extracting intra-domain topology from mrinfo probing

34
1 Extracting Intra-Domain Topology from mrinfo Probing JJ Pansiot (Lsiit, UdS) B Donnet, P Mérindol, O Bonaventure (INL, Louvain)

Upload: flint

Post on 11-Jan-2016

36 views

Category:

Documents


5 download

DESCRIPTION

Extracting Intra-Domain Topology from mrinfo Probing. JJ Pansiot (Lsiit, UdS) B Donnet, P Mérindol, O Bonaventure (INL, Louvain). Agenda. Background Part 1: mrinfo Context Probing Methodology Dataset Part 2: Delimiting AS Borders Router-2-AS Mapping Evaluation - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Extracting Intra-Domain Topology from  mrinfo  Probing

1

Extracting Intra-Domain Topology from mrinfo Probing

JJ Pansiot (Lsiit, UdS)B Donnet, P Mérindol, O Bonaventure (INL, Louvain)

Page 2: Extracting Intra-Domain Topology from  mrinfo  Probing

2

Agenda Background Part 1: mrinfo

Context Probing Methodology Dataset

Part 2: Delimiting AS Borders Router-2-AS Mapping Evaluation

Part 3: Intra-Domain Study Importance of Layer-2

Conclusion

Page 3: Extracting Intra-Domain Topology from  mrinfo  Probing

3

Background Internet graph seen either as

1.a graph of routers Constructed for example with traceroute

2.a graph of domains (AS) Constructed for example from BGP tables (routeviews)

3.or both To study intra-domain graphs To study interconnection of domains

(our paper at IMC)

- need a way to overlay the AS graph on top of the router graph

Page 4: Extracting Intra-Domain Topology from  mrinfo  Probing

4

Part 1: mrinfo Graph of routers

Usually obtained from traceroute tools Difficulty to map IP adresses to routers

Aliasing

Need many sources and targets To increase exhaustivity in edge discovery

Many artifacts Eg load balancers, changes in routing

=> try another way to get information: mrinfo

Page 5: Extracting Intra-Domain Topology from  mrinfo  Probing

5

Probing

Topology discovery using mrinfo Uses IGMP message

ASK_NEIGHBORS NEIGHBORS_REPLY

Output All (multicast) interfaces of a given router

All (multicast) neighbor routers

mrinfo applied recursively• mrinfo-rec

Page 6: Extracting Intra-Domain Topology from  mrinfo  Probing

6

Probing

switch

Page 8: Extracting Intra-Domain Topology from  mrinfo  Probing

8

Data set: routers

Page 9: Extracting Intra-Domain Topology from  mrinfo  Probing

9

Data set: interfaces

Page 10: Extracting Intra-Domain Topology from  mrinfo  Probing

10

Part 2: Delimiting AS Borders

Page 11: Extracting Intra-Domain Topology from  mrinfo  Probing

11

IP to AS

First step : IP to AS mapping Obtained from routeviews data Allows to get a mapping on a given day

Discard some rare cases Such as MOA (Multiple Origin AS) Unknown prefixes

AS identified by an ASN (AS Number)

Page 12: Extracting Intra-Domain Topology from  mrinfo  Probing

12

Example routeviews prefix Next Hop AS path* 130.79.0.0 217.75.96.60 0 0 16150 1239 5511 2200

2259 i* 209.161.175.4 0 14608 19029 3356 5511

2200 2259 i* 129.250.0.85 11 0 2914 5511 2200 2259 i* 129.250.0.11 18 0 2914 5511 2200 2259 i* 216.140.8.59 2741 0 6395 5511 2200 2259 i* 216.140.2.59 3800 0 6395 5511 2200 2259 i* 208.186.154.35 0 0 5650 1239 5511 2200

2259 i…* 8.7.83.0/24 217.75.96.60 0 0 16150 6939 5650 12284

32808 32808 i

* 209.161.175.4 0 14608 19029 5650 12284 32808 32808 i

* 216.140.2.59 0 0 6395 5650 12284 32808 32808 i

* 216.140.8.59 20 0 6395 5650 12284 32808 32808 i

Page 13: Extracting Intra-Domain Topology from  mrinfo  Probing

13

Router to AS Mapping

Problem Graph of routers

Each router has Many IP addresses (interfaces)

IP => prefix => ASN IP addresses may belong to different ASes

For each router decide of the « correct » AS

Page 14: Extracting Intra-Domain Topology from  mrinfo  Probing

14

Router-2-AS Mapping

This?Or this?

