhattheebasemetanprocess.

    [12](Originalpermission.)

    thefracturesecoldlapscir.12,pages88

    ce,energydimicroscopewre10.Therethesurfaceiesiliconandl,formingth

    lypublishedi

    surfaceofthercledina)[1289895.With

    spersivewasperformeesultsfromtnadditiontomanganese

    henonmetal

    inSteelResea

    13

    welded]

    edattheheEDSoiron,

    llic

    arch

  • 14

    Table4ChemicalcompositionobtainedbyEDSinvestigationofonecoldlapsurface,asshowninFigure10.(Modifiedfrom[12])

    Element Weight(%) Atomic(%)C 2.07 7.31O 9.11 24.15Si 0.91 1.37Mn 1.50 1.16Fe 85.75 65.13

    AnothertypeofcoldlapfoundbyFarajianSohiandJrvstrt[12]isnamedspatter.Thelengthofasinglespatterismuchshorterthanthatoftheoverlaptypecoldlaps,andingeneraltheaspectratio(a/ca:crackdepth,2c:cracklength)ofspatterlikecoldlapsislargerthanthatofoverlaplikecoldlaps.InFigure11,asinglespattertrappedwithintheweldmetalattheweldtoeisshown.Theobservedspatterhasadiameterofaround200mandwasbelievedtobecoveredbytheweldweaves.Someoxideswerealsofoundsurroundingthespatter,whichisthesamematerialastheinclusionsintheporesontheoverlapsurface.Aclusterofspatterwasalsoobservedattheedgeofthefracturesurface,asshowninFigure12.Betweenthestickingspatters,oxidesandporeswerestatedtobefound.Thelengthofthisspatterclusteris1.8mmanditsdepthis0.6mm.

    Figure11Spatterfoundin[12].a)Singlespatteronthetopofthefracturesurface.b)Magnifiedpictureofthespatterintheleftimage.[12](OriginallypublishedinSteelResearchInternational,77(2006),No.12,pages889895.Withpermission.)

  • 15

    Figure12a)Clusterofspatteronthetopofthefracturesurface.b)Magnifiedpictureofthepartcircledina)[12](OriginallypublishedinSteelResearchInternational,77(2006),No.12,pages889895.Withpermission.)Inthediscussionofthepaper[9],theauthorsstatedthatseveralforcefieldsintheweldingprocess,e.g.arcpressure,electromagneticfieldsandtheforcefromtheshieldinggasflow,resultinthefluctuationoftheweldpool.Thefluctuationsarethesourceoftherippleoftheweld.Iftheforcefieldswhichcontrolthefluctuationsoftheweldpoolweredisturbed,largerrippleswouldbeproduced.Whenthelargerrippleswithhigherkineticenergythannormalripplesreachtheweldtoe,theyoverlaponthebasemetalandformtheoverlaptypeofcoldlaptogetherwiththecoldbasemetalsurface.Thesolidinclusionscontainingsiliconandmanganesewereregardedtobetrappedparticleswhichareproducedduringwelding.Thesiliconandmanganeseinclusionswereassumedtobeproductsofdeoxidizationoftheelectrodesandcleanersforbasemetalsurfacescontainingoxides/millscale.Itwasstatedin[12]thatgasescanbereleasedwhiletheinclusionissolidifying.

    3.4 InfluencefactorsforcoldlapsForadeeperunderstandingofcoldlaps,itisimportanttounderstandtheinfluencefactorswhicharesupposedtobeabletosignificantlycontroltheoccurrenceanddimensionsofcoldlaps.RoboticRapidArcGMAW(highspeedwelding)withsolidwirewasusedbyHedegrd[13]toproduceweldingspecimens.Filletweldswereproducedintheexperiment.Adestructivemethod(crosssectionsoftheweld)wasusedtodetectandevaluatecoldlaps.Table5Sevenvariedimportantweldingparametersinexperiment.(Adaptedfrom[13])

    Examinedweldingparameter ValueoftwolevelsElectrodestickout 22/29(mm)

    Heatinput 0.8/1.1(kJ/mm)Weldinggunangles A/B(notspecifiedinpaper)Weldinggunposition e.g.badposition:1/0(mm)offWeldingposition 1F/2F

    Surfacequalityoftheplate Blasted/asdeliveredWeldsize(throatsize) 4/6(mm)throatsize

  • 16

    Intheexperiment,multifactorialtestswereperformedandeighttestserieswerewelded,consistingofthreespecimenseach.Sevenimportantweldingparameterswerevariedinastandardisedandreducedtwolevelmultifactorialtest.Theweldingparametersexaminedareshownbelow.Intotal,twentyfiveindependentcutsweremadeforeachseries.Byevaluatingthecrosssections,threesignificantparameterswererevealedforcoldlapoccurrence,i.e.weldingposition,surfacecondition,andweldinggunposition[13].ThemostimportantparametersforGMAW,asconsideredbyFarajianSohiandJrvstrt[14]intheirexperiment,arelistedinTable6.

