fb-multipier soil parameter table (us customary unit)

24
BSI PROPRIETARY INFORMATION December 2013 FB-MultiPier Soil Parameter Table (US Customary Unit) The Bridge software Institute disclaims any warranty, expressed or implied, including but not limited to, any implied warranty of accuracy for a particular purpose or accuracy of the Florida Pier software. The BSI shall not be liable for any damages incurred through the use of the provided information. Thus, All parameters for soil models available in the FB-MultiPier program must be used for preliminary design purpose only. Bridge Software Institute Department of Civil & Coastal Engineering College of Engineering University of Florida Gainesville, Florida 32611 Engineering and Industrial Experiment Station

Upload: builien

Post on 02-Jan-2017

799 views

Category:

Documents


91 download

TRANSCRIPT

BSI PROPRIETARY INFORMATION

December 2013

FB-MultiPier Soil Parameter Table (US Customary Unit)

The Bridge software Institute disclaims any warranty, expressed or implied, including but not

limited to, any implied warranty of accuracy for a particular purpose or accuracy of the Florida

Pier software. The BSI shall not be liable for any damages incurred through the use of the

provided information. Thus, All parameters for soil models available in the FB-MultiPier

program must be used for preliminary design purpose only.

Bridge Software Institute

Department of Civil & Coastal Engineering

College of Engineering

University of Florida

Gainesville, Florida 32611

Engineering and Industrial Experiment Station

Cohesionless Soil

Soil properties for preliminary design only.

Cohesionless Soil Properties Symbol Units Loose Medium Dense

References :

Total Unit Weight γ pcf 90 115 110 130 110 140

Ref.[1]

Corrected SPT Blow Count 60N

4 10 10 30 30 50

Ref.[2]

Relative Density rD % 15 35 35 65 65 85

Ref.[3]

Angle of Internal Friction φ deg 29 30 30 36 36 41

Ref.[4]

Coefficient of Lateral Earth Pressure

(From Eqn. (1) using φ ) 0K

0.51 0.5 0.5 0.41 0.41 0.34

( )0 1 sinK φ= − (1) Ref.[5]

Subgrade Modulus (Below Water Table) bwk pci 20 30 30 100 100 160

Ref.[6]

Subgrade Modulus (Above Water Table) awk pci 20 50 50 165 165 275

Ref.[6]

Poisson's Ratio υ 0.20 - 0.40 0.25 - 0.40 0.30 - 0.45

Ref.[7]

Young's Modulus

(From Eqn. (2) using α =5, ap =2000psf

and 60N )

emE psf 40000 100000 100000 300000 300000 500000

60* *em aE p Nα= (2) Ref.[8]

Young's Modulus

(From Eqn. (2) using α =10, ap =2000psf

and 60N )

emE psf 80000 200000 200000 600000 600000 1000000

Young's Modulus

( From Eqn. (3) using B = 24in,

υ =the minimum of the range, and bwk )

E psf 66360 99530 97200 324000 314500 503190

2* *(1 )E k B υ= − (3) Ref.[9]

Young's Modulus

( From Eqn. (3) using B = 24in,

υ =the minimum of the range, and awk )

E psf 66360 165890 162000 534600 518920 864860

Notation:

emE = Elastic Modulus based on empirical equation.

Cohesionless Soil (Contd.)

Soil properties for preliminary design only.

Cohesionless Soil Properties Symbol Units Loose Medium Dense

References :

Shear Modulus

(From Eqn. (4) with emE of α =5, and

υ =the minimum of the range)

emG ksi 0.12 0.29 0.28 0.83 0.80 1.33

( )( )2 1G E υ= + (4) Ref.[10]

Shear Modulus

(From Eqn. (4) with emE of α =10, and

υ =the minimum of the range)

emG ksi 0.23 0.58 0.55 1.67 1.6 2.67

Shear Modulus

(From Eqn. (4) with E of bwk , and

υ =the minimum of the range)

G ksi 0.19 0.29 0.27 0.9 0.84 1.34

Shear Modulus

(From Eqn. (4) with E of awk , and

υ =the minimum of the range)

G ksi 0.19 0.48 0.45 1.48 1.38 2.31

Shear Modulus

(From Eqn. (5) using 60N ) maxG ksi 0.62 1.16 1.16 2.45 2.45 3.47

( )

0.68

max 60(ksf ) 35*G N= (5) Ref.[11]

Ultimate Unit End Bearing ksi See Fig.2 (For Driven Piles) on pp. 8

Axial Bearing Failure kips Ultimate Unit End Bearing x Tip Area

Ultimate Unit Skin Friction psf See Fig.3 (For Driven Piles) on pp. 9 and

Fig.4 (For Drilled Shafts) on pp. 10

Cohesive Soil

Soil properties for preliminary design only.

