farhat shel - univ-smb.frgarnier/expose_faraht.pdf · introduction abstract setting exponential...

63
Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult´ e des Sciences de Monastir 42e Congr` es National d’Analyse Num´ erique (CANUM 2014) Carry-le-Rouet Marseille 31 mars - 04 avril Farhat Shel Exponential stability of a networks of beams

Upload: others

Post on 21-Feb-2020

16 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Exponential stability of a networks of beams

Farhat Shel

Faculte des Sciences de Monastir

42e Congres National d’Analyse Numerique (CANUM 2014)Carry-le-Rouet Marseille

31 mars - 04 avril

Farhat Shel Exponential stability of a networks of beams

Page 2: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Farhat Shel Exponential stability of a networks of beams

Page 3: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Farhat Shel Exponential stability of a networks of beams

Page 4: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Model

elastic

thermoelastic

a1 e1

a3

a2a4

StabilityFarhat Shel Exponential stability of a networks of beams

Page 5: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Some definitions

A system is said to be

strongly stable if E (t) −→ 0,

polynomially stable if E (t) ≤ CE(0)tα ∀t > 0,

exponentially stable if E (t) ≤ CE (0)e−αt ∀t > 0.

Farhat Shel Exponential stability of a networks of beams

Page 6: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Some definitions

A system is said to be

strongly stable if E (t) −→ 0,

polynomially stable if E (t) ≤ CE(0)tα ∀t > 0,

exponentially stable if E (t) ≤ CE (0)e−αt ∀t > 0.

à Frequency Domain Method

We will write the system (S) as first order evolution equation on aHilbert space H, {

d

dty = Ay ,

y(0) = y0,(1)

Farhat Shel Exponential stability of a networks of beams

Page 7: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Some definitions

A system is said to be

strongly stable if E (t) −→ 0,

polynomially stable if E (t) ≤ CE(0)tα ∀t > 0,

exponentially stable if E (t) ≤ CE (0)e−αt ∀t > 0.

à Frequency Domain Method

We will write the system (S) as first order evolution equation on aHilbert space H, {

d

dty = Ay ,

y(0) = y0,(1)

Farhat Shel Exponential stability of a networks of beams

Page 8: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Some definitions

A system is said to be

strongly stable if E (t) −→ 0,

polynomially stable if E (t) ≤ CE(0)tα ∀t > 0,

exponentially stable if E (t) ≤ CE (0)e−αt ∀t > 0.

à Frequency Domain Method

We will write the system (S) as first order evolution equation on aHilbert space H, {

d

dty = Ay ,

y(0) = y0,(1)

Farhat Shel Exponential stability of a networks of beams

Page 9: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Stability

exponential stability ⇐⇒ S(t) = eAt is exponentially stable:

‖S(t)‖ ≤ Ce−wt ∀t > 0.

Farhat Shel Exponential stability of a networks of beams

Page 10: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Outline

1 Introduction

2 Abstract setting

3 Exponential stability

Farhat Shel Exponential stability of a networks of beams

Page 11: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Outline

1 Introduction

2 Abstract setting

3 Exponential stability

Farhat Shel Exponential stability of a networks of beams

Page 12: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Outline

1 Introduction

2 Abstract setting

3 Exponential stability

Farhat Shel Exponential stability of a networks of beams

Page 13: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

First examples

Transversal displacement in a string

u(x,t)0 ℓ{

utt(x , t)− uxx(x , t) = 0,u(0, t) = 0, u(`, t) = 0

Transversal displacement in a beam

x

u(x,t)

0 ℓ{utt(x , t) + uxxxx(x , t) = 0,u(0, t) = 0, ux(`, t) = 0, M(0, t) = 0, Q(`, t) = 0.

Farhat Shel Exponential stability of a networks of beams

Page 14: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

First examples

Transversal displacement in a string

u(x,t)0 ℓ

f(x,t): frictional force

{utt(x , t)− uxx(x , t)+f (x , t) = 0,u(0, t) = 0, u(`, t) = 0.