    Table6Nominalweldparameters.(Controlledparametersaredenotedby*,thoseheldfixedaredenotedbyo,andthosefullydeterminedbycontrolledparametersaredenotedby.)(Adaptedfrom[14])

    Weldingparameter Basematerial

    FillermaterialsandShieldinggas

    Totalwirefeedspeed*(21m/s)

    Alloy o(Steel,EN10025S275JR) Wiretype*(solid:OKAutrod12.51,metalcored:OKTubrod14.12)

    Weldtorchangle*(0,vertical)

    Platethickness o(12mm)

    Wirediameter o(1.2mm,leadingandtrailing)

    Arclength*(4mm) Surfacequalityo

    (Asrolled) Distancebetweenthetwocontacttubeso(20mm)Contacttubetoworkdistance(16mm)* geometry

    o(50300mm,beadonplate) Gastype*:92%Arand8%Co2

    Electrodestickout Weldingpositiono

    (Horizontal,PA) Gasflowrateo(28l/min)Current Voltage

    Weldingspeed AfractionalfactorialtwolevelmodelwithonereplicationwaschosentodesigntheexperimentusingthesoftwareMODDE.SixvariablesoftheweldingparametersfortandemGMAWwithtwolevelswereinvolvedinexperimentaldesign,asshowninTable7[14].Atotalnumberof38weldspecimenswithdifferentandcontrolledweldingparameterswereproducedaccordingtotheworksheet,asshowninTable8[14].Strangely,thetwolevelofCTWDusedare13mmand15mminsteadofthelevelsshowninTable7.

  • 17

    Table7Weldingvariablesandtheirrangesinthepaper.(Adaptedfrom[14])Tandemarcweldingparameters Notation Range

    WireFeedSpeed WFS 18,21,24(m/s)*ArcLength(Leading) Larc 2,4,6(mm)

    ContactTubetoWorkDistance(Leading) CTWD 15,16,17(mm)*TorchAngle TA 10(Pull),0,10(Push)degrees

    Wirecombinations WireC Solidsolid:0Solidcored:1

    WeldSpeed(SettoWFS/15) WS 1.2,1.4,1.6(m/s)**Thethreevaluesrefertothelow,midandhighlevelofthevariables.Withthemiddlevaluetherepetitionsweregiven.Table8Worksheetofweldingparameters.(Adaptedfrom[14])

    No. WFS(m/min)

    WS(m/min)

    Larc(mm)

    CTWD

    (mm) TA WiretypeVoltageLeading

    (V)1.20 18 1.2 2 13 10 Cored 27.52.21 24 1.6 2 13 10 Solid 29.03.22 18 1.3 6 13 10 Solid 29.84.23 24 1.6 6 13 10 Cored 34.85.24 18 1.2 2 15 10 Solid 26.06.25 24 1.6 2 15 10 Cored 29.57.26 18 1.2 6 15 10 Cored 32.08.27 24 1.6 6 15 10 Solid 34.89.28 18 1.2 2 13 10 Solid 26.010.29 24 1.6 2 13 10 Cored 29.511.30 18 1.2 6 13 10 Cored 31.512.31 24 1.6 6 13 10 Solid 34.813,32 18 1.2 2 15 10 Cored 27.514.33 24 1.6 2 15 10 Solid 29.515.34 18 1.2 6 15 10 Solid 29.516.35 24 1.6 6 15 10 Cored 34.817 21 1.4 4 14 0 Cored 31.018 21 1.4 4 14 0 Cored 31.019 21 1.4 4 14 0 Cored 31.036 21 1.4 4 14 0 Solid 29.637 21 1.4 4 14 0 Solid 29.638 21 1.4 4 14 0 Solid 29.6

  • 18

    Toevaluatethespecimens,boththeconventionalcrosssectionmethodandthedevelopedimpacteddestructivemethod(asmentionedintheabovechapter)wereengaged.Lightopticalandscanningelectronmicroscopewasusedfortheinvestigations.Twotypesofcoldlapwereobservedinthisstudy[14],i.e.overlapandspatters,andMnandSiinclusionwasalsofoundonthesurfaceoftheflaw[14].Thedepthofthetwotypesofcoldlapsforallthefracturedspecimenswasmeasured.Themaximumdefectdepthwasregisteredoveradistanceofabout11cmforeachsetofweldparameters.InFigure13,histogramsshowingdefectdepthrangesmeasuredfromallthedetectedtoeflawsaregiven.

    Figure13Histogramsofthedepthofa)overlapandb)spatter[14](ReprintedwithpermissionofASMInternational.Allrightsreserved.www.asminternational.org)Thehistogramsshowthattheoverlapdepthhasanormaldistributionwithanaveragevalueof0.25mmandthatspattersarerandomlydistributedwithanaveragedepthof0.34mm.TheeffectofthedifferentparameterswasstatisticallyevaluatedusingthesoftwareMODDE.Foroverlaps,FarajianSohiandJrvstrt[14]statedthatthefactorswiththemostpronouncedeffectontheoverlapdepthwerethetotalwirefeedspeed(WFS)andthetorchangle(TA),asshowninFigure14.Thecontacttubetoworkpiecedistance(CTWD)hadaminoreffectbutstillstatisticallysignificant.

    Figure14Scaledandcanteredcoefficientplotofparametersaffectingmaximumoverlapdepthin110mmofwelds.[14](ReprintedwithpermissionofASMInternational.Allrightsreserved.www.asminternational.org)Thestatisticallyderivedempiricalmodelswerealsogiven,asshowninequation1and2.Forsolidsolidwire:

  • 19

    4 0.22 0.006 0.01 0.06 0.001 0.004 0.5 0.21 0.03 Eq.(1)Forsolidcoredwire: 3.45 0.23 0.006 0.01 0.04 0.001 0.004 0.56 0.23 0.03 Eq.(2)Forthespatters,usingthesamemethod,theauthorsstatedthatthetotalwirefeedspeed(WFS)andthetorchangle(TA)weredominatingfactors,asshowninFigure15.