Cohesive Soil Properties Symbol Units Soft Medium Stiff

References :

Total Unit Weight γ pcf 100 120 110 130 120 140

Ref.[12]

Corrected SPT Blow Count 60N

2 4 4 8 8 15

Ref. [13]

Unconfined Compressive Strength uq tsf 0.25 0.5 0.5 1 1 2

Ref. [13]

Undrained Shear Strength uC psf 250 500 500 1000 1000 2000

Ref. [14]

Average Undrained Shear Strength

psf 375 750 1500

Major Principal Strain @ 50% 50ε

0.02 0.01 0.005

Ref. [15]

Major Principal Strain @ 100% 100ε

0.06 0.03 0.015

Ref. [16]

Subgrade Modulus (Static Loading) k pci NA NA 500

Ref. [17]

Subgrade Modulus (Cycling Loading) k pci NA NA 200

Ref. [17]

Poisson's Ratio υ

0.4 0.45 0.5

Ref. [18]

Elastic Modulus E psi 415 1735 1735 4860 4860 >13890

Ref. [19]

Shear Modulus

(From Eqn. (4) using E , and υ ) G ksi 0.15 0.62 0.60 1.68 1.62 4.63 ( )( )2 1G E υ= + (4) Ref.[10]

Ultimate Unit End Bearing

ksi See Fig.2 (For Driven Piles) on pp. 8

Axial Bearing Failure

kips Ultimate Unit End Bearing x Tip Area

Ultimate Unit Skin Friction

psf See Fig. 3 (For Driven Piles) on pp. 9

Note: For the input values of vertical failure shear stress and torsional shear stress, the ultimate unit skin friction for a pile or drilled shaft can be

used.

General Rock Properties

Soil properties for preliminary design only.

Rock Type Symbol Units Limestone Sandstone

References :

Unit Weight γ pcf 130 - 175 145- 170

Ref. [20], Ref.[21]

Rock Quality Designation RQD % 20 50 100 20 50 100

Ref. [22]

Modulus Ratio m iE E

0.05 0.15 1 0.05 0.15 1

Ref. [22]

Elastic Modulus iE ksi 5700 2130

Ref. [22]

Mass Modulus

(From Eqn. (6) using m iE E and iE ) mE ksi 285 855 5700 106.5 319.5 2130

( )*m m i iE E E E= (6)

Poisson's Ratio υ

0.23 0.2

Ref. [22]

Shear Modulus

(From Eqn. (4) using mE , and υ ) G ksi 115.85 347.56 2317.07 44.37 133.12 887.5

( )( )2 1G E υ= + (4) Ref. [10]

Angle of Internal Friction φ deg 34 – 40 27 – 34

Ref. [22]

Unconfined Compressive Strength uq psf 500000 – 6000000 1400000 – 3600000

Ref. [23]

Split Tensile Strength tq psf 50000 – 600000 140000 – 360000

Ref. [24]

Rock Type Symbol Units Granite Quartzite

Unit Weight γ pcf 160 - 190 130 - 170

Ref. [20], Ref.[21]

Rock Quality Designation RQD % 20 50 100 20 50 100

Ref. [22]

Modulus Ratio m iE E

0.05 0.15 1 0.02 0.15 1

Ref. [22]

Elastic Modulus iE ksi 7640 9590

Ref. [22]

Mass Modulus

(From Eqn. (6) using m iE E and iE ) mE ksi 382 1146 7640 191.8 1438.5 9590

( )*m m i iE E E E= (6)

Poisson's Ratio υ

0.2 0.14

Ref. [22]

Shear Modulus

(From Eqn. (4) using mE , and υ )

G ksi 159.17 477.5 3183.33 84.12 630.92 4206.14

( )( )2 1G E υ= + (4) Ref. [10]

Angle of Internal Friction φ deg 34 – 40 NA

Ref. [22]

Unconfined Compressive Strength uq psf 300000 – 7000000 1300000 – 8000000

Ref. [23]

Split Tensile Strength tq psf 30000 – 700000 130000 – 800000

Ref. [24]

General Rock Properties

Soil properties for preliminary design only.

Geotechnical Description Symbol Units Low

Strength

Medium

Strength High Strength

Very High

Strength References :

Unconfined Compressive Strength uq psf <209000 209000–417500 417500–1252500 >1252500

Ref. [24], Ref. [25]

Split Tensile Strength tq psf <20900 20900–41750 41750–125250 >125250

Ref. [24]

Ultimate Unit Skin Friction (Drilled shaft)

(From Eqn. (7) using uq ) sf psf <19800 19800–28000 28000–48500 >48500

( )MPa 0.3*s uf q= (7) Ref. [25]

Ultimate Unit End Bearing (Drilled shaft)

(From Eqn. (8) using uq ) bq ksf <317100 317100–448100 448100–776200 >776200

( )MPa 4.8*b uq q= (8) Ref. [25]

Ultimate Unit Skin Friction (Driven Piles) sf psf ( )20.877* 2.8* 10sf �= + Ref. [25]

Ultimate Unit End Bearing (Driven Piles) bq ksf 0.0209*180*bq �= Ref. [25]

Axial Bearing Failure kips Unit End Bearing x Tip Area

Florida Limestone

Soil properties for preliminary design only.