Transversal displacement in a beam

x

u(x,t)

0 ℓ{utt(x , t) + uxxxx(x , t) = 0,u(0, t) = 0, ux(`, t) = 0, M(0, t) = 0, Q(`, t) = 0.

Farhat Shel Exponential stability of a networks of beams

Page 15: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

First examples

Transversal displacement in a string

u(x,t)0 ℓ

f(x,t): frictional force

{utt(x , t)− uxx(x , t)+f (x , t) = 0,u(0, t) = 0, u(`, t) = 0.

Transversal displacement in a beam

x

u(x,t)

0 ℓ

feedback

{utt(x , t) + uxxxx(x , t) = 0,u(0, t) = 0, ux(`, t) = 0, M(0, t) = 0, Q(`, t) = ut(`, t).

Polynomial or exponential stability.

Farhat Shel Exponential stability of a networks of beams

Page 16: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

First examples

Transversal displacement in a string

u(x,t)0 ℓ

f(x,t): frictional force

{utt(x , t)− uxx(x , t)+f (x , t) = 0,u(0, t) = 0, u(`, t) = 0.

Transversal displacement in a beam

x

u(x,t)

0 ℓ

feedback

{utt(x , t) + uxxxx(x , t) = 0,u(0, t) = 0, ux(`, t) = 0, M(0, t) = 0, Q(`, t) = ut(`, t).

Polynomial or exponential stability.Farhat Shel Exponential stability of a networks of beams

Page 17: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

More general examples

star or tree of stringsAmmari, Jellouli, Khenissi, 2005. Valein, Zuazua, 2009.

star or tree of beamsAmmari, 2007. Wang, Guo, 2008. Han, Q. Xu, 2010 .

strings and beamsAmmari et al, 2012.

Farhat Shel Exponential stability of a networks of beams

Page 18: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

More general examples

star or tree of stringsAmmari, Jellouli, Khenissi, 2005. Valein, Zuazua, 2009.

star or tree of beamsAmmari, 2007. Wang, Guo, 2008. Han, Q. Xu, 2010 .

strings and beamsAmmari et al, 2012.

Farhat Shel Exponential stability of a networks of beams

Page 19: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Thermoelastic material

Thermoelastic string (Fourier’s law) Heat

utt − uxx + βθx = 0, in (0, `)× (0,∞),

θt + βuxt − κθxx = 0, in (0, `)× (0,∞),

Thermoelastic beam (Fourier’s law)

utt + uxxxx − γθxx = 0 in (0, `)× (0,+∞),

θt − θxx + γutxx = 0 in (0, `)× (0,+∞),

Exponential decay rate.

Farhat Shel Exponential stability of a networks of beams

Page 20: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Thermoelastic material

Thermoelastic string (Fourier’s law) Heat

utt − uxx + βθx = 0, in (0, `)× (0,∞),

θt + βuxt − κθxx = 0, in (0, `)× (0,∞),

Thermoelastic beam (Fourier’s law)

utt + uxxxx − γθxx = 0 in (0, `)× (0,+∞),

θt − θxx + γutxx = 0 in (0, `)× (0,+∞),

Exponential decay rate.

Farhat Shel Exponential stability of a networks of beams

Page 21: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Thermoelastic material

Thermoelastic string (Fourier’s law) Heat

utt − uxx + βθx = 0, in (0, `)× (0,∞),

θt + βuxt − κθxx = 0, in (0, `)× (0,∞),

Thermoelastic beam (Fourier’s law)

utt + uxxxx − γθxx = 0 in (0, `)× (0,+∞),

θt − θxx + γutxx = 0 in (0, `)× (0,+∞),

Exponential decay rate.

Farhat Shel Exponential stability of a networks of beams

Page 22: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Transmission problem

Elastic Thermoelastic

or

ElasticThermoelastic Thermoelastic

Exponential decay rate.