    Figure15Scaledandcentredcoefficientplotofparametersaffectingmaximumspatterdepthin110mmofwelds.[14](ReprintedwithpermissionofASMInternational.Allrightsreserved.www.asminternational.org)

    Regardingtheoverlap,iftheequations(Eq.1andEq.2)arereliableandabletobesimplified,neglectingtheinteracteditems,thenewequationscanbewrittenas:Forsolidsolidwire: 4 0.22 0.06 0.5 0.21 Eq.(3)Forsolidcoredwire: 3.45 0.23 0.04 0.56 0.23 Eq.(4)Consideringthechangerangeofthevalueforeachparameter,themaximumeffectofeachparametercanbecalculated,asfollows:Forsolidsolidwire: 0.22 0.22 24 18 1.32Eq.(5) 0.06 0.06 10 10 1.2Eq.(6) 0.5 0.5 6 2 2Eq.(7) 0.21 0.21 17 15 0.42Eq.(8)Forsolidcoredwire: 0.23 0.23 24 18 1.38Eq.(9) 0.06 0.04 10 10 0.8Eq.(10) 0.5 0.56 6 2 2.24Eq.(11)

  • Franovthhaals

    Mto17cocoexauquthco

    Figfoww

    romEq.5toEndCTWD.Hoverlapcoldlahevoltageinasthemostssoberaised

    Moreover,theoasolidcore7.However,ontradictoryoredwireinaxplanationfouthorsstatedualitywasnohecontradictonditionhas

    gure16Statisrsolidcoredww.asminter

    Eq.12,someowever,itisapforbothstheweldprosignificantef.

    eauthors[14edwirecombfromthepreconclusionwasinglewireorthecontradthattheexotoptimal.Ttoryresultswadominant

    sticalmodelrwire.[14](Renational.org)

    0.23

    agreementcobviousthatsolidsolidwiocess,fromwffectonover

    4]alsoconclubinationresueviousworkwasdrawntheorRapidAradictoryresuperimentswherefore,thwiththepreveffect,allth

    epresentingaeprintedwith

    0

    canbeseentthearclengireandsolidwhichthecorlapdepth.F

    udedthatswultedindeepofLopezMahatthesolidcweldingprltswasgiven

    wereperformesurfaceimviouswork.Heresultscou

    a)Depthofovhpermissiono

    0.23 17

    withtheautgthhasthegcoredwire.onclusioncanForthespatte

    witchingfromperoverlap,aartinezetal.wiregaved

    rocess(seecnbyFarajianmedonasropuritieshadHowever,ifiuldbequesti

    verlapforsoliofASMIntern

    15 0.

    thorsonthegreatesteffePhysically,tnbedrawnters,thesam

    masolidsoliasshownin[1]andHedeeepercoldlahapters2.1anSohiandJlledmetalshadominanttistruethationable.

    idsolidwire.national.Allri

    .46effectofWFctonthedethearclengtthatweldingearguments

    dwirecombFigure16anegrdetal.[apscompareand2.5).Onrvstrt[14].heetsandtheffectinprotthesurface

    b)Depthofoightsreserved

    20

    Eq.(12)

    FS,TApthofhmeansvoltagescan

    binationndFigure[13],aedwitheTheesurfaceoducinge

    overlapd.

  • Figsoww

    Fuimleexfasig

    Lomspusfalow

    gure17Statisolidcoredwireww.asminter

    urthermore,mportantforngthandconxperimentalctorwiththegnificanceinopezMartineaterial.Befopecimeninthsinganoptictigue.Bythiwerdepth.Teldtoe,but

    sticalmodelre.[14](Reprinational.org)

    itiswellknotheexperimntacttipwordesign.Asdiefixedsticktheexperimezetal.[15]orethefatiguhefatiguetealmicroscopsobservatioTheresultsscanonlyred

    epresentingantedwithper

    ownthatthementaldesignrkdistance(Ciscussedincout.Therefomentaldesignproducedwuetest,TIGdstwasprepapeandascann,coldlapswhowedthatTducethedep

    a)DepthofsprmissionofAS

    eselectionofn.However,iCTWD)asthchapter2,thore,thisindenofthepapeeldsbyMAGdressingwasaredsothatnningelectrowerefoundTIGdressingthofthecol

    patterforsoliSMInternatio

    findependeninthestudyhefactorsintearclengthependencecer.Gusingblastesperformedthefractureonmicroscopinthespecimgcannotelimdlaps.

    dsolidwire.bonal.Allrights

    ntfactorsiss[14],theauttheirfractionandCTWDaouldalsogiv

    edWeldox70ontheweldsurfacescoupetoidentifymensafterTIminatetheco

    b)Depthofssreserved.