Bridges (See the map

for locations)

Test

Shaft ( )%

RQD

Average

iE m iE E mE (From Eqn.(9)

using and )

s

u t

f

q q

γ φ υ

G

(From Eqn.(4)

using and

0.33)

iE

υ =

G

(From Eqn.(4)

using and

0.12)

iE

υ =

uq tq

Units

psf psf ksi

ksi psf pcf

ksi ksi

Reference:

[26] [26] [26] [26] [26] [26] [26] [26] [22] [22] [10] [10]

17th Street Causeway LTSO 3 43 61400 19200 466.38 0.127 59.23 10240.54 NA 34-40 0.12-0.33 175.33 208.2

LTSO 4 41.9 277200 29000 626.53 0.123 77.06 26195.37 NA 34-40 0.12-0.33 235.54 279.7

Acosta Test 1 34.2 170600 36800 579.04 0.1 57.90 19112.59 NA 34-40 0.12-0.33 217.68 258.5

Apalachicola

46-11A 78 24300 2000 98.61 0.535 52.75 2692.55 130 34-40 0.12-0.33 37.07 44.02

62-5 58.2 10600 1600 43.01 0.37 15.91 1471.38 130 34-40 0.12-0.33 16.17 19.20

69-7 54 10200 800 41.39 0.26 10.76 985.97 130 34-40 0.12-0.33 15.56 18.48

Fuller Warren LT-3a 31 86000 19200 258.78 0.09 23.29 8752.16 130 34-40 0.12-0.33 97.29 115.53

LT4 33 177000 22800 456.62 0.096 43.83 14729.79 130 34-40 0.12-0.33 171.66 203.85

Gandy 52-6 78 73200 27800 322.86 0.78 251.83 17423.04 110 34-40 0.12-0.33 121.37 144.13

91-4 52 8600 2200 274.14 0.21 57.57 1471.77 120 34-40 0.12-0.33 103.06 122.38

Victory 10-2 29.8 314000 50200 2880.5 0.083 239.08 25729.76 110 34-40 0.12-0.33 1082.9 1285.9

Properties Symbol Units Florida Limestone

Ultimate Unit Skin Friction sf psf See Fig. 3(Driven Piles) on pp.9

Ultimate Unit End Bearing bq psf See Fig. 2(Driven Piles) on pp.8

Axial Bearing Failure kips Unit End Bearing x Tip Area

( )1 * * * %2s u tf q q Adjusted RQD= (9) Ref. [26]

( )2* 1

EG

υ=

+ (4) Ref. [10]

Figure 1 Geographic Location of Load Test Sites

For Driven Piles - The Ultimate End bearing of any pile can be calculated from

the below graph if the SPT blow count are available

n 60:= i 1 n 1+..:= Ni

i 1−( ):=

Sand(Conc/Steel/HPile)i

3.2 Ni

⋅2

144⋅:= Ultimate End Bearing for Concrete, Steel and H piles in Sand

Clay(Conc/Steel/HPile)i

0.7 Ni

⋅2

144⋅:= Ultimate End Bearing for Concrete, Steel and H piles in Clay

Limestone(Conc/HPile)i

3.6 Ni

⋅2

144⋅:= Ultimate End Bearing for Concrete and H piles in Florida Limestone

Limestone(Steel)i

3.6 Ni

⋅2

144⋅

Ni

30≤if

36 7

Ni

30−( )30

⋅+

2 3⋅

144⋅

otherwise

:=Ultimate End Bearing for Steel piles in Florida

Limestone

0 10 20 30 40 50 600

0.5

1

1.5

2

2.5

3

Ultimate End Bearing (Driven Piles)

SPT Blow-count (N)

Ultim

ate

End B

earing (ksi

)

Sand(Conc/Steel/HPile)

Clay(Conc/Steel/HPile)

Limestone(Conc/HPile)

Limestone(Steel)

N

Figure 2

For Driven Piles - The Ultimate Skin Friction of any pile can be calculatedfrom the below graph if the SPT blow count are available

n 60:= i 1 n 1+..:= Ni

i 1−( ):=

Ultimate Skin Friction for Concrete Piles in Sand...

Sand(Conc)i

0.019 Ni

⋅ 2000⋅:=

Ultimate Skin Friction for Steel Piles in Sand...

Sand(Steel)i

0.026− 0.023Ni

+ 1.435 104−

⋅ Ni( )2⋅− 6.527 10

7−⋅ N

i( )3⋅−

2000⋅:=

Ultimate Skin Friction for Concrete Piles in Clay...

Clay(Conc)i

2 Ni

⋅ 110 Ni

−( )⋅

4006.6

2000⋅:=

Ultimate Skin Friction for Steel Piles in Clay...

Clay(Steel)i

8.081− 104−

⋅ 0.058 Ni

⋅+ 1.202 103−

⋅ Ni( )2⋅− 8.785 10

6−⋅ N

i( )3⋅+

2000⋅:=

Ultimate Skin Friction for Concrete and Steel Piles in Florida Limestone...

Limestone(Conc/Steel)i

0.01 Ni

⋅( ) 2000⋅:=

0 10 20 30 40 50 600

500

1000

1500

2000

2500

3000

3500

Ultimate Skin Friction (Driven Piles)

SPT Blow-count (N)

Ultim

ate

Skin

Frict

ion (psf

)

Sand(Conc)

Sand(Steel)

Clay(Conc)

Clay(Steel)

Limestone(Conc/Steel)

N

Figure 3

For Drilled shafts - The Ultimate Unit Skin Friction for Sand with respect to

the depth can be found out from the graph below

start 0:= end 180:= h 5:=

nend start−( )

h:= i 1 n( )..:= Depth

istart i 1−( ) h⋅+:= Depth from 0 to 175 ft

βi

1.2 Depthi

5≤if

0.25 Depthi

86>if

1.5 0.135 Depthi

⋅−( ) otherwise

:=

Assumed Density of Sand... γ 110:= pcf

Density of Water... γwater 62.4:= pcf

Vertical effective stress... σ'Wateri

γ γwater−( ) Depthi

⋅:= Water Table at the surface

σ'NoWateri

γ( ) Depthi

⋅:= No Water Table

Ultimate Skin Friction with water table at surface SFwWTi

βiσ'Water

i⋅:=

Ultimate Skin Friction with no water table SFw/oWTi

βiσ'NoWater

i⋅:=

0 1000 2000 3000 4000 5000

0

160

140

120

100

80

60

40

20

0

Ultimate Skin Friction of Sand (Drilled Shaft)