AS2

Page 15: Extracting Intra-Domain Topology from  mrinfo  Probing

15

Router-2-AS Mapping Idea

Apply a series of rules At each step a router r

Has an ASN, Asn(r) An a confidence level c(r), 0 ≤ c(r) ≤ 1

A rule applied at a given step, if c(r) < 1

Increase the confidence level And possibly changes ASN(r)

While remaining consistent with ASN already assigned

Once c(r) = 1, ASN(r) unchanged => most reliable rules first

Page 16: Extracting Intra-Domain Topology from  mrinfo  Probing

16

Main rule : election elec

The first (main) rule is an election (elec) router r is given the most frequent AS among its addresses (with tie breaker), ASN1

Plus a confidence level c(r) From 1 (all addresses in the same AS) To 0 (same number of addresses in 2 distinct AS)c(r) = (frequency(ASN1)-frequency(ASN2)) / frequency(ASN1)

Page 17: Extracting Intra-Domain Topology from  mrinfo  Probing

17

Rule loopback lb

If a router has a loopback interface lb As deduced from the dns name

Eg loop0.ar3.LON2.gblx.net

Then ASN(r) = ASN(lb) with c(r) =1

Page 18: Extracting Intra-Domain Topology from  mrinfo  Probing

18

Rule neighbor N

N rule allows to propagate « ASN certainty »

Assumption On a P2P link the prefix of the link belongs to the AS of 1 of its end routers

If R1 is in AS1 (with c(R1) = 1) and link R1 - R2 is in AS2

then ASN(R2) = AS2 with c(R2) =1

Warning : not applied to multipoint links Eg IXP

Page 19: Extracting Intra-Domain Topology from  mrinfo  Probing

19

Rule lan

Idea : if router r has an interface to a leaf Lan in ASN (leaf) Then ASN(r) = ASN(leaf)

Page 20: Extracting Intra-Domain Topology from  mrinfo  Probing

20

Increase confidence and propagate

For remaining routers with 0 < c(r) < 1 By decreasing order of c(r)

set c(r) to 1 Propagate to neighbors (rule N)

Page 21: Extracting Intra-Domain Topology from  mrinfo  Probing

21

Rule c2p

Customer to provider rule c2p Assumption: the link between a provider AS and its customer AS is usually taken in the provider address space

Need to know the AS relationshipObtained from work by Caida

R1 R3 R2

AS1 AS1 AS2

C(R3)=0

AS1 AS2 AS2 customer of AS1

=> ASN(R3) = AS2AS2

C(R3) = 1

Page 22: Extracting Intra-Domain Topology from  mrinfo  Probing

22

Evaluation

Subset of original dataset 1 probing dataset/month 56 samples

Purpose Algorithm efficiency

Page 23: Extracting Intra-Domain Topology from  mrinfo  Probing

23

The power of election

Page 24: Extracting Intra-Domain Topology from  mrinfo  Probing

24

Other rules : refinement

90% solved after elec

95% solved after lan

0.45% unsolved at the end

Page 25: Extracting Intra-Domain Topology from  mrinfo  Probing

25

Closer look at steps

Page 26: Extracting Intra-Domain Topology from  mrinfo  Probing

26

Part 3: Preliminary topology analysis:

Some results

Page 27: Extracting Intra-Domain Topology from  mrinfo  Probing

27

Global switch/router ratio

Page 28: Extracting Intra-Domain Topology from  mrinfo  Probing

28

AS3356 Level3

Page 29: Extracting Intra-Domain Topology from  mrinfo  Probing

29

AS1239 Sprint

Page 30: Extracting Intra-Domain Topology from  mrinfo  Probing

30

Les CRS ne répondent plus

Page 31: Extracting Intra-Domain Topology from  mrinfo  Probing

31

Conclusion

New tool for collecting topological data mrinfo-rec

Intra-Domain topology delimitation

Importance of layer-2

Page 32: Extracting Intra-Domain Topology from  mrinfo  Probing

32

Conclusion Jean-Jacques Pansiot, Pascal Mérindol, Benoit Donnet, Olivier

Bonaventure. Extracting Intra-Domain Topology from mrinfo Probing. In Proc. PAM 2010, Zurich.

Pascal Mérindol, Virginie Van den Schrieck, Benoit Donnet, Olivier

Bonaventure, Jean-Jacques Pansiot. Quantifying ASes Multiconnectivity using Multicast Information. In Proc. IMC 2009.

Preliminary analysis:

Jean-Jacques Pansiot. Local and Dynamic Analysis of Internet Multicast Router Topology. Annals of telecommunications, 2007.

Data publicly available http://svnet.u-strasbg.fr/mrinfo/index.html (raw data) http://inl.info.ucl.ac.be/content/mrinfo (refined data)