    statisticallythorsselectenalfactorialarenotindepvepoorstatis

    00asthebastoes.ThefauldbeanalysytheinitialpIGdressingboldlapsfrom

    21

    patterfor

    edarc

    pendentstical

    seiluresedpointsofbutatamthe

  • 22

  • 23

    4 OxidesinGMAWprocessWeldingcanberegardedasametallurgyprocesswithquickmelting,coolingandsolidification.Fromthisrapidprocess,asoundweldisproducedwithhighstrengthandtoughnesscomparedwiththeparentmaterial.Thealloyelementsintheweldmetalarethekeytoensuringtherequiredmechanicalproperties.FortheGMAWweldingprocess,bothdropletandweldpoolwillexperienceanextremelyhightemperature,andoxidizationisinevitable.Thisoxidisationwillconsumeacertainamountofthebeneficialalloyelements.Fordifferentparentmaterials,thebeneficialelementscanbedifferent.Ontheotherhand,thealloyelementsareimportantfortheweldabilityintermsofbeingfreefromweldingflaws,e.g.properviscosityofthemoltenmetal,alighteroxidewhichcaneasilyflowuptotheweldpoolsurface,etc.Forthesepurposes,therearealargenumberofalloyelements,e.g.C,Si,Mn,Cr,Ni,V,Ti,Co,Mg,N,Mo,Zr,NbandAl,etc[8,9,11].However,onlythebehaviourofmanganeseandsiliconisfocusedoninthisstudy,sinceMnSioxideswerefoundtobethemajoroxidesincoldlaps.Manganeseisagreyishwhitemetallicelementwithanatomicweightof54.9andameltingpointof1245oC.Acertainquantityofmanganesecancommonlybefoundinmoststeels,asitisahelpfuladditiveinironalloys.Manganesehasastrongeraffinitytooxygen,sulphurandcarbonthaniron.Whenaddedtomolteniron,manganesereactswithoxygentoformmanganeseoxide(MnO).Hence,manganeseisadeoxidizerforiron,butitisstilllessimportantthanaluminiumandsilicon.Inthemelt,Manganesecanalsoreactpreferentiallywithsulphurtoformmanganesesulphur(MnS).Therefore,theMnSinclusioniscommoninhotrolledsteelasathinlayerinclusion.Manganeseiscommonlyfoundasanalloyingadditioninalltypesofcarbonandlowalloysteelbasemetalsandfillermetalsforwelding.Thepurposeofmanganesecangenerallybesummarizedasbeingthreefold[16]:

    Combineswithoxygeninthemoltensteelasadeoxidizer; Tiesupanysulphurthatmaybepresenttoavoidhotcracking; Promotesgreaterstrengthbyincreasingthehardenabilityofthesteel(toughnessis

    usuallyimprovedasabonuseffect)Siliconhasanatomicweightof28andameltingpointof1427oC.Siliconisusedmainlyinsteelsasadeoxidizingagent.Insteelmaking,theamountofsilicontobeaddedisslightlyinexcessofthequantityneededtocombinewiththeoxygen.Siliconandoxygenreactvigorouslytoliberatealargeamountofheat,andsilicondioxide(SiO2)isformed.Thesilicondioxidecaneitherescapetothemoltenmetalsurfaceorforminclusionsinthesolidifiedsteel.Withthepresenceofmanganeseinthemoltensteel,thesilicondioxideinclusionswilloftenoccurascomplexironmanganesesilicatecompounds.Ifmanganeseandsiliconareaddedtogetherandactsynergistically,themanganeseandsiliconcanachieveanonmetalliccompositionthatwillremainliquidatthefreezingtemperatureofthesteel[16].Thesiliconcanalsobeusedasaferritestrengthener,anditisstrongerinthisrespectthanmostothercommonlyusedalloyingelements.Also,siliconisastronghardenabilitypromoter.Therefore,heattreatablealloysteelshaveahighproportionofsilicon.Finally,siliconcanpromotethefluidityofthemoltensteel.Itissometimesusefulinpouringcastingsandincertainfusionweldingprocesses.

  • 24

    Inthemoltensteel,thedeoxidationofsiliconandmanganesecangivecomplexproducts,evenfortheequilibriumcondition.AccordingtoTurkdogan[17],theproductswillbedeterminedbyallthreefactors,i.e.thecontentofsiliconandmanganese,thecontentratiobetweensiliconandmanganese,andthetemperature,asshowninFigure18.

    Figure18Productsofoxidationofsiliconandmanganeseinequilibriummoltensteel.(Adaptedfrom[17])However,theoxidationproductsofsiliconandmanganesecouldbemorecomplexbecausetheweldingprocessgenerallyfeaturesarapidcoolingprocess,makingithardtoachieveequilibriumconditionsinthemoltenmaterial.Also,itishardtomeasurethetemperatureintheweldingprocess.GrongandChristensen[18]performedanexperimentinanenclosedchamber.Differentshieldinggaseswereusedintheexperiment.Basically,twotypesofspecimenswereprepared:oneisachilledweldmetalandtheotheroneisamultilayerweldment.Theelectrodetipafterweldingwasalsoanalysed.Forthechilledweldmetalsamples,theweldwasmadeonawatercoolingcopperwheelwhichwascoveredbyaTeflonscrapertoeasetheweldmetalseparation.Thechilledmetalwascollectedintheformofintermittentstrips(1to2mmwide,thickness0.05to0.1mm,length20to150mm).Forthemultilayerweldmetal,theweldingtrialswereperformedonmildsteelcoupons(135mmx95mmx15mm).Sixlayersweredepositedforeachsample.Theweldingspeedwas3mm/s.OnlythetopbeadswereinvestigatedwithrespecttoC,O,SiandMncontent.Afillerwireof0.8mmdiameterwasused.Therateofwirefeed(about125mm/s)wasadjustedtotheoperationalconditions(90to100Aand24to26V,respectively).ThechemicalcompositionofthefillerwireisshowninTable1.Table9Chemicalcompositionofthefillerwire.(Adaptedfrom[18])