Ultimate Unit Skin Friction (psf)

Dep

th (ft)

Depth(Water Table at Surface)

Depth(No Water Table)

SFwWT SFw/oWT,

Figure 4

References:

1. "Foundation Analysis and Design", 5th Edition, Joseph E. Bowles, Table 3-4, pp 163.

2. "Soil Mechanics in Engineering Practice", 3rd Editon, Karl Terzaghi , Ralph Peck, Gholamreza Mesri , 1996, Table

12.1, pp. 60.

3. FB MultiPier Help Manual -> 11.3.8 Subgrade Modulus -> Figure B7 (Source: "Research on Determining the

Density of Sands by Spoon Penetration Testing", H.J.Gibbs, W.G.Holtz, 1957, Proc. 4th International Conference

on Soil Mechanics and Foundation Engineering, Vol. 1, pp. 35-39).

4. FB MultiPier Help Manual -> 11.3.8 Subgrade Modulus -> Figure B7 (Source: American Petroleum Institute (API),

1987, “Recommended practice for planning, designing and constructing fixed offshore platforms”, API

Recommended practice 2A (RP 2A), 17th Ed, Figure 6.8.7-1, pp.70).

5. "Foundation Analysis and Design", 5th Edition, Joseph E. Bowles, Equation 2-18a, pp.41.

6. FB MultiPier Help Manual ->11.3.8 Subgrade Modulus -> Figure B8 (Source: American Petroleum Institute (API),

1987, “Recommended practice for planning, designing and constructing fixed offshore platforms”, API

Recommended practice 2A (RP 2A), 17th Ed, Figure 6.8.7-1, pp.70).

7. "Principles of Foundation Engineering", 6th Edition, Braja Das, Table 5.8, pp. 240.

8. "Principles of Foundation Engineering", 6th Edition, Braja Das, Equation 5.43, pp. 240.

9. "Principles of Foundation Engineering", 6th Edition, Braja Das, Equation 6.5, pp. 294.

10. "Foundation Analysis and Design”, 5th Edition, Joseph E. Bowles, Equation (a), pp. 121.

11. “Seismic Response Analysis of a Highway Overcrossing Equipped with Elastomeric Bearings and Fluid

Dampers”, Nicos Makris & Jian Zhang, Equation (1), Journal of Structural Engineering, Vol. 130, No. 6, June 2004,

pp. 830-845 (Source: ‘‘Correlations among seismic motion, ground conditions, and damage: Data on the

Miyagiken-oki earthquake of 1978”, Imai T. and Tonouchi K., 1982, Proc. 3rd Int. Earthquake Miscorzonation Conf.,

Univ. of Washington, Seattle, Vol. 2, pp. 649–660.).

12. "Foundation Analysis and Design", 2nd Edition, Joseph E. Bowles, Table 3-4, pp. 86.

13. "Soil Mechanics in Engineering Practice", 3rd Editon, Karl Terzaghi , Ralph Peck, Gholamreza Mesri, 1996,

Table 12.2, pp. 63.

14. “Soil Mechanics”, 1st Edition, T. W. Lambe, R. V. Whitman, 1969, Section 29.8, pp.451.

15. “Correlations for design of laterally loaded piles in soft clay”, Matlock, H., 1970, Proceedings, Offshore

Technology Conference, Vol. I, Paper No. 1204, Houston, Texas, pp. 577-594.

16. “Single Piles and Pile Groups under Lateral Loading”, Lymon C. Reese, William F. Van Impe, Figure 3.11, pp.

71.

17. “Laterally Loaded Piles and Computer Program COM624G”, Reese L.C., Cooley L.A., Radhakrishnan N., 1984,

Technical Report K-84-2, U.S. Army Engineer Waterways Experiment Station, Table 4, pp. 60.

18. "Foundation Analysis and Design", 5th Edition, Joseph E. Bowles, Table 2-7, pp. 123.

19. “Engineering and Design – Settlement Analysis”, EM1110-1-1904, Appendix D, Table D-3, pp. D-5.

20. “A Treatise on the Principles and Practice of Harbour Engineering”, Brysson Cunningham, pp. 86.

21. “Bulletin”, Issue 2, Utah Engineering Experiment Station, pp. 16.

22. “AASHTO LRFD Bridge Design Specification”, 5th Edition, Section 10(Foundations), pp. (10-25) – (10-27).

23. “AASHTO Standard Specification for Highway Bridges”, 16th

Edition, 1996, Table 4.4.1.2B, pp. 64.

24. “Handbook of Geotechnical Investigation and Design Tables”, Burt Look, pp. 65.