Marzocchi, Rivera, Nazo, 2002. Racke, Revera, Sare, 2008.Revera, Oquendo, 2001.

Farhat Shel Exponential stability of a networks of beams

Page 23: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Transmission problem

Elastic Thermoelastic

or

ElasticThermoelastic Thermoelastic

Exponential decay rate.

Marzocchi, Rivera, Nazo, 2002. Racke, Revera, Sare, 2008.Revera, Oquendo, 2001.

Farhat Shel Exponential stability of a networks of beams

Page 24: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Transmission problem

Elastic Thermoelastic

or

ElasticThermoelastic Thermoelastic

Exponential decay rate.

Marzocchi, Rivera, Nazo, 2002. Racke, Revera, Sare, 2008.

Revera, Oquendo, 2001.

Farhat Shel Exponential stability of a networks of beams

Page 25: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Transmission problem

Elastic Thermoelastic

or

ElasticThermoelastic Thermoelastic

Exponential decay rate.

Marzocchi, Rivera, Nazo, 2002. Racke, Revera, Sare, 2008.Revera, Oquendo, 2001.

Farhat Shel Exponential stability of a networks of beams

Page 26: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Model

elastic

thermoelastic

a1 e1

a3

a2a4

Farhat Shel Exponential stability of a networks of beams

Page 27: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Associeted system SNetwork G: of N edges e1, ..., eN and n vertices a1, ..., an.Each edge ej is a curve, parameterized by

πj : [0, `j ] −→ ej , xj 7−→ πj(xj).

Sometimes we identify ej with the interval (0, `j).Incidence matrix: D = (dkj)n×N :

dkj =

−1 if πj(`j) = ak ,1 if πj(0) = ak ,0 otherwise.

Vext : boundary (external) vertices, Vext 6= ∅.Vint : internal vertices,I (ak): indices of edges incident to ak .Ie , Ite , Ie(ak), Ite(ak).

Farhat Shel Exponential stability of a networks of beams

Page 28: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Equations

Every thermoelastic edge ej satisfies the following equations:

ujtt + ujxxxx − γjθjxx = 0 in (0, `j)× (0,+∞), (2)

θjt − θjxx + γjujtxx = 0 in (0, `j)× (0,+∞), (3)

with

uj(x , 0) = uj0(x), ujt(x , 0) = uj1(x), θj(x , 0) = θj0(x).

Every elastic edge ej satisfies the following equation:

ujtt − ujxxxx = 0 in (0, `j)× (0,+∞), (4)

withuj(x , 0) = uj0(x), ujt(x , 0) = uj1(x). (5)

Farhat Shel Exponential stability of a networks of beams

Page 29: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Boundary and transmission conditions,at ak ∈ Vext

uj(ak , t) = 0, j ∈ I (ak),

ujxx(ak , t) = 0, j ∈ I (ak),

at ak ∈ V ′ext ,

θj(ak , t) = 0, j ∈ Ite(ak),

at ak ∈ Vint ,

uj(ak , t) = ul(ak , t) j , l ∈ I (ak),

θj(ak , t) = θl(ak , t) j , l ∈ Ite(ak),

ujxx(ak , t) = ulxx(ak , t) j , l ∈ I (ak),

Farhat Shel Exponential stability of a networks of beams

Page 30: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

∑j∈I (ak )

dkjujx(ak , t) = 0,

∑j∈Ite(ak )

dkj(ujxxx(ak , t)− γjθjx(ak , t)

)+

∑j∈Ie(ak )

dkjujxxx(ak , t) = 0,

∑j∈Ite(ak )

dkj

(γju

jxt(ak , t)− θjx(ak , t)

)= 0.

Farhat Shel Exponential stability of a networks of beams

Page 31: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Dissipative system

Energy

E (t) =1

2

N∑j=1

∫ `j

0

(∣∣∣ujt∣∣∣2 +∣∣ujxx ∣∣2) dx +

1

2

∑j∈Ite

∫ `j

0

∣∣θj ∣∣2 dx .d

dt(E (t)) = −

∑j∈Ite

∫ `j

0

∣∣θjx ∣∣2 dx ≤ 0.