    Elements C O Si MnContent(wt %) 0.097 0.020 0.83 1.52

  • 25

    Bothelectronprobeanalysisandchemicalanalysiswereperformedforthesamples.Acomparisonbetweentheresultsofthechilledweldmetalandthemultilayerweldmetalrevealedthattheoxidizingreactionofcarbondoesnotnormallytakeplaceintheweldpool,butoccurseitherattheelectrodetiporinthearcplasma,ormaybeboth.GrongandChristensen[18]alsodiscussedthatitisreasonabletoassumethattheoxidationmainlyoccursontheelectrodetip,ratherthaninthearcplasma.Thelargemetal/atmosphereinterfaceisthemainreasonforCOnucleationduringdropletformation.Twopartsofthedropletweredistinguishedinthediscussionofcarbonoxidation.Oneisthehotlayer,whichreferstothepartfacingthearc.Thispartismostlikelythelocationofcarbonoxidation.Theotherpartisthepartonthesideoftheelectrodewire(thelowertemperaturepartcomparedwiththepartfacingthearc)inwhichSiandMnareexpectedtoprotectcarbonfromoxidation.WhenreachingthecriticalCOgaspressure,thecarbonreactionisblocked.Thus,siliconandmanganesewilltakeoverandcontroltheoxygenlevelinthemetal.OnereasonforthelackofcarbonoxidationinthearcplasmaisaninadequatesupplyofoxygenduetoMnandFevapourarisingfrommetalsuperheating.Inthehotpartoftheweldpool(thepartsimultaneouslybeneathandfollowingthearc),theplasmajetblowstheMnandFevapourawayandprovidesasteadysupplyofoxygen.However,themetal/atmosphereinterfacemaybetoosmallinvolumecomparedwiththedropletstolimitthecarbonoxidationinthisstage.Inthecoolerpartoftheweldpool(thepartnexttothearcintheweldpool),SiandMnarenormallyexpectedtopreventanycarbonreaction.Regardingthelossesofsilicon,GrongandChristensen[18]concludedthatlossesofsiliconmainlyoccurintheweldpoolandtheamountofSilostontheelectrodetipandinthearcplasmaismuchsmaller.Sincenoslagisformedonthesurfaceofthechilledmetalsample,theauthorsbelievethatthesiliconmustescapeintheformofagaseousproduct.Ontheotherhand,evaporationlossescanbeexcludedinthiscaseduetoaverylowSivapourpressureattheprevailingtemperature.Therefore,itisreasonabletoassumethatSiOisformedonthetipdropletsurface.Thesiliconlossesofchilledmetalwithincreasingoxygenpotentialofshieldinggasarebelievedtobecausedbythereaction:

    SiO2(inslag)+CO(g)=SiO(g)+CO2(g)Whencomparingthemanganesecontentbetweenthechilledmetalsamplesandthemultilayerweldmetalsamples,GrongandChristensen[18]believedthatthelossesofMnaremainlyduetovaporizationduringextremelyhightemperaturearcplasma(2400oC).Intheirconclusion,theauthorssummarizedtheresultsbydifferentlocationintheweldingprocess,i.e.electrodetip,arcplasma,hotpartoftheweldpool,andthecoolingpartoftheweldpool.Fortheelectrodetip,thetemperaturewasstatedtobeabout1600oCandcarbonmonoxideandmanganesesilicateslagwereformed.Carbonwaslostmainlyinthisstageaswell.AcertainamountofsiliconwaslostasaresultofSiOformationinthefumes.Forthearcplasma,withatemperatureofabout2400oC,theprecipitatedmanganeseslagintheformerstageredissolvesinthemetaluponheating.FurtherabsorptionofoxygenwillbepreventedbyFeandMnvapours.Fumesareformedbymetalvapourreactingwithoxygen.

  • 26

    Forthehotpartoftheweldpool,thetemperaturerangeis2000oCto1800oC.Oxygenis,toalargeextent,dissolvedintheweldpoolatthearcrootresultingfromtheinteractionwiththeplasmagas.Manganesesilicateslagformationtakesplacesimultaneously,preventingtheoxygenconcentrationfromexceedingacertainlimit.Aseparationofmicroslagproceedscontinuouslyundertheexistingturbulentconditions.ForCO2welding,aCOgasbarrierabovethemetalsurface,fromthedecompositionofCO2,preventstheabsorptionofoxygen.Inthecoolingpartoftheweldpool,thetemperatureisbelow1800oC.Siliconandmanganesereactfurtherwithdissolvedoxygenuponcooling.Themicroslagseparationwillbehighlyunfavourableduetoanearlystagnantbath.Forthisreason,theanalyticaloxygencontentishighlyunpredictable,butisneverthelesscloselylinkedtothesiliconandmanganeseconcentrationsintheweldmetal.

