fast opt

40
A Global Carbon Cycle Data Assimilation System (CCDAS) to Infer Atmosphere- Biosphere CO2 Exchanges and Their Uncertainties Marko Scholze 1 , Peter Rayner 2 , Jens Kattge 3 , Wolfgang Knorr 3 , Thomas Kaminski 4 , Ralf Giering 4 & Heinrich Widmann 3 Tsukuba, 1 st Novembre 2004 3 FastOpt 4 2 1

Upload: colby-moon

Post on 03-Jan-2016

19 views

Category:

Documents


0 download

DESCRIPTION

A Global Carbon Cycle Data Assimilation System (CCDAS) to Infer Atmosphere- Biosphere CO2 Exchanges and Their Uncertainties. Marko Scholze 1 , Peter Rayner 2 , Jens Kattge 3 , Wolfgang Knorr 3 , Thomas Kaminski 4 , Ralf Giering 4 & Heinrich Widmann 3 Tsukuba, 1 st Novembre 2004. 3. 4. 1. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Fast Opt

A Global Carbon Cycle Data Assimilation System (CCDAS) to

Infer Atmosphere-Biosphere CO2 Exchanges and

Their Uncertainties

Marko Scholze1, Peter Rayner2, Jens Kattge3, Wolfgang Knorr3, Thomas Kaminski4, Ralf Giering4 & Heinrich

Widmann3

Tsukuba, 1st Novembre 20043

FastOpt421

Page 2: Fast Opt

Overview

• Motivation• Top-down vs. bottom-up approach• CCDAS set-up• Calculation and propagation of

uncertainties• Data fit• Global results• Conclusions and outlook

Page 3: Fast Opt

Motivation

after Joos, 1996

Page 4: Fast Opt

Motivation

• Where are the sources/sinks?

• Which are the important processes?

• How do they evolve?

Sketch of the global carbon cycle

Fluxes in Gt C yr-1, pools in Gt C,after Prentice et al., 2001.

Page 5: Fast Opt

„top-down“ vs. „bottom-up“

net CO2

flux at thesurface

Process Model

climate and other driving data

atmospheric inversion

(Transport Model)

atm. CO2 dataAdvantages:• Fluxes consistent with

atm. data• Estimation of uncertainties

Disadvantages:• No process information• Coarse resolution

Advantages:• Process understanding

-> prognostic modeling• High resolution

Disadvantages:• Global validation difficult • Parameter validity

Page 6: Fast Opt

Combined MethodCCDAS – Carbon Cycle Data Assimilation

System

CO2 stationconcentration

Biosphere Model:BETHY

Atmospheric Transport Model: TM2

Misfit to observations

Model parameter

Fluxes

Misfit 1 Forward Modeling:

Parameters –> Misfit

Inverse Modeling:

Parameter optimization

Page 7: Fast Opt

CCDAS set-up

Background fluxes:1. Fossil emissions (Marland et al., 2001 und Andres et al., 1996)2. Ocean CO2 (Takahashi et al., 1999 und Le Quéré et al., 2000)3. Land-use (Houghton et al., 1990)

Transport Model TM2 (Heimann, 1995)

eddy flux CO2 & H2O

Monte CarloParam. Inversion

full BETHY

Assimilated

params& uncert.

Pre-step

Page 8: Fast Opt

Terminology

GPP Gross primary productivity (photosynthesis)NPP Net primary productivity (plant growth)NEP Net ecosystem productivity (undisturbed C storage)NBP Net biome productivity (C storage)

Page 9: Fast Opt

BETHY(Biosphere Energy-Transfer-Hydrology

Scheme)

• GPP:C3 photosynthesis – Farquhar et al. (1980)C4 photosynthesis – Collatz et al. (1992)stomata – Knorr (1997)

• Plant respiration:maintenance resp. = f(Nleaf, T) – Farquhar, Ryan (1991)

growth resp. ~ NPP – Ryan (1991) • Soil respiration:

fast/slow pool resp., temperature (Q10 formulation) and soil moisture dependant

• Carbon balance:average NPP = average soil resp. (at each grid point)

<1: source>1: sink

t=1h

t=1h

t=1day

lat, lon = 2 deg

Page 10: Fast Opt

Pre-Step

Inversion of terrestrial ecosystem parameter values against eddy covariance measurements by Monte Carlo sampling

Page 11: Fast Opt

Case study: Loobos site, Netherlands

• temperate oceanic climate, coniferous forest• Halfhourly data of Eddy covariance measurements

from seven days during 1997 and 1998

• Diagnostics: NEE and LE

Page 12: Fast Opt

Estimated parameters and their standard deviations

a priori SD:

0.1

0.25

0.5

Page 13: Fast Opt

A Posteriori parameter PDF for Loobos site

ga,v: vegetation factor of atmospheric conductanceEvm: activation energy of Vm

Page 14: Fast Opt

Propagation of unctertainties to modelled fluxes

Page 15: Fast Opt

Carbon sequestration at the Loobos site during 1997 and 1998

Knorr & Kattge, 2004

Page 16: Fast Opt

CCDAS Step 2: Station network

41 stations from Globalview (2001), no gap-filling, monthly values

1979-1999.

Annual uncertainty values from Globalview (2001).

Page 17: Fast Opt

Calibration Step

Flow of information in CCDAS. Oval boxes represent the various quantities. Rectangular boxes denote mappings between these fields.

Page 18: Fast Opt

Prognostic Step

Oval boxes represent the various quantities. Rectangular boxes denote mappings between these fields.