The system is dissipative

Exponential stability ?

Farhat Shel Exponential stability of a networks of beams

Page 32: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Dissipative system

Energy

E (t) =1

2

N∑j=1

∫ `j

0

(∣∣∣ujt∣∣∣2 +∣∣ujxx ∣∣2) dx +

1

2

∑j∈Ite

∫ `j

0

∣∣θj ∣∣2 dx .d

dt(E (t)) = −

∑j∈Ite

∫ `j

0

∣∣θjx ∣∣2 dx ≤ 0.

The system is dissipative

Exponential stability ?

Farhat Shel Exponential stability of a networks of beams

Page 33: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Notations

For j in Ie ,let γj = 0, Vj = {0}, V k

j = {0}, k = 1, 2.

For j in Ite ,let Vj = L2(0, `j) and V k

j = Hk(0, `j), k = 1, 2.

L2(G) =N∏i=1

L2(0, `j), V (G) =N∏j=1

Vj , Vk(G) =

N∏j=1

V kj

Farhat Shel Exponential stability of a networks of beams

Page 34: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Energy space

F (G) = {f = (f 1, ..., f N) ∈ H2(G) satisfying (6)-(8)},

f j(ak) = f l(ak) j , l ∈ I (ak), ak ∈ Vint , (6)

f j(ak) = 0 j ∈ I (ak), ak ∈ Vext , (7)∑j∈I (ak )

dkj∂x fj(ak) = 0 j ∈ I (ak), ak ∈ Vint . (8)

Energy space:H = F (G)× L2(G)× V (G),

〈y1, y2〉H =N∑j=1

(∫ `j

0∂xx f

j1 (x)∂xx f

j2 (x)dx +

∫ `j

0g j

1(x)g j2(x)dx

+

∫ `j

0hj1(x)hj2(x)dx

): Hilbert.

.Farhat Shel Exponential stability of a networks of beams

Page 35: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Operator

A : D(A) ⊆ H → H,

A =

0 A01 0

−A41 0 A2

γ

0 −A2γ A2

1

,

where Akγ = diag(γ1∂

kx , ..., γN∂

kx ), k ∈ N, and ∂0

x = I , and whosedomain is given by

D(A) ={

(u, v , θ) ∈(F (G) ∩ H4(G)

)× F (G)× V 2(G)

satisfying (9)-(14) below}

Farhat Shel Exponential stability of a networks of beams

Page 36: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Operator

∂2xu

j(ak) = ∂2xu

l(ak), j , l ∈ I (ak), ak ∈ Vint , (9)

∂2xu

j(ak) = 0, j ∈ I (ak), ak ∈ Vext , (10)

θj(ak) = θl(ak), j , l ∈ Ite(ak), ak ∈ Vint , (11)

θj(ak) = 0, j ∈ I (ak), ak ∈ V ′ext , (12)

∑j∈I (ak )

dkj(∂3xu

j(ak)− γj∂xθj(ak))

= 0, ak ∈ Vint , (13)

∑j∈I (ak )

dkj(γj∂xv

j(ak)− ∂xθj(ak))

= 0, ak ∈ Vint , (14)

Farhat Shel Exponential stability of a networks of beams

Page 37: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Evolution equation

Then the system (S) may be rewritten as the first order evolutionequation on H,

{d

dty(t) = Ay(t), t > 0,

y(0) = y0

(15)

where y = (u, ut , θ), y0 = (u0, u1, θ0).

Farhat Shel Exponential stability of a networks of beams

Page 38: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

A is a dissipative operator on H.

Moreover, by the Lax-Milgram’s lemma (complex version),

1 ∈ ρ(A): the resolvent set of A, and (I − A)−1 is compact.