  • 27

    5 Experimentaltechniques5.1 Steelandconsumablematerials

    Intheexperimentalworkofthisthesis,Domex355wasusedastheparentmaterialandESABOKAutrod12.51wasusedastheweldingwire.Domex355isahotrolledcoldformingsteelwhichmeetssteelS355MCinEN101492.Itcanbeusedinapplicationssuchastruckchassis,cranesandearthmovingmachines.ThechemicalcompositionofDomex355isshowninTable10anditsmechanicalpropertiesinTable11[19].Table10ChemicalcompositionofDomex355MC(Adaptedfrom[19])

    C Si Mn P S Al Nb V TiBasemetal:Domex355MC 0.10 0.03 1.50 0.025 0.010 0.015 0.09 0.200.15

    Table11MechanicalpropertiesofDomex355MC(Adaptedfrom[19])

    YieldstrengthReff(Nmm)

    minTensilestrengthRm(Nmm)minmax

    Elongationonfailure

  • 5.3 SeInexwguththanthAlcoch

    Fig

    5.4 SE

    Aresuguprshresc

    ealedchaordertocrexperimentsuithplasticinuninsidetheheairfromthhebottomofnoxygenanahechamber.so,abrackeonnectionfrohamberissho

    gure19Schem

    EMandEscanningeleesolutionmicuchinvestigaun.ThehighroducesignahowninFiguesultinginancatterelectro

    ambereateanonoxusingArshieawaythatp

    echamber.AhechamberwfthechambealysermountInthepureAtwassetonomtheworkowninFigur

    maticfigureo

    DSectronmicrocrostructuretions,aneleenergyelectls,e.g.seconre20.Thesenimageofthon(BSE)imag

    xidizingenvildinggas.ThpermitsfreeAgasoutletwwhilefillinger.ThecontetedontheroArwelding,tthebottom

    kpiecebacktre19.

    G

    ofexperiment

    scope(SEM)imageswithectronbeamtronsinteracndaryelectrosignalscanbesamplesugearethem

    ronment,ashechamberimovementswaspresetainwithshielentoftheoxobotarmatatheoxygencofthechamtotheweldin

    Welding torch

    Gas outlet

    tsetup

    )isamateriahthehelpofisacceleratectwiththeatons,backscabedetectedrface.These

    mostcommon

    sealedchamsaweldedssoftheroboatthetopofdinggasthroygeninsidetaheightof6contentwasmberinorderngpowerso

    alsinvestigatahighenergedusingahitomsatornatteredelectandreceiveecondaryelenimagemod

    berwasusetainlesssteetarmwhichthesealedcoughthegasthechamber600800mmkeptintherrtoimproveurce.Theset

    60

    0-8

    00

    mm

    tiontoolthatgyscanningeghvoltagefiearthesamptronsandchdusinganelectron(SE)imdesinSEM.

    dfortheweelstructuresholdsthewchambertoessupplynozzrwasmeasuabovethebrangeof255thegroundtupofthese

    Gas Sup

    Cham

    Plastic co

    Oxygen analyzer

    Workpie

    tcanproducelectronbeaieldintheelplesurfaceaaracteristicXlectrondetemageandba

    28

    eldingsealedeldingexhaustzleonredwithottomof50ppm.

    ealed

    ply

    mber

    over

    ece

    cehigham.ForectronandXray,asctor,ck

  • 29

    Figure20SignalsproducedinSEMThesecondaryelectronshavelowenergyduetotheinelasticinteractionwiththeatomsinthesample.Duetotheircharacteristics,thesecondaryelectronscomefromanareaveryneartothesamplesurface.Also,theedgesoftheobjectstendtogivemoresecondaryelectrons.Therefore,SEimagescanusuallygiveveryhighresolutionsurfaceimagesandcanalsobeusedtoproduceathreedimensionalimageofthesamplesurface.BSEsarebeamelectronsthatarereflectedfromthesamplebyelasticscattering.TheBSEshavehighenergyandcangeneratealargeinteractionvolumebeneaththespecimensurface.Sincetheheavyelementscangivemorebackscatteredelectrons,BSEsareusedtodetectcontrastbetweenareaswithdifferentchemicalcompositions.ThespatialresolutionoftheSEMdependsonthesizeoftheelectronspotandthesizeoftheinteractionvolume,asshowninFigure21.ThelargerelectronspotandgreaterinteractionvolumegivealowerresolutionoftheSEM.Sincetheinteractionvolumeisdependentontheenergyofthebeam,lowerbeamenergyissuggestedwhenperformingimageanalysisatthespecimensurface.

    Figure21ElectroninteractionvolumeTheSEMusedinthisstudywasaJSM6490LVfromJOEL,whichhasaresolutionof3.0nm.Thelowvacuummodewasusedtoinvestigatetheinfluenceofmountingmaterialinthefirst

  • 30

    paper.Thehighvacuummodewasusedintheworkpresentedinthesecondandthirdpapersduetotheutilizationofconductivemountingmaterials.Standardautomatedfeatureswerealsousedintheabovementionedexperiments,includingAutoFocus,AutoGun(saturation,biasandalignment),andautomaticcontrastandbrightness.Energydispersivespectroscopy(EDS)isananalyticaltechniqueusedfortheelementalanalysisorchemicalcharacterizationofamaterial.Asmentionedabove,acharacteristicXraycanbeemittedwhenthehighenergyelectronbeamhitsthesample.ThenumberandenergyoftheXraysemittedfromaspecimencanbemeasuredusinganenergydispersivespectrometer.ByanalysingtheuniqueXray,EDSallowstheidentificationofdifferentelementsinthesample.TheaccuracyoftheEDSspectrumcanbeaffectedbymanyfactors.WindowsinfrontofthedetectorcanabsorbthelowenergyXray(i.e.EDSdetectorscannotdetectelementswithanatomicnumberoflessthan4,i.e.H,He,andLi).Also,manyelementswillhaveoverlappingpeaks(e.g.TiKandVK,MnKandFeK).Theaccuracyofthespectrumcanalsobeaffectedbythenatureofthesample.Xrayscanbegeneratedbyanyatominthesamplethatissufficientlyexcitedbytheincomingbeam.TheseXraysareemittedinanydirection,andsotheymaynotallescapethesample.ThelikelihoodofanXrayescapingthespecimen,andthusbeingdetectedandmeasured,dependsontheenergyoftheXrayandtheamountanddensityofthematerialithastopassthrough.Thiscanresultinreducedaccuracyinthecaseofinhomogeneousandroughsamples.TwotypesofSEMandEDSsystemwereusedinthisstudy.IntheexperimentofpaperI,theSEMandEDSsystemisahighresolutionfieldemissiontypeLEO1550GeminiequippedwithanOxfordEDSsystem.IntheexperimentofpaperIIandpaperIII,thesystemisaBrukerQuantax800system.ThedetectorisanXflash4010witharesolutionof127eVfortheMnKpeak.

