fazna promena u k -gd-sat problemu

29
Fazna promena u Fazna promena u k k -GD- -GD- SAT problemu SAT problemu Vesna Vesna Pavlović Pavlović p p rof rof . . Predrag Predrag Jani Jani čić čić

Upload: faith

Post on 11-Jan-2016

46 views

Category:

Documents


0 download

DESCRIPTION

Fazna promena u k -GD-SAT problemu. Vesna Pavlović p rof . Predrag Jani čić. SAT problem i fazna promena. L – broj klauza, N – broj promenljivih, s(N,L) – funkcija zadovoljivosti - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Fazna promena u  k -GD-SAT problemu

Fazna promena u Fazna promena u kk-GD-SAT -GD-SAT problemuproblemu

Vesna Vesna PavlovićPavlović

pprofrof.. Predrag Predrag JaniJaničićčić

Page 2: Fazna promena u  k -GD-SAT problemu

SAT problem i fazna promenaSAT problem i fazna promena

L – broj klauza, N – broj promenljivih, s(N,L) – funkcija zadovoljivosti

Eksperimenti sugerišu da postoji fazna promena izmedju zadovoljivosti i nezadovoljivosti kako količnik L/N raste

Tačka fazne promene c0:

Page 3: Fazna promena u  k -GD-SAT problemu

kk--SATSAT model model

Na slučajan način generiše se L klauza dužine k

Svaka klauza se dobija slučajnim odabirom k različitih promenljivih iz skupa od N promenljivih, negiranjem svake sa verovatnoćom 0.5

NP-kompletan problem za k > 2

Page 4: Fazna promena u  k -GD-SAT problemu

kk-GD--GD-SATSAT model model

Dužina klauze ima geometrijsku raspodelu

Klauze se generišu na osnovu sledeće stohastičke kontekstno-slobodne gramatike sa parametrom 0<p≤1

Verovatnoća generisanja klauze dužine l je p(1-p) l-k

Očekivanje dužine klauza u ovom modelu je k-1+1/p

Page 5: Fazna promena u  k -GD-SAT problemu

Gornje granice za taGornje granice za tačku fazne promenečku fazne promene

Ako fiksiramo valuaciju (jednu od 2N mogućih), verovatnoća da je proizvoljna k-GD-SAT klauza njom zadovoljena je:

Stoga je očekivanje broja zadovoljivih valuacija za formulu sa L klauza i N promenljivih:

Page 6: Fazna promena u  k -GD-SAT problemu

Gornje granice za taGornje granice za tačku fazne promenečku fazne promene

Postavljanjem uslova da je formula nezadovoljiva, tj. da je očekivani broj zadovoljivih valuacija o(1) dobijamo gornju granicu za tačku fazne promene:

Za k-SAT je pokazano da je gornja granica dobijena ovim metodom asimptotski bliska tački fazne promene, pa su naša očekivanja da tako nešto važi i za k-GD-SAT

Page 7: Fazna promena u  k -GD-SAT problemu

PokuPokušaj utvrđivanja donjih granica za tačku šaj utvrđivanja donjih granica za tačku fazne promene – pomoću sheme sa težinamafazne promene – pomoću sheme sa težinama

Pokazali smo da važi:

Cilj nam je da pokažemo da je rk asimptotski blisko rk*

X – slučajna promenljiva definisana za formulu Fk(n, r n) tako da X > 0 daje S

Ako za dato r važi: tada je: rk ≥ r

X – broj zadovoljavajućih valuacija za F,–

gde je 0 < < 1, H(,F) broj zadovoljenih literala u F valuacijom minus broj nezadovoljenih literala u F valuacijom , a S(F) je skup zadovoljavajućih valuacija za formulu F

Page 8: Fazna promena u  k -GD-SAT problemu

PokuPokušaj utvrđivanja donjih granica za tačku šaj utvrđivanja donjih granica za tačku fazne promene – pomoću sheme sa težinamafazne promene – pomoću sheme sa težinama

Page 9: Fazna promena u  k -GD-SAT problemu

Lema: Neka je realna, pozitivna, dva puta diferencijabilna funkcija na intervalu [0,1] i neka važi:

Definišemo g na [0,1] kao:

Ako postoji max (0,1) tako da je g(max) gmax > g() za svako max i g’’(max)<0 onda postoje konstante B, C > 0 tako da za dovoljno veliko n važi:

PokuPokušaj utvrđivanja donjih granica za tačku šaj utvrđivanja donjih granica za tačku fazne promene – pomoću sheme sa težinamafazne promene – pomoću sheme sa težinama

Page 10: Fazna promena u  k -GD-SAT problemu

Ako obeležimo sa:

Ono što je nama cilj jeste da nadjemo vrednost 0 za koju važi:

Nismo uspeli da nađemo vrednost za 0 kao funkciju parametra p za koju bi važila prethodna jednakost.