Farhat Shel Exponential stability of a networks of beams

Page 39: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Lemma (Lumer-Phillips theorem)

B is the generator of a C0-semi-group of contraction if and only ifB is m-dissipative.

then

Theorem

The operotor A generates a C0-semigroup S(t) = eAt ofcontraction on H.

For an initial datum y0 ∈ H there exists a unique solution

y ∈ C ([0,+∞),H)

of the Cauchy problem (15).Moreover if y0 ∈ D(A), then

y ∈ C ([0,+∞),D(A)) ∩ C 1([0,+∞),H).

Farhat Shel Exponential stability of a networks of beams

Page 40: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Lemma (Lumer-Phillips theorem)

B is the generator of a C0-semi-group of contraction if and only ifB is m-dissipative.

then

Theorem

The operotor A generates a C0-semigroup S(t) = eAt ofcontraction on H.

For an initial datum y0 ∈ H there exists a unique solution

y ∈ C ([0,+∞),H)

of the Cauchy problem (15).

Moreover if y0 ∈ D(A), then

y ∈ C ([0,+∞),D(A)) ∩ C 1([0,+∞),H).

Farhat Shel Exponential stability of a networks of beams

Page 41: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Lemma (Lumer-Phillips theorem)

B is the generator of a C0-semi-group of contraction if and only ifB is m-dissipative.

then

Theorem

The operotor A generates a C0-semigroup S(t) = eAt ofcontraction on H.

For an initial datum y0 ∈ H there exists a unique solution

y ∈ C ([0,+∞),H)

of the Cauchy problem (15).Moreover if y0 ∈ D(A), then

y ∈ C ([0,+∞),D(A)) ∩ C 1([0,+∞),H).

Farhat Shel Exponential stability of a networks of beams

Page 42: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Exponential stability

elastic

thermoelastic

a1 e1

a3

a2a4

Farhat Shel Exponential stability of a networks of beams

Page 43: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Exponential stability

a1 e1a2

a4

Farhat Shel Exponential stability of a networks of beams

Page 44: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Exponential stability

a1 e1

a3

a2a4

Farhat Shel Exponential stability of a networks of beams

Page 45: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Exponential stability

a3

a2a4

Farhat Shel Exponential stability of a networks of beams

Page 46: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Exponential stability

a1 e1

a3

a2a4

Farhat Shel Exponential stability of a networks of beams

Page 47: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Exponential stability

Theorem

The semigroup S(t), generated by the operator A is exponentiallystable.

Farhat Shel Exponential stability of a networks of beams

Page 48: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Proof

We will use the frequency domain characterization due toGearhard Pruss and Huang,

Lemma [Gearhard-Pruss-Huang]

A C0-semigroup of contraction etB is exponentially stable if, andonly if,

iR = {iβ | β ∈ R} ⊆ ρ(B) (16)

andlim sup|β|→∞

∥∥(iβ − B)−1∥∥H <∞. (17)

© Note that, etB is strongly stable if, and only if, it satisfies (16).

Farhat Shel Exponential stability of a networks of beams

Page 49: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

I The operator A satisfies condition (16).

I The operator A satisfies condition (17).Suppose that (17) is not true, then there exists a sequence(βn) of real numbers, with |βn| −→ +∞ and a sequence ofvectors (yn) = (un, vn, θn) in D(A) with ‖yn‖H = 1, such that

‖(iβn −A)yn‖H −→ 0.

We prove that this condition yields the contradiction‖yn‖H −→ 0 as n −→ 0.

Farhat Shel Exponential stability of a networks of beams

Page 50: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

iβnujn − v jn = f jn −→ 0, in H2(0, `j), (18)

iβnvjn + ∂4

xujn − γj∂2

xθjn = g j

n −→ 0, in L2(0, `j), (19)

iβnθjn − ∂2

xθjn + γj∂

2xv

jn = hjn −→ 0, in L2(0, `j). (20)

Step 1 : we prove that θjn → 0 in H1(0, `j), ∂2xu

jn → 0 and v jn → 0

in L2(0, `j) for j in Ite .