Page 33: Extracting Intra-Domain Topology from  mrinfo  Probing

33

Output of mrinfo128.103.15.25 (bdrgw2-vl-15-core.net.harvard.edu) [version 12.2]: 192.5.66.204 -> 0.0.0.0 (local) [1/0/pim/querier/leaf] 128.103.15.25 -> 128.103.15.23 (hlkgw1-vl-15-core.net.harvard.edu) [1/0/pim] 128.103.15.25 -> 128.103.15.30 (perkgw1-vl-15-core.net.harvard.edu) [1/0/pim] 128.103.15.25 -> 128.103.15.26 (war10gw1-vl-15-core.net.harvard.edu) [1/0/pim] 128.103.15.25 -> 128.103.15.21 (oxgw3-vl-15-core.net.harvard.edu) [1/0/pim] 128.103.15.25 -> 128.103.15.16 (arsgw1-vl-15-core.net.harvard.edu) [1/0/pim] 128.103.15.25 -> 128.103.15.34 (bdrgw1-ge-3-1-core.net.harvard.edu) [1/0/pim] 128.103.15.25 -> 128.103.15.22 (lowgw1-vl-15-core.net.harvard.edu) [1/0/pim] 128.103.15.25 -> 128.103.15.15 (oxgw2-vl-15-core.net.harvard.edu) [1/0/pim] 128.103.15.25 -> 128.103.15.20 (nh175gw1-vl-15-core.net.harvard.edu) [1/0/pim] 128.103.15.25 -> 128.103.15.27 (st8gw1-vl-15-core.net.harvard.edu) [1/0/pim] 128.103.17.25 -> 128.103.17.23 (hlkgw1-vl-17-rcore.net.harvard.edu) [1/0/pim] 128.103.17.25 -> 128.103.17.30 (perkgw1-vl-17-rcore.net.harvard.edu) [1/0/pim] 128.103.17.25 -> 128.103.17.26 (war10gw1-vl-17-rcore.net.harvard.edu) [1/0/pim] 128.103.17.25 -> 128.103.17.21 (oxgw3-vl-17-rcore.net.harvard.edu) [1/0/pim] 128.103.17.25 -> 128.103.17.17 (cftgw1-vl-17-rcore.net.harvard.edu) [1/0/pim] 128.103.17.25 -> 128.103.17.16 (arsgw1-vl-17-rcore.net.harvard.edu) [1/0/pim] 128.103.17.25 -> 128.103.17.34 (bdrgw1-ge-4-1-rcore.net.harvard.edu) [1/0/pim] 128.103.17.25 -> 128.103.17.27 (st8gw1-vl-17-rcore.net.harvard.edu) [1/0/pim] 128.103.17.25 -> 128.103.17.22 (lowgw1-vl-17-rcore.net.harvard.edu) [1/0/pim] 128.103.17.25 -> 128.103.17.20 (nh175gw1-vl-17-rcore.net.harvard.edu) [1/0/pim] 128.103.252.145 -> 128.103.252.146 (lmagw1-vl-100-core.net.harvard.edu) [1/0/pim] 192.5.89.6 -> 192.5.89.5 (ATM10-400-OC12-GIGAPOPNE.nox.org) [1/0/pim/querier]

Page 34: Extracting Intra-Domain Topology from  mrinfo  Probing

34

After processingID7 ROUTEUR 128.103.15.25, AS1742 INTER bdrgw2-vl-15-core.net.harvard.edu LOCAL 192.5.66.204(AS1742) -> 0.0.0.0 SWITCH 128.103.15.25(AS1742) -> (AS1742) ID10001 AS1742 ( bdrgw2-vl-15-

core.net.harvard.edu -> ) SWITCH 128.103.17.25(AS1742) -> (AS1742) ID9656 AS1742 ( bdrgw2-vl-17-

rcore.net.harvard.edu -> ) GLOBAL 128.103.252.145(AS1742) -> 128.103.252.146 (AS1742) ID13 AS1742 ( bdrgw2-vl-

100-core.net.harvard.edu -> lmagw1-vl-100-core.net.harvard.edu) GLOBAL 192.5.89.6(AS10578) -> 192.5.89.5 (AS10578) ID3827 AS10578 ( HARVARD-

GIGAPOPNE.nox.org -> ATM10-400-OC12-GIGAPOPNE.nox.org)

ID10001 SWITCH 128.103.15.0/26, AS1742 INTRA () -> 128.103.15.16 (AS1742) ID1 AS1742 ( -> arsgw1-vl-15-core.net.harvard.edu) () -> 128.103.15.21 (AS1742) ID4 AS1742 ( -> oxgw3-vl-15-core.net.harvard.edu) () -> 128.103.15.20 (AS1742) ID3 AS1742 ( -> nh175gw1-vl-15-core.net.harvard.edu) () -> 128.103.15.30 (AS1742) ID10 AS1742 ( -> perkgw1-vl-15-core.net.harvard.edu) () -> 128.103.15.25 (AS1742) ID7 AS1742 ( -> bdrgw2-vl-15-core.net.harvard.edu) () -> 128.103.15.34 (AS1742) ID11 AS1742 ( -> bdrgw1-ge-3-1-core.net.harvard.edu) () -> 128.103.15.23 (AS1742) ID6 AS1742 ( -> hlkgw1-vl-15-core.net.harvard.edu) () -> 128.103.15.27 (AS1742) ID9 AS1742 ( -> st8gw1-vl-15-core.net.harvard.edu) () -> 128.103.15.15 (AS1742) ID0 AS1742 ( -> oxgw2-vl-15-core.net.harvard.edu) () -> 128.103.15.22 (AS1742) ID5 AS1742 ( -> lowgw1-vl-15-core.net.harvard.edu) () -> 128.103.15.26 (AS1742) ID8 AS1742 ( -> war10gw1-vl-15-core.net.harvard.edu)