25. “Geophysical testing for rock assessment and pile design”, Lani Cheenikal, Harry Poulos, Robert Whiteley,

Coffey Geotechnics, Australia. (Internet link:

“http://www.coffey.com/Uploads/Documents/Geophysical%20testing%20for%20rock%20assessment%20and%20

pile%20design_20100625141417.pdf”)

26. “Static and Dynamic Field Testing of Drilled Shafts: Suggested Guidelines on their use for FDOT Structures”,

Michael McVay, Ralph D. Ellis Jr., Final Report, FDOT No. 99052794.

BSI PROPRIETARY INFORMATION

December 2013

FB-MultiPier Soil Parameter Table (SI Unit)

The Bridge software Institute disclaims any warranty, expressed or implied, including but not

limited to, any implied warranty of accuracy for a particular purpose or accuracy of the Florida

Pier software. The BSI shall not be liable for any damages incurred through the use of the

provided information. Thus, All parameters for soil models available in the FB-MultiPier

program must be used for preliminary design purpose only.

Bridge Software Institute

Department of Civil & Coastal Engineering

College of Engineering

University of Florida

Gainesville, Florida 32611

Engineering and Industrial Experiment Station

Cohesionless Soil

Soil properties for preliminary design only.

Cohesionless Soil Properties Symbol Units Loose Medium Dense

References :

Total Unit Weight γ 3kN m 14 18 17 20 17 22

Ref.[1]

Corrected SPT Blow Count 60N

4 10 10 30 30 50

Ref.[2]

Relative Density rD % 15 35 35 65 65 85

Ref.[3]

Angle of Internal Friction φ deg 29 30 30 36 36 41

Ref.[4]

Coefficient of Lateral Earth Pressure

(From Eqn. (1) using φ ) 0K

0.51 0.5 0.5 0.41 0.41 0.34

( )0 1 sinK φ= − (1) Ref.[5]

Subgrade Modulus (Below Water Table) bwk 3kN m 5430 8140 8140 27145 27145 43430

Ref.[6]

Subgrade Modulus (Above Water Table) awk 3kN m 5430 13570 13570 44790 44790 74650

Ref.[6]

Poisson's Ratio υ 0.20 - 0.40 0.25 - 0.40 0.30 - 0.45

Ref.[7]

Young's Modulus

(From Eqn. (2) using α =5, ap =100kPa,

and 60N )

emE kPa 2000 5000 5000 15000 15000 25000

60* *em aE p Nα= (2) Ref.[8]

Young's Modulus

(From Eqn. (2) using α =10, ap =100kPa,

and 60N )

emE kPa 4000 10000 10000 30000 30000 50000

Young's Modulus

( From Eqn. (3) using B = 0.61m,

υ =the minimum of the range, and bwk )

E kPa 3180 4765 4655 15525 15070 24110

2* *(1 )E k B υ= − (3) Ref.[9]

Young's Modulus

( From Eqn. (3) using B = 0.61m,

υ =the minimum of the range, and awk )

E kPa 3180 7945 7760 25615 24865 41440

Notation:

emE = Elastic Modulus based on empirical equation.

Cohesionless Soil (Contd.)

Soil properties for preliminary design only.

Cohesionless Soil Properties Symbol Units Loose Medium Dense

References :

Shear Modulus

(From Eqn. (4) with emE of α =5, and

υ =the minimum of the range)

emG kPa 833 2083 2000 6000 5769 9615

( )( )2 1G E υ= + (4) Ref.[10]

Shear Modulus

(From Eqn. (4) with emE of α =10, and

υ =the minimum of the range)

emG kPa 1667 4167 4000 12000 11538 19231

Shear Modulus

(From Eqn. (4) with E of bwk , and

υ =the minimum of the range)

G kPa 1325 1986 1862 6209 5795 9272

Shear Modulus

(From Eqn. (4) with E of awk , and

υ =the minimum of the range)

G kPa 1325 3311 3104 10246 9563 15938

Shear Modulus

(From Eqn. (5) using 60N ) maxG kPa 4302 8021 8021 16930 16930 23962 ( )

0.68

max 60(ksf ) 35*G N= (5) Ref.[11]

Ultimate Unit End Bearing kPa See Fig.2 for Driven Piles on pp. 8

Axial Bearing Failure kN Ultimate Unit End Bearing x Tip Area

Ultimate Unit Skin Friction kPa See Fig.3 (For Driven Piles) on pp. 9 and

Fig.4(For Drilled Shafts) on pp. 10

Cohesive Soil

Soil properties for preliminary design only.

Cohesive Soil Properties Symbol Units Soft Medium Stiff

References

Total Unit Weight γ 3kN m 16 19 17 20 19 22

Ref.[12]

Corrected SPT Blow Count 60N

2 4 4 8 8 15

Ref. [13]

Unconfined Compressive Strength uq kPa 23.95 47.9 47.9 95.8 95.8 191.6

Ref. [13]

Undrained Shear Strength uC kPa 11.97 23.95 23.95 47.9 47.9 95.8

Ref. [14]

Avg.Undrained Shear Strength

kPa 17.96 35.92 71.85

Major Principal Strain @ 50% 50ε

0.02 0.01 0.005

Ref. [15]

Major Principal Strain @ 100% 100ε

0.06 0.03 0.015

Ref. [16]

Subgrade Modulus (Static Loading) k 3kN m NA NA 135725

Ref. [17]

Subgrade Modulus (Cycling Loading) k 3kN m NA NA 54290

Ref. [17]

Poisson's Ratio υ

0.4 0.45 0.5

Ref. [18]

Elastic Modulus E kPa 2860 11960 11960 33510 33510 >95770

Ref. [19]

Shear Modulus

(From Eqn. (4) using E , and υ ) G kPa 1021 4271 4124 11555 11170 31923 ( )( )2 1G E υ= + (4) Ref.[10]

Ultimate Unit End Bearing

kPa See Fig.2 (For Driven Piles) on pp. 8

Axial Bearing Failure

kN Ultimate Unit End Bearing x Tip Area

Ultimate Unit Skin Friction

kPa See Fig. 3 (For Driven Piles) on pp. 9

Note: For the input values of vertical failure shear stress and torsional shear stress, the ultimate unit skin friction for a pile or drilled shaft can be

used.