Step 2 : we prove that ∂2xu

jn → 0 and v jn → 0 in L2(0, `j) for j in Ie .

Let j in {1, ...,N}. Combining (18) and (19) we obtain

−β2nu

jn + ∂4

xujn − γj∂2

xθjn = g j

n + iβnfjn . (21)

Farhat Shel Exponential stability of a networks of beams

Page 51: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

iβnujn − v jn = f jn −→ 0, in H2(0, `j), (18)

iβnvjn + ∂4

xujn − γj∂2

xθjn = g j

n −→ 0, in L2(0, `j), (19)

iβnθjn − ∂2

xθjn + γj∂

2xv

jn = hjn −→ 0, in L2(0, `j). (20)

Step 1 : we prove that θjn → 0 in H1(0, `j), ∂2xu

jn → 0 and v jn → 0

in L2(0, `j) for j in Ite .

Step 2 : we prove that ∂2xu

jn → 0 and v jn → 0 in L2(0, `j) for j in Ie .

Let j in {1, ...,N}. Combining (18) and (19) we obtain

−β2nu

jn + ∂4

xujn − γj∂2

xθjn = g j

n + iβnfjn . (21)

Farhat Shel Exponential stability of a networks of beams

Page 52: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

iβnujn − v jn = f jn −→ 0, in H2(0, `j), (18)

iβnvjn + ∂4

xujn − γj∂2

xθjn = g j

n −→ 0, in L2(0, `j), (19)

iβnθjn − ∂2

xθjn + γj∂

2xv

jn = hjn −→ 0, in L2(0, `j). (20)

Step 1 : we prove that θjn → 0 in H1(0, `j), ∂2xu

jn → 0 and v jn → 0

in L2(0, `j) for j in Ite .

Step 2 : we prove that ∂2xu

jn → 0 and v jn → 0 in L2(0, `j) for j in Ie .

Let j in {1, ...,N}. Combining (18) and (19) we obtain

−β2nu

jn + ∂4

xujn − γj∂2

xθjn = g j

n + iβnfjn . (21)

Farhat Shel Exponential stability of a networks of beams

Page 53: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Let q(x) = x or `j − x on [0,`j ] and taking the inner product in

L2(0, `j) of (21) with q∂xujn :

−1

2β2n

[∣∣ujn(x)∣∣2 q(x)

]`j0− 1

2

[∣∣∂2xu

jn(x)

∣∣2 q(x)]`j

0

+Re

([∂3xu

jn(x)q(x)∂xu

jn(x)

]`j0

)+[Re(iβnf

jn (x)q(x)ujn(x)

)]`j0

−γjRe([∂xθ

jn(x)q(x)∂xu

jn(x)

]`j0

)+

1

2

∫ `j

0β2n

∣∣ujn∣∣2 ∂xqdx+

3

2

∫ `j

0

∣∣∂2xu

jn

∣∣2 ∂xqdx + Re

([∂2xu

jn(x)∂xu

jn(x)∂xq(x)

]`j0

)−→ 0.

(22)

Farhat Shel Exponential stability of a networks of beams

Page 54: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Let q(x) = x or `j − x on [0,`j ] and taking the inner product in

L2(0, `j) of (21) with q∂xujn :

−1

2β2n

[∣∣ujn(x)∣∣2 q(x)

]`j0− 1

2

[∣∣∂2xu

jn(x)

∣∣2 q(x)]`j

0

+Re

([∂3xu

jn(x)q(x)∂xu

jn(x)

]`j0

)+[Re(iβnf

jn (x)q(x)ujn(x)

)]`j0

−γjRe([∂xθ

jn(x)q(x)∂xu

jn(x)

]`j0

)+

1

2

∫ `j

0β2n

∣∣ujn∣∣2 ∂xqdx+

3

2

∫ `j

0

∣∣∂2xu

jn

∣∣2 ∂xqdx + Re

([∂2xu

jn(x)∂xu

jn(x)∂xq(x)

]`j0

)−→ 0.