Page 19: Fast Opt

Methodology

Minimize cost function such as (Bayesian form):

[ ] [ ] [ ] [ ]DpMDpMpp pppJ D

T

pT rrrrrrrrrrr

−−+−−= )()()( 2

1

2

1 10

10 0

-- C C

where- is a model mapping parameters to observable quantities- is a set of observations- error covariance matrixC

DrMr

pr

need of (adjoint of the model)Jpr∇

Page 20: Fast Opt

Calculation of uncertainties

• Error covariance of parameters

1

2

2−

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

=ji,

p pJ

rr

∂∂

C = inverse Hessian

T

pX p)p(X

p)p(X

rrr

rrr

rr

∂∂

∂∂

≈ CC

• Covariance (uncertainties) of prognostic quantities

Page 21: Fast Opt

Figure from Tarantola, 1987

Gradient Method

1st derivative (gradient) ofJ (p) to model parameters p:

yields direction of steepest descent.

pr

pr

ppJrr

∂∂− )(

cost function J (p) pr

Model parameter space (p)pr

2nd derivative (Hessian)of J (p):

yields curvature of J.Approximates covariance ofparameters.

pr

22 ppJrr

∂∂ )(

Page 22: Fast Opt

Data fit

Page 23: Fast Opt

Seasonal cycle

Barrow Niwot Ridge

observed seasonal cycle

optimised modeled seasonal cycle

Page 24: Fast Opt

Global Growth Rate

Calculated as:

observed growth rate

optimised modeled growth rate

Atmospheric CO2 growth rate

MLOSPOGLOB CCC 75.025.0 +=

Page 25: Fast Opt

Parameters I

• 3 PFT specific parameters (Jmax, Jmax/Vmax and )

• 18 global parameters• 57 parameters in all plus 1 initial value (offset)

Param InitialPredicted

Prior unc. (%) Unc. Reduction (%)

fautleafc-costQ10 (slow)

(fast)

0.41.251.51.5

0.241.271.351.62

2.50.57075

3917278

(TrEv)(TrDec) (TmpDec) (EvCn) (DecCn) (C4Gr) (Crop)

1.01.01.01.01.01.01.0

1.440.352.480.920.731.563.36

25252525252525

7895629591901

Page 26: Fast Opt

Parameters II

Relative Error Reduction

Page 27: Fast Opt

Some values of global fluxes

1980-2000 (prior)

1980-2000 1980-1990 1990-2000

GPPGrowth resp.Maint. resp.NPP

135.723.544.0468.18

134.822.3572.740.55

134.322.3172.1340.63

135.322.3973.2840.46

Fast soil resp.Slow soil resp.NEP

53.8314.46-0.11

27.410.692.453

27.610.712.318

27.2110.672.587

Value Gt C/yr

Page 28: Fast Opt

Carbon Balance

latitude N*from Valentini et al. (2000) and others

Euroflux (1-26) and othereddy covariance sites*

net carbon flux 1980-2000gC / (m2 year)

Page 29: Fast Opt

Uncertainty in net flux

Uncertainty in net carbon flux 1980-200gC / (m2 year)

Page 30: Fast Opt

Uncertainty in prior net flux

Uncertainty in net carbon flux from prior values 1980-2000gC / (m2 year)

Page 31: Fast Opt

NEP anomalies: global and tropical

global flux anomalies

tropical (20S to 20N) flux anomalies

Page 32: Fast Opt

IAV and processes

Major El Niño events

Major La Niña event

Post Pinatubo period

Page 33: Fast Opt

Interannual Variability I

Normalized CO2 flux and ENSO

Lag correlation(low-pass filtered)

ENSO and terr. biosph. CO2:Correlations seems strong with a maximum at ~4 months lag,for both El Niño and La Niña states.

Page 34: Fast Opt

Interannual Variabiliy II

Lagged correlation on grid-cell basis at 99% significance

correlation coefficient

Page 35: Fast Opt

Low-resolution CCDAS

• A fully functional low resolution version of CCDAS, BETHY runs on the TM2 grid (appr. 10° x 7.8°)

• 506 vegetation points compared to 8776 (high-res.)• About a factor of 20 faster than high-res. Version -> ideal

for developing, testing and debugging• On a global scale results are comparable (can be used

for pre-optimising)

Page 36: Fast Opt

Including the ocean • A 1 GtC/month pulse lasting for three months is used as

a basis function for the optimisation• Oceans are divided into the 11 TransCom-3 regions• That means: 11 regions * 12 months * 21 yr / 3 months =

924 additional parameters• Test case:

all 924 parameters have a prior of 0. (assuming that our background ocean flux is correct)

each pulse has an uncertainty of 0.1 GtC/month giving an annual uncertainty of ~2 GtC for the total ocean flux

Page 37: Fast Opt

Including the ocean

Seasonality at MLOGlobal land flux

Observations

Low-res incl. ocean basis functions Low resolution model

High resolution standard model

Page 38: Fast Opt

Conclusions

• Eddy covariance measurements can be used to assign prior values and uncertainty distribution for CCDAS step 2.

• CCDAS with 58 parameters can fit 20 years of CO2 concentration data; ~15 directions can be resolved

• Terr. biosphere response to climate fluctuations dominated by El Nino.

• A tool to test model with uncertain parameters and to deliver a posterior uncertainties on parameters and prognostics.

• With the ability of including ocean basis functions in the optimisation procedure CCDAS comprises a ‘normal’ atmospheric inversion.

Page 39: Fast Opt

Future

• Explore more parameter configurations.• Include missing processes (e.g. fire).• Upgrade transport model and extend data.• Include more data constraints (eddy fluxes, isotopes,

high frequency data, satellites) -> scaling issue.• Projections of prognostics and uncertainties into future.• Extend approach to a prognostic ocean carbon cycle

model.

Page 40: Fast Opt

For more information, please visit:http://www.ccdas.org