fast external denoising using pre-learned transformations

14
Fast external denoising using pre - learned transformations Shibin Parameswaran , Enming Luo, Charles-Alban Deledalle and Truong Nguyen NTIRE 2017 (in conjunction with CVPR 2017)

Upload: others

Post on 16-Jan-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Fast external denoising using pre-learned transformations

Shibin Parameswaran, Enming Luo, Charles-Alban Deledalle and Truong Nguyen

NTIRE 2017(in conjunction with CVPR 2017)

Image denoising

β€’ Goal: Estimate the underlying clean image from the observed noisy image

β€’ Patch-based Image denoising: Denoise an image patch-by-patch by leveraging information contained in similar patchesβ€’ Patch to be denoised = Query patch

β€’ Similar patches = Reference patches

𝒒 = 𝒑 + 𝜼 where 𝜼 ∈ 𝑡(𝟎, πˆπŸπ‘°π’)

𝒑 = 𝚽(𝒒; π’‘πŸ, π’‘πŸ, β€¦π’‘π’Œ)

π’’π’‘πŸ π’‘πŸ

π’‘πŸ‘π’‘π’Œ

𝚽: Some linear or non-linear function 𝒑: Estimate of clean patch 𝒑

2

Types of patch-based denoising

e.g. NLM, BM3D, LPG-PCADrawbacks: - Limited performance

[Chatterjee et al. `09, `11]- Rare patches

e.g. EPLL, eNLM, eBM3D, eLPG-PCADrawbacks:- Computational complexity- Marginal improvement

e.g. TID, tBM3D, tLPG-PCA, tEPLL- Smaller database can be used- Improved performanceDrawbacks:- Slower than internal methods- Database selection

External denoisingFrom an external database

Internal denoisingFrom the noisy image

Targeted denoisingFrom a domain specific database

3

: Noisy query patch : Reference patches : Rare patch

Related methods

β€’ Expected patch log-likelihood (EPLL) [Zoran et al. 2011]β€’ Learns patch priors using Gaussian Mixture Modelsβ€’ One of the most efficient external denoising algorithmsβ€’ Slow to converge to high quality solutions

β€’ Many iterations involving Mahalanobis distance calculationsβ€’ Heavily overlapped patches

β€’ Targeted Image Denoising (TID) [Luo et al. 2015]β€’ Powerful patch-specific denoising filtersβ€’ Converges to high quality solution in 2 iterationsβ€’ Computationally expensive

β€’ Per-patch filter design

𝒒

Training phase

𝒑

Eig( )

= π‘Όπœ¦π‘Όπ‘»π’’

𝒒

𝒑

k-NN

4

Existing external denoising methods are too slow

5

*Need faster methods*

Design of a fast denoising algorithm

6

β€’ Whole image denoising formulation

β€’ Solve by alternating between optimal 𝒙 and 𝒛𝑖‒ Fix {𝒛𝑖}:

β€’ Fix 𝒙 :

min𝒙, {𝒛𝑖}

1

2𝜎2𝒙 βˆ’ π’š 2

2 +𝛽

2

𝑖=1

𝑁

𝑷𝑖𝒙 βˆ’ 𝑨𝒛𝑖 22 + πœ† 𝒛𝑖 2

2

Data fidelity term Patch reconstruction term

Notations:

𝒙 : Clean image

π’š : Noisy image (given)

𝜎2 : Noise variance (given)

𝑷𝑖 : Patch extractor (𝑷𝑖𝒙 ∈ ℝ𝑑)

𝑨 : Dictionary of patches

{𝒛𝑖} : Coefficient vectors

𝛽, πœ† : Optimization parameters

𝒙 =1

𝜎2𝑰𝑁 + 𝛽

𝑖=1

𝑁

𝑷𝑖𝑇𝑷𝑖

βˆ’1

1

𝜎2π’š + 𝛽

𝑖=1

𝑁

𝑷𝑖𝑇𝑨𝒛𝑖

𝑨 𝒛𝑖 = 𝑼𝑺

𝑺+πœ†π‘°π’Œ

𝑼𝑇𝑷𝑖𝒙 where EIG 𝑨𝑨𝑇 = 𝑼, 𝑺

Choosing 𝑨 matrix

β€’ The entire patch database β€’ Bad choice with l2 norm

β€’ Dictionaries tailored to each 𝑷𝑖𝒙‒ Similar to TID algorithm [Luo et al. 2015]

β€’ Inefficient

β€’ Identify and tailor the dictionaries to a set of anchor patchesβ€’ Anchor patches {𝒂1, … , π’‚π‘˜} : Representatives of patch database

β€’ Build {𝑨1, … , π‘¨π‘˜} using m nearest neighbors of {𝒂1, … , π’‚π‘˜} as:

𝑷𝑖𝒙 βˆ’ 𝑨𝒛𝑖 22 + πœ† 𝒛𝑖 2

2

7

π‘¨π‘˜ = π‘¨π‘Ύπ‘˜πŸŽ.πŸ“ where π‘Ύπ‘˜ =

𝟏

𝜢diag π’˜πŸ, … ,π’˜π’Ž

and π’˜π’‹ = exp βˆ’π’‚π‘˜βˆ’π’‘π’‹

2

2𝒉2

Fast external denoising (FED) algorithm

k-means clusteringOr

Dictionary learning

Database of Patches

Anchor Patches{𝒂1, … , π’‚π‘˜}

m-Nearest neighbors

Anchor Dictionaries

{𝑨1𝑾10.5, … , π‘¨π‘˜π‘Ύπ‘˜

0.5}

𝑼1, 𝑺10.5 = svd(𝑨1𝑾1

0.5)

…

π‘Όπ‘˜ , π‘Ίπ‘˜0.5 = svd(π‘¨π‘˜π‘Ύπ‘˜

0.5)

𝒒

argmin𝑑

𝒒 βˆ’ 𝒂𝑑

𝜦 = 𝑺𝑑 + 𝜎2𝑰 βˆ’1 𝑺𝑑𝑼 = 𝑼𝒕

= π‘Όπœ¦π‘Όπ‘»π’’

Training phase (offline) 88

Datasets

β€’ Face image datasetβ€’ 100 images of distinct individuals

β€’ Test: 10 images

β€’ Validation: 10 images

β€’ Database: 80 images

β€’ Size: 90x65

β€’ License plate datasetβ€’ 110 images of license plates

cropped from Caltech Cars datasetβ€’ Test: 10 images

β€’ Validation: 10 images

β€’ Database: 90 images

β€’ Avg. size: 44x92

Query image

Database

Query image

Database9

10

Results on face dataset

Visual comparison of denoised face images

11

Visual results of license plate dataset

12Speed up: x0.07 x3.90 x3.91 x1.02 x693 x1.00

Conclusions

β€’ Introduced a fast external denoising algorithmβ€’ Orders of magnitude faster than TID

β€’ Faster and better than EPLL with targeted database

β€’ Speed can be further improved using approximate nearest neighbors

β€’ Limitationsβ€’ Database mismatch

13

2s 84s 9s321x481

Thank you