  • 31

    6 SummaryofappendedpapersThreepapershavebeenorwillbepublishedregardingtheobjectivesofthisthesis: Classificationofcoldlaps, Characterizationofcoldlapinterface, Investigationoftheinfluencingfactorsoncoldlapformation.Thischapterpresentsabriefsummaryofthepaperswhichhavebeenreformattedforuniformityandincreasedreadability.

    6.1 PaperIThemainpurposeofthispaperistoclassifycoldlaps.Secondly,theinterfaceofthespatter/basemetalissupposedtobecharacterized.Atandemweldingexperimentwasperformedusing92Ar8CO2shieldinggas,Domex355MCbasemetal,andESABOKAutrod12.51wire.Avisualtest(VT)wasfirstperformedontheweldedspecimens.Thespecimenswerecutandpolishedtopreparefortheconventionalmetallographicsamples.Thesampleswereevaluatedbylightopticalmicroscopyandscanningelectronmicroscope(SEM).Threetypesofcoldlapswereobserved,i.e.spattercoldlap,overlapcoldlapandspatteroverlapcoldlap.Spattercoldlap,namedastypeI,isformedwhenaspatterissituatedclosetotheweldtoesothatthespatterisfusedandpartiallyincludedintheweld.Itisworthpointingoutherethatthecoldlapsfromspattersstatedin[12]canalsoberegardedasaspecificsituationinwhichthespatterisfullyembeddedintheweldandisinvisible[12].Inthiscase,itcanbecharacterizedbyL

  • 32

    findcoldlapsalongtheentireweldtoe(inthelongitudinaldirectionoftheweld),whichareusuallycausedbythepoorsurfaceconditionofthebasemetalandimproperweldingparameters.TypeIIIisreferredtoasspatteroverlapcoldlap,andcanberegardedasacombinationoftypeIandtypeII.Thisusuallyappearsinawormlikeshapeandcanbeseveralmillimetresawayfromtheweldtoe.Microscopyanalysisofthespatter/basemetalinterfacehasrevealedalackoffusionconsistingofbothvoidsandoxides.ThemainoxidesdetectedwereMnSioxides,whichcanbesymbolisedwiththegeneralformula(MnSi)Onwherenvariesfrom0.3to0.5.

    6.2 PaperIIThemainpurposeofthispaperistoinvestigatetheinfluenceoftheMnSioxidesobservedinpaperIoncoldlaps.Secondly,anyotherinfluencingfactorsoncoldlapswerestudied.AseriesoftandemarcweldingexperimentswasperformedinasealedchamberfilledupeitherwithpureargonorwithpureCO2withthepurposeofcreatingoxidizingornonoxidizingweldingenvironments,respectively,andstudyingtheinfluenceoftheshieldinggasontheformationofcoldlaps.Twosurfaceconditions,i.e.anironsandblastedsurfaceandaburrgrindingsurface,werepreparedforthebasemetal.Theweldedspecimenswerevisuallyexaminedusingthenakedeye.Spatterswerealsoevaluatedintermsofsizeanddistributionontheweldedspecimens.InthepureArweldingprocess,smallerspattersweregeneratedandconcentratedinasmallareaclosetotheweldtoe,whereasthespattersinpureCO2weldingwerelargerinsizeandmoreevenlydistributed.Allthreetypesofcoldlapswereidentifiedandanalysed.Theinterfaceofdifferenttypesofcoldlapswasexaminedusingalightopticalmicroscope,SEMandEDS.VoidsandMnSioxideswerefoundinthecoldlapinterface.TheresultsrevealedthattheMnSioxideshavethemostsignificantinfluenceonoverlapcoldlapoccurrence.Itwasalsoobservedthattheblastedsurfacecanenhancethelackoffusionbyeasingtheairentrapmentintheinterface.ByevaluatingthespattersurfaceandbasemetalsurfaceafterweldingregardingMnSioxides,itcouldbeconcludedthattheMnSioxidesincoldlapscamemainlyfromtheoxidizationofdropletsbeforetheyreachedtheweldpool.