(22)

Farhat Shel Exponential stability of a networks of beams

Page 55: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

I If ej is thermoelastic, the last term in (22) converge to zero

and for every interior end ak of ej , β1/2n ∂xu

jn(ak), ∂

3xu

jn(ak )

β1/2n

,

βjnujn(ak) and ∂2

xujn(ak) tend to zero.

• Let j in {1, ...,N} and ak an inner node of ej

1

β1/2n

dkj∂3xu

jn(ak)+ε∂2

xujn(ak)+β

1/2n dkj∂xu

jn(ak)+εβnu

jn(ak)→ 0.

(23)with ε ∈ {−1, 1}.

Farhat Shel Exponential stability of a networks of beams

Page 56: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

I For every elastic edge ej attached to only thermoelastic edgesat an internal node ak we have,∫ `j

0

(∣∣∂2xu

jn(x)

∣∣2 + 3β2n

∣∣ujn(x)∣∣2) dx → 0.

and β1/2n ∂xu

jn(as), ∂

3xu

jn(as)

β1/2n

, βjnujn(as) and ∂2

xujn(as) tend to

zero. where as is the second end of ej .

I We iterate such procedure in each maximal subgraph ofelastic edges of G

Farhat Shel Exponential stability of a networks of beams

Page 57: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Comments

If we replace the continuity condition of θ at inner nodes,

θj(ak) = θl(ak) j , l ∈ Ite(ak), ak ∈ Vint

and the condition∑j∈Ite(ak )

dkj(γjuxt(ak , t)− θjx(ak , t)) = 0, ak ∈ Vint

by the following

θj(ak) = 0 j ∈ Ite(ak), ak ∈ Vint

and Kirchhoff’s law,∑j∈Ite(ak )

dkjθjx(ak , t) = 0, ak ∈ Vint

then we obtain the same results.Farhat Shel Exponential stability of a networks of beams

Page 58: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

Furthermore, If we consider the following boundary conditions

uj(ak , t) = 0, ujx(ak , t) = 0, j ∈ I (ak), ak ∈ Vext ,θj(ak , t) = 0, j ∈ I (ak), ak ∈ V ′ext ,

and for ak in Vint ,

uj(ak , t) = ul(ak , t) j , l ∈ I (ak),

θj(ak , t) = θl(ak , t) j , l ∈ Ite(ak),

ujx(ak , t) = ulx(ak , t) j , l ∈ I (ak),

Farhat Shel Exponential stability of a networks of beams

Page 59: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

IntroductionAbstract setting

Exponential stability

∑j∈Ite(ak )

dkj(ujxx(ak , t)− γjθj(ak , t)

)= 0,

∑j∈Ite(ak )

dkj(ujxxx(ak , t)− γjθjx(ak , t)

)+

∑j∈Ie(ak )

dkjujxxx(ak , t) = 0,

∑j∈Ite(ak )

dkjθjx(ak , t) = 0.

we can prove that the energy of the system decay exponentially tozero.

Farhat Shel Exponential stability of a networks of beams

Page 60: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

Perspectives

1 More general cases.

2 Infinite cardinal of edges or infinite lengths of edges.

Page 61: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

THANKS!

Farhat Shel Exponential stability of a networks of beams

Page 62: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

Farhat Shel Exponential stability of a networks of beams

Page 63: Farhat Shel - univ-smb.frgarnier/expose_Faraht.pdf · Introduction Abstract setting Exponential stability Exponential stability of a networks of beams Farhat Shel Facult e des Sciences

Heat

θt + γqx = 0

Fourier

q + κθx = 0 I θt − γκθxx = 0.

Cattaneo

τqt + q + κθx = 0 I τθtt + θt − γκθxx = 0.

Return1

Farhat Shel Exponential stability of a networks of beams