General Rock Properties

Soil properties for preliminary design only.

Rock Type Symbol Units Limestone Sandstone

References :

Unit Weight γ 3k� m 20.42 – 27.49 22.78 – 26.7

Ref. [20], Ref.[21]

Rock Quality Designation RQD % 20 50 100 20 50 100

Ref. [22]

Modulus Ratio m iE E

0.05 0.15 1 0.05 0.15 1

Ref. [22]

Elastic Modulus iE kPa 39300000 14686000

Ref. [22]

Mass Modulus

(From Eqn. (6) using m iE E and iE ) mE kPa 1965000 5895000 39300000 734000 2203000 14686000

( )*m m i iE E E E= (6)

Poisson's Ratio υ

0.23 0.2

Ref. [22]

Shear Modulus

(From Eqn. (4) using mE , and υ ) G kPa 799000 2396000 15976000 306000 918000 6119000

( )( )2 1G E υ= + (4) Ref. [10]

Angle of Internal Friction φ deg 34 – 40 27 – 34

Ref. [22]

Unconfined Compressive Strength uq kPa 24000 – 290000 67000 – 172000

Ref. [23]

Split Tensile Strength tq kPa 2400 – 29000 6700 – 17200

Ref. [24]

Rock Type

Units Granite Quartzite

Unit Weight γ 3k� m 25.13 – 29.85 20.42 – 26.7

Ref. [20], Ref.[21]

Rock Quality Designation RQD % 20 50 100 20 50 100

Ref. [22]

Modulus Ratio m iE E

0.05 0.15 1 0.02 0.15 1

Ref. [22]

Elastic Modulus iE kPa 52676000 66121000

Ref. [22]

Mass Modulus

(From Eqn. (6) using m iE E and

iE ) mE kPa 2634000 7901000 52676000 1322000 9918000 66121000

( )*m m i iE E E E= (6)

Poisson's Ratio υ

0.2 0.14

Ref. [22]

Shear Modulus

(From Eqn. (4) using mE , and υ )

G kPa 1097000 3292000 21948000 580000 4350000 29000000

( )( )2 1G E υ= + (4) Ref. [10]

Angle of Internal Friction φ deg 34 – 40 NA

Ref. [22]

Unconfined Compressive Strength uq kPa 14000 – 335000 62000 – 383000

Ref. [23]

Split Tensile Strength tq kPa 1400 – 33500 6200 – 38300

Ref. [24]

General Rock Properties

Soil properties for preliminary design only.

Geotechnical Description Symbol Units Low

Strength

Medium

Strength High Strength

Very High

Strength References

Unconfined Compressive Strength uq kPa <10000 10000–20000 20000–60000 >60000

Ref. [24], Ref. [25]

Split Tensile Strength tq kPa <1000 1000–2000 2000–6000 >6000

Ref. [24]

Ultimate Unit Skin Friction (Drilled shaft)

(From Eqn. (7) using uq ) sf kPa <950 950 – 1340 1340 – 2320 >2320

( )MPa 0.3*s uf q= (7) Ref. [25]

Ultimate Unit End Bearing (Drilled shaft)

(From Eqn. (8) using uq ) bq kPa <15180 15180 – 21470 21470 – 37180 >37180

( )MPa 4.8*b uq q= (8) Ref. [25]

Ultimate Unit Skin Friction (Driven Piles) sf kPa 2.8* 10sf �= + Ref. [25]

Ultimate Unit End Bearing (Driven Piles) bq kPa 180*bq �= Ref. [25]

Axial Bearing Failure kN Unit End Bearing x Tip Area

Florida Limestone

Soil properties for preliminary design only.

Bridges (See the map

for locations)

Test

Shaft ( )%

RQD

Average

iE m iE E

mE (From Eqn.(9)

using and )

s

u t

f

q q

γ φ υ

G

(From Eqn.(4)

using and

0.33)

iE

υ =

G

(From Eqn.(4)

using and

0.12)

iE

υ =

uq tq

Units

kPa kPa kPa

kPa kPa kPa

kPa kPa

Reference

[26] [26] [26] [26] [26] [26] [26] [26] [22] [22] [10] [10]

17th Street Causeway LTSO 3 43 2940 920 3215600 0.127 408400 490.52 NA 34-40 0.12-0.33 1208900 1435500

LTSO 4 41.9 13280 1390 4319800 0.123 531300 1254.76 NA 34-40 0.12-0.33 1624000 1928500

Acosta Test 1 34.2 8170 1760 3992400 0.1 399200 915.5 NA 34-40 0.12-0.33 1500900 1782300