    6.3 PaperIIIThemainpurposeofthispaperistorevealthefactor(s)behindthecoldlapsfoundinthepureArweldinginpaperII,bystudyingthespatter/basemetalinterface.Thespatter/basemetalinterfacewasinvestigatedfortwodifferentweldingconditions,i.e.inpureArandinpureCO2.ThecontributionofMnSioxideswasconfirmedforthelackoffusionformationatthespatter/basemetalinterface.Theratiobetweenthelengthoflackoffusionattheinterfaceandtheentirelengthofthespatter/basemetalinterface(RLoF)wasintroducedinthisinvestigation.StudyingtheRLoFagainstspatterdistanceandspatterdiameterrevealedthattheRLoFincreasedabruptlyuntilthespatterdiameterreachedacriticalvalue(approx.1mm)asthespatterdiameterdecreasedfromitshighestvalue.Forlowerspatterdiametervaluesthanthecriticalvalue(i.e.under1mm),theRLoFremainedconstant(100%)withthecontinuousdecrementofspatterdiameter.AdirectproportionwasrevealedbetweenspatterdistanceandRLoF.However,theheat/temperatureofthespatterisinfluencedbyboththe

  • 33

    spatterdiameterandthespatterdistanceregardingthefusionbetweenspatterandbasemetal.Therefore,theheat/temperaturecanberegardedastheotherimportantinfluencefactorforlackoffusionformation.

  • 34

  • 35

    7 ConclusionsandfutureworkThroughtheexperimentalstudyofcoldlaps,threetypesofcoldlapswereidentified,i.e.overlapoldlap,spattercoldlap,andspatteroverlapcoldlap.Foralltypesofcoldlaps,theinterfacewascharacterizedbyvoidsandoxides.Theoxidesdependedontheweldingconsumables.Forthematerialsappliedinthisstudy,manganesesiliconoxideswereshowntohavesignificantinfluenceoncoldlapoccurrence.Theinfluenceoftemperatureoncoldlapswasshownbytheindicatorsofspatterdiameteranddistancefromspattertotheweld.Inthefuturework,thetemperatureinfluenceoftheweldingworkpieceoncoldlapsshouldbeinvestigated.Also,thebehaviouroftheweldingpoolcanbestudiedwithhelpofhighspeedimagingtechnology.Regardingtheinfluenceofoxidesoncoldlaps,newconsumablesofGMAW,whichcanavoidoxidesinweldingprocess,areofinteresttostudy.

  • 36

  • 37

    8 References1. L.Lopez.Martinez,P.Korsgren.CharacterizationofInitialDefectDistributionandWeld

    GeometryinWeldedFatigueTestSpecimens.In,Fatigueunderspectrumloadingandincorrosiveenvironments.Denmark:EMAS;1993

    2. J.Samuelsson.Coldlapsandweldqualityacceptancelimits.In:J.Samuelssoned,DesignandAnalysisofWeldedHighStrengthSteelStructures.Stockholm,Sweden:EMAS;2002:151161

    3. Z.Barsoum,B.Jonsson.FatigueassessmentandLEFManalysisofcruciformjointsfabricatedwithdifferentweldingprocesses.Weldingintheworld2008;52:93105

    4. M.Lundin,L.Lopez.Martinez,J.Hedegrd,K.Weman.HighproductiveMAGweldingFatiguepropertiesofweldments.In,WeldedHighStrengthSteelStructures.Stockholm,Sweden:EMAS;1997

    5. L.Holst,M.Lundin,J.Hedegrd,K.Weman.HighproductiveMAGWeldingWeldtoedefectsAnewdetectionmethod.In,WeldedHighStrengthSteelStructures.Stockholm,Sweden:EMAS;1997

    6. K.Weman,M.Lundin,J.Hedegrd.HighproductiveMAGweldingofvehiclecomponents.In,WeldedHighStrengthSteelStructures.Stockholm,Sweden:EMAS;1997

    7. Volvoweldqualitystandard.In,STD1810004.Sweden;20088. K.Weman.WeldingProcessHandbook:CRCPrssInc(5Aug2003);20039. R.L.O'Brien.WELDINGPROCESS.Eighthed.MIAMI:AMERICANWELDINGSOCIETY;199510. PritchardD.Soldering,Brazing&WeldingAManualOfTechniques:TheCrowoodPress;200111. L.P.Connor.WELDINGTECHNOLOGY.Eighthed.Miami:AMERICANWELDINGSOCIETY;198712. M.FarajianSohi,N.Jrvstrt.AFractographicalInvestigationofWeldToeImperfectionsin

    TandemGasMetalArcWelding.Steelresearchinternational2006;77(2006)No.12:88989513. J.Hedegrd,L.Lopez.Martinez,N.Moradashkafti,H.Trogen.Theinfluenceofwelding

    parametersonthesizeanddistributionofwelddefectsforvariousweldmethods.In,VTTSymposium156:FatigueDesign1995.Helsinki:VTTOffsetprintEspoo1995;1995

    14. M.FarajianSohi,N.Jrvstrt,M.Thuvander.EffectofWeldingParametersonFormationofToeImperfectionsinTandemGasMetalArcWeldingIn,7thInternationalConferenceonTrendsinWeldingResearch.Geogia,USA:ASM;2005

    15. L.Lopez.Martinez,A.F.Blom,J.Samuelsson.WelddefectsbeforeandafterpostweldtreatmentforMAGandhighproductivityMAGwelding.In,WeldedHighStrengthSteelStructures.Stockholm,Sweden:EMAS;1997

    16. G.E.Linnert.WeldingMetallurgy.HiltonHeadIsland,SouthCarolina:AWS;199417. E.T.Turkdogan.Deoxidationofsteel.In,ChemMetallofIronandSteel.Sheffield,U.K.:The

    IronandSteelInstitution;1973:15317018. O.Grong,N.Christensen.FactorsControllingMIGWeldMetalChemistry.Scandinavian

    JournalofMetallurgy1983;12:15516519. SSAB.Domex355MCDatablad.In.Brolnge:SSAB;2011

  • 38

  • 39

    9 Appendedpapers

  • 40