Za k-SAT ta vrednost je 0 = ½

Za k-GD-SAT vrednost za 0 nije konstantna za različite vrednosti za r i takođe zavisi od p

PokuPokušaj utvrđivanja donjih granica za tačku šaj utvrđivanja donjih granica za tačku fazne promene – pomoću sheme sa težinamafazne promene – pomoću sheme sa težinama

Page 11: Fazna promena u  k -GD-SAT problemu

Vrednosti za 0 numerički aproksimirane za različite vrednosti p (za k = 10 i r = 10, r = 50)

PokuPokušaj utvrđivanja donjih granica za tačku šaj utvrđivanja donjih granica za tačku fazne promene – pomoću sheme sa težinamafazne promene – pomoću sheme sa težinama

Page 12: Fazna promena u  k -GD-SAT problemu

Vrednosti za 0 numerički aproksimirane za različite vrednosti r (za k = 10 i p = 0.2, p = 0.5, p = 0.8)

PokuPokušaj utvrđivanja donjih granica za tačku šaj utvrđivanja donjih granica za tačku fazne promene – pomoću sheme sa težinamafazne promene – pomoću sheme sa težinama

Page 13: Fazna promena u  k -GD-SAT problemu

Formula F je NAE-zadovoljiva akko za valuaciju važi da svaka klauza ima barem jedan literal koji je zadovoljen datom valuacijom i barem jedan literal koji nije zadovoljen datom valuacijom– Ovo zapisujemo kao F

X – broj NAE-zadovoljivih valuacija za formulu F

PokuPokušaj utvrđivanja donjih granica za tačku šaj utvrđivanja donjih granica za tačku fazne promene – fazne promene – za NAE-k-GD-SATza NAE-k-GD-SAT

Page 14: Fazna promena u  k -GD-SAT problemu

PokuPokušaj utvrđivanja donjih granica za tačku šaj utvrđivanja donjih granica za tačku fazne promene – fazne promene – za NAE-k-GD-SATza NAE-k-GD-SAT

Kod k-SAT problema imali smo da važi E[X]2 = N(1/2)n, ali kod k-GD-SAT-a važi E[X]2 = N(1/2,p)n samo za p = 1 Vrednost za koju funkcija N(1/2,p) dostiže svoj pik zavisi od p p/2, 1-p/2

Page 15: Fazna promena u  k -GD-SAT problemu

Fk,p(n,l) – k-GD-SAT formula, sa parametrom p, sa l klauza nad n promenljivih

i-klauza – klauza dužine i Verovatnoća generisanja i-klauze je p (1-p) i-k

gk,p(n,r) – verovatnoća da je formula Fk,p(n,l) zadovoljiva

Teorema (Friedgut): Za svako k ≥ 2 postoji niz rk(n) tako da za svako > 0 važi:

Teorema: Za svaku vrednost p [0,1] i za svako k ≥ 2 postoji niz rk,p(n) tako da za svako > 0 važi:

OOštar prag za kštar prag za k-GD-SAT-GD-SAT

Page 16: Fazna promena u  k -GD-SAT problemu

Dvostruka modifikacija modela:– Ograničiti dužinu klauza– Definisati odgovarajući prostor verovatnoće

km-GD-SAT model– Fm

k,p(n,l) – za k i k+m i-klauza se bira sa verovatnoćom p(1-p)i-k

m+k+1-klauza se bira sa verovatnoćom (1-p)m+1

– gpm(n,r) – verovatnoća da je formula Fm

k,p(n,rn) zadovoljiva

kḿ-GD-SAT model– Sve klauze se biraju sa jednakom verovatnoćom, pravimo kopije

klauza

– Tmk,p(n,l) – ukupan broj klauza

– Hmk,p(n,l) – svaku od klauza biramo sa verovatnoćom l / Tm

k,p(n,l)

– Za k i k+m imaćemo q(p,i) kopija i-klauza, samo jedna kopija m+k+1-klauza, vrednosti q(p,i) biramo tako da je raspodela dužina klauza ista za formulu Fm

k,p(n,l) i Hmk,p(n,l)

OOštar prag za kštar prag za k-GD-SAT-GD-SAT

Page 17: Fazna promena u  k -GD-SAT problemu

Treba da važi:

Dobijamo:

Naš cilj je dokazati da:– 1. kḿ-GD-SAT ima oštri prag– 2. km-GD-SAT ima oštri prag– 3. k-GD-SAT ima oštri prag

OOštar prag za kštar prag za k-GD-SAT-GD-SAT

Page 18: Fazna promena u  k -GD-SAT problemu

Lema1: kḿ-GD-SAT ima oštri prag, tj. za svako p (0,1] postoji niz rp(n) tako da za svako > 0 važi:

Dokaz: Trebalo bi da ide slično dokazu za k-SAT.