Apalachicola 46-11A 78 1160 95 679900 0.535 363700 129 20.42 34-40 0.12-0.33 255600 303500

62-5 58.2 510 80 296600 0.37 109700 70.48 20.42 34-40 0.12-0.33 111500 132400

69-7 54 490 40 285400 0.26 74200 47.23 20.42 34-40 0.12-0.33 107300 127400

Fuller Warren LT-3a 31 4100 920 1784200 0.09 160600 419.23 20.42 34-40 0.12-0.33 670800 796500

LT4 33 8480 1090 3148300 0.096 302200 705.56 20.42 34-40 0.12-0.33 1183600 1405500

Gandy 52-6 78 3510 1330 2226000 0.78 1736300 834.56 17.28 34-40 0.12-0.33 836850 993800

91-4 52 410 105 1890100 0.21 396900 70.5 18.85 34-40 0.12-0.33 710600 843800

Victory 10-2 29.8 15040 2400 20000000 0.083 1648400 1232.46 17.28 34-40 0.12-0.33 7466300 8866200

Properties Symbol Units Florida Limestone

Ultimate Unit Skin Friction sf kPa See Fig. 3(Driven Piles) on pp.9

Ultimate Unit End Bearing bq kPa See Fig. 2(Driven Piles) on pp.8

Axial Bearing Failure kN Unit End Bearing x Tip Area

( )1 * * * %2s u tf q q Adjusted RQD= (9) Ref. [26]

( )2* 1

EG

υ=

+ (4) Ref. [10]

Figure 1 Geographic Location of Load Test Sites

For Driven Piles - The Ultimate End bearing of any pile can be calculated from

the below graph if the SPT blow count are available

n 60:= i 1 n 1+..:= Ni

i 1−( ):=

Sand(Conc/Steel/HPile)i

3.2 Ni

⋅ 95.76⋅:= Ultimate End Bearing for Concrete, Steel and H piles in Sand

Clay(Conc/Steel/HPile)i

0.7 Ni

⋅ 95.76⋅:= Ultimate End Bearing for Concrete, Steel and H piles in Clay

Limestone(Conc/HPile)i

3.6 Ni

⋅ 95.76⋅:= Ultimate End Bearing for Concrete and H piles in Florida Limestone

Limestone(Steel)i

3.6 Ni

⋅ 95.76⋅( ) Ni

30≤if

36 7

Ni

30−( )30

⋅+

287.28⋅

otherwise

:=Ultimate End Bearing for Steel piles in Florida

Limestone

0 10 20 30 40 50 600

5 103

×

1 104

×

1.5 104

×

2 104

×

2.5 104

×

Ultimate End Bearing (Driven Piles)

SPT Blow-count (N)

Ultim

ate End Bearing (kPa)

Sand(Conc/Steel/HPile)

Clay(Conc/Steel/HPile)

Limestone(Conc/HPile)

Limestone(Steel)

N

Figure 2

For Driven Piles - The Ultimate Skin Friction of any pile can be calculatedfrom the below graph if the SPT blow count are available

n 60:= i 1 n 1+..:= Ni

i 1−( ):=

Ultimate Skin Friction for Concrete Piles in Sand...

Sand(Conc)i

0.019 Ni

⋅ 95.8⋅:=

Ultimate Skin Friction for Steel Piles in Sand...

Sand(Steel)i

0.026− 0.023Ni

+ 1.435 104−

⋅ Ni( )2⋅− 6.527 10

7−⋅ N

i( )3⋅−

95.8⋅:=

Ultimate Skin Friction for Concrete Piles in Clay...

Clay(Conc)i

2 Ni

⋅ 110 Ni

−( )⋅

4006.6

95.8⋅:=

Ultimate Skin Friction for Steel Piles in Clay...

Clay(Steel)i

8.081− 104−

⋅ 0.058 Ni

⋅+ 1.202 103−

⋅ Ni( )2⋅− 8.785 10

6−⋅ N

i( )3⋅+

95.8⋅:=

Ultimate Skin Friction for Concrete and Steel Piles in Florida Limestone...

Limestone(Conc/Steel)i

0.01 Ni

⋅( ) 95.8⋅:=

0 10 20 30 40 50 600

25

50

75

100

125

150

Ultimate Skin Friction (Driven Piles)

SPT Blow-count (N)

Ultim

ate Skin Friction (kPa)

Sand(Conc)

Sand(Steel)

Clay(Conc)

Clay(Steel)

Limestone(Conc/Steel)

N

Figure 3

For Drilled shafts - The Ultimate Unit Skin Friction for Sand with respect to

the depth can be found out from the graph below

start 0:= end 50:= h 0.5:=

nend start−( )

h:= i 1 n( )..:= Depth

istart i 1−( ) h⋅+:= Depth from 0 to 50m

βi

1.2 Depthi

5 0.3048( )⋅≤if

0.25 Depthi

86 0.3048( )⋅>if

1.5 0.135 Depthi

0.3048( )÷⋅− otherwise

:=

Assumed Density of Sand... γ 17:= kN m3

÷

Density of Water... γwater 9.81:= kN m3

÷

Vertical effective stress... σ'Wateri

γ γwater−( ) Depthi⋅:= Water Table at the surface

σ'NoWateri

γ( ) Depthi

⋅:= No Water Table

Ultimate Skin Friction with water table at surface SFwWTi

βiσ'Water

i⋅:=

Ultimate Skin Friction with no water table SFw/oWTi

βiσ'NoWater

i⋅:=

0 50 100 150 200 250

0

40

30

20

10

0

Ultimate Skin Friction of Sand (Drilled Shaft)

Ultimate Unit Skin Friction (kPa)

Depth (m)

Depth(Water Table at Surface)

Depth(No Water Table)

SFwWT SFw/oWT,

Figure 4

References:

1. "Foundation Analysis and Design", 5th Edition, Joseph E. Bowles, Table 3-4, pp 163.