Oštar prag za k-GD-SAT

Page 19: Fazna promena u  k -GD-SAT problemu

Lema2: km-GD-SAT model ima oštri prag, tj. za svako p (0,1] postoji niz rp(n) tako da za svako > 0 važi:

Dodatno, postoji konstanta M tako da za svako k, n i m važi da je

Dokaz: Imamo da za svako > 0 i za svako > 0 postoji n0

tako da za n > n0 važi:

Dokažimo da za svako > 0 i za svako > 0 postoji n0 tako da za n > n0 važi:

hk,pm,l – verovatnoća da je formula Hk,p

m,l

zadovoljiva pod uslovom da ima l klauza

Važi:

Oštar prag za k-GD-SAT

Page 20: Fazna promena u  k -GD-SAT problemu

Označimo sa P(i) verovatnoću da formula Hk,pm(n,rn) ima

i klauza; tada važi:

Tada zaTada za za dovoljno veliko n za dovoljno veliko n važi :važi :

Oštar prag za k-GD-SAT

Page 21: Fazna promena u  k -GD-SAT problemu

Oštar prag za k-GD-SAT

Page 22: Fazna promena u  k -GD-SAT problemu

Važi:

Obzirom da važi da je r n-1 < T/2, važi i P < ½ i time je dokaz završen.

Ovim postupkom smo mogli da pokažemo i da važi:

Greška? - moguće je da se nizovi r(n) ne poklapaju za ova dva modela

Drugi deo tvrdjenja sledi iz toga da je tačka fazne promene manja ili jednaka od

Oštar prag za k-GD-SAT

Page 23: Fazna promena u  k -GD-SAT problemu

Lema3: k-GD-SAT model ima oštri prag, tj. za svako p (0,1] postoji niz rp(n) tako da za svako > 0 važi:

Dokaz: - verovatnoća da je formula Fp(n,l) zadovoljivaako su joj sve klauze dužine manje ili jednake k+m

- verovatnoća da je formula Fp(n,l) zadovoljivaako joj je barem jedna klauze dužine veće od k+m

- verovatnoća da je formula Fpm(n,l) zadovoljiva

ako su joj sve klauze dužine manje ili jednake k+m

- verovatnoća da je formula Fpm(n,l) zadovoljiva

ako joj je barem jedna klauze dužine veće od k+m

Oštar prag za k-GD-SAT

Page 24: Fazna promena u  k -GD-SAT problemu

Klauze dužine i, k i k+m se biraju sa istim verovatnoćama i u formuli Fk,p(n,l) i u Fm

k,p(n,l), stoga važi:

Takodje važi:

Biramo proizvoljno > 0; n0 biramo tako da za n > n0 važi sledeće:

Važi sledeći niz nejednakosti:

Oštar prag za k-GD-SAT

Page 25: Fazna promena u  k -GD-SAT problemu

Oštar prag za k-GD-SAT

Page 26: Fazna promena u  k -GD-SAT problemu

Oštar prag za k-GD-SAT

Neka je m dovoljno veliko tako da važi:

Ono što želimo da dokažemo je:

Imamo da važi:

Znači dovoljno je da pokažemo: ‚tj.

Page 27: Fazna promena u  k -GD-SAT problemu

Oštar prag za k-GD-SAT

Važi:

što smo i hteli da pokažemo.

Pokazali smo da za proizvoljno > 0 postoji n0 tako da ako važi n > n0 onda je i:

Analogno se pokazuje i:

Page 28: Fazna promena u  k -GD-SAT problemu

Literatura

Achlioptas, D., Peres, Y., The Threshold for Random k-SAT is 2klog2- O(k), Journal of the American Mathematical Society, Volume 17, Number 4, 947-973, 2004.

Friedgut, E., Bourgain, J., Sharp Thresholds of Graph Properties, and the k-SAT problem, Journal of the American Mathematical Society, Volume 12, Number 4, 1017-1054, 1999.

Achlioptas, D., Moore, C., Random k-SAT: Two Moments Suffice to Cross a Sharp Threshold, SIAM Journal of Computing, Volume 36, Number 3, 740-762, 2006.

Achlioptas, D., Kirousis, M., Kranakis, E., Krizanc, D., Rigorous results for random 2+p-SAT, Theoretical Computer Science, 265, 109-129, 2001.

Page 29: Fazna promena u  k -GD-SAT problemu

Hvala na pažnji!