2. "Soil Mechanics in Engineering Practice", 3rd Editon, Karl Terzaghi , Ralph Peck, Gholamreza Mesri , 1996, Table

12.1, pp. 60.

3. FB MultiPier Help Manual -> 11.3.8 Subgrade Modulus -> Figure B7 (Source: "Research on Determining the

Density of Sands by Spoon Penetration Testing", H.J.Gibbs, W.G.Holtz, 1957, Proc. 4th International Conference

on Soil Mechanics and Foundation Engineering, Vol. 1, pp. 35-39).

4. FB MultiPier Help Manual -> 11.3.8 Subgrade Modulus -> Figure B7 (Source: American Petroleum Institute (API),

1987, “Recommended practice for planning, designing and constructing fixed offshore platforms”, API

Recommended practice 2A (RP 2A), 17th Ed, Figure 6.8.7-1, pp.70).

5. "Foundation Analysis and Design", 5th Edition, Joseph E. Bowles, Equation 2-18a, pp.41.

6. FB MultiPier Help Manual ->11.3.8 Subgrade Modulus -> Figure B8 (Source: American Petroleum Institute (API),

1987, “Recommended practice for planning, designing and constructing fixed offshore platforms”, API

Recommended practice 2A (RP 2A), 17th Ed, Figure 6.8.7-1, pp.70).

7. "Principles of Foundation Engineering", 6th Edition, Braja Das, Table 5.8, pp. 240.

8. "Principles of Foundation Engineering", 6th Edition, Braja Das, Equation 5.43, pp. 240.

9. "Principles of Foundation Engineering", 6th Edition, Braja Das, Equation 6.5, pp. 294.

10. "Foundation Analysis and Design”, 5th Edition, Joseph E. Bowles, Equation (a), pp. 121.

11. “Seismic Response Analysis of a Highway Overcrossing Equipped with Elastomeric Bearings and Fluid

Dampers”, Nicos Makris & Jian Zhang, Equation (1), Journal of Structural Engineering, Vol. 130, No. 6, June 2004,

pp. 830-845 (Source: ‘‘Correlations among seismic motion, ground conditions, and damage: Data on the

Miyagiken-oki earthquake of 1978”, Imai T. and Tonouchi K., 1982, Proc. 3rd Int. Earthquake Miscorzonation Conf.,

Univ. of Washington, Seattle, Vol. 2, pp. 649–660.).

12. "Foundation Analysis and Design", 2nd Edition, Joseph E. Bowles, Table 3-4, pp. 86.

13. "Soil Mechanics in Engineering Practice", 3rd Editon, Karl Terzaghi , Ralph Peck, Gholamreza Mesri, 1996,

Table 12.2, pp. 63.

14. “Soil Mechanics”, 1st Edition, T. W. Lambe, R. V. Whitman, 1969, Section 29.8, pp.451.

15. “Correlations for design of laterally loaded piles in soft clay”, Matlock, H., 1970, Proceedings, Offshore

Technology Conference, Vol. I, Paper No. 1204, Houston, Texas, pp. 577-594.

16. “Single Piles and Pile Groups under Lateral Loading”, Lymon C. Reese, William F. Van Impe, Figure 3.11, pp.

71.

17. “Laterally Loaded Piles and Computer Program COM624G”, Reese L.C., Cooley L.A., Radhakrishnan N., 1984,

Technical Report K-84-2, U.S. Army Engineer Waterways Experiment Station, Table 4, pp. 60.

18. "Foundation Analysis and Design", 5th Edition, Joseph E. Bowles, Table 2-7, pp. 123.

19. “Engineering and Design – Settlement Analysis”, EM1110-1-1904, Appendix D, Table D-3, pp. D-5.

20. “A Treatise on the Principles and Practice of Harbour Engineering”, Brysson Cunningham, pp. 86.

21. “Bulletin”, Issue 2, Utah Engineering Experiment Station, pp. 16.

22. “AASHTO LRFD Bridge Design Specification”, 5th Edition, Section 10(Foundations), pp. (10-25) – (10-27).

23. “AASHTO Standard Specification for Highway Bridges”, 16th

Edition, 1996, Table 4.4.1.2B, pp. 64.

24. “Handbook of Geotechnical Investigation and Design Tables”, Burt Look, pp. 65.

25. “Geophysical testing for rock assessment and pile design”, Lani Cheenikal, Harry Poulos, Robert Whiteley,

Coffey Geotechnics, Australia. (Internet link:

“http://www.coffey.com/Uploads/Documents/Geophysical%20testing%20for%20rock%20assessment%20and%20

pile%20design_20100625141417.pdf”)

26. “Static and Dynamic Field Testing of Drilled Shafts: Suggested Guidelines on their use for FDOT Structures”,

Michael McVay, Ralph D. Ellis Jr., Final Report, FDOT No. 99052794.