fem slab

Upload: efren-elegado

Post on 04-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 FEM SLAB

    1/22

    AAPPPPLLIICCAATTIIOONN OOFF PPLLAATTEESS && SSHHEELLLLSS

    1

    Table of ContentsPart A

    1. INTRODUCTION TO PLATE AND SHELL ELEMENT 22. ASSIGNMENT 1 SIMPLY SUPPORTED ONE-WAY SLABS 63. ASSIGNMENT 2 TWO-WAY SLABS 114. ASSIGNMENT 3 CANTILEVER BEAM 155. ASSIGNMENT 4 WATER TANKS 17

  • 7/30/2019 FEM SLAB

    2/22

  • 7/30/2019 FEM SLAB

    3/22

    AAPPPPLLIICCAATTIIOONN OOFF PPLLAATTEESS && SSHHEELLLLSS

    3

    global or local directions.

    Linearly varying pressure on element surface in local directions.

    Temperature load due to uniform increase or decrease of temperature.

    Temperature load due to difference in temperature between top and

    bottom surfaces of the element.

    The distinguishing features of this finite element are:

    Displacement compatibility between the plane stress component of one

    element and the plate bending component of an adjacent element which is

    at an angle to the first is achieved by the elements. This compatibility

    requirement is usually ignored in most flat shell/plate elements.

    The out of plane rotational stiffness from the plane stress portion of each

    element is usefully incorporated and not treated as a dummy as is usually

    done in most commonly available commercial software.

    Despite the incorporation of the rotational stiffness mentioned previously,

    the elements satisfy the patch test absolutely.

    These elements are available as triangles and quadrilaterals, with corner

    nodes only, with each node having six degrees of freedom.

    These elements are the simplest forms of flat shell/plate elements

    possible with corner nodes only and six degrees of freedom per node. Yet

    solutions to sample problems converge rapidly to accurate answers even

    with a large mesh size.

    These elements may be connected to plane/space frame members with

    full displacement compatibility. No additional restraints/releases are

    required.

    Out of plane shear strain energy is incorporated in the formulation of the

    plate bending component. As a result, the elements respond to Poisson

    boundary conditions which are considered to be more accurate than the

    customary Kirchoff boundary conditions.

    The plate bending portion can handle thick and thin plates, thus extending

    the usefulness of the plate elements into a multiplicity of problems. In

    addition, the thickness of the plate is taken into consideration in

    calculating the out of plane shear.

  • 7/30/2019 FEM SLAB

    4/22

    AAPPPPLLIICCAATTIIOONN OOFF PPLLAATTEESS && SSHHEELLLLSS

    4

    The plane stress triangle behaves almost on par with the well known linear

    stress triangle. The triangles of most similar flat shell elements incorporate

    the constant stress triangle which has very slow rates of convergence.

    Thus the triangular shell element is very useful in problems with double

    curvature where the quadrilateral element may not be suitable.

    Stress retrieval at nodes and at any point within the element.

    Plate Element Local Coordinate System

    The orientation of local coordinates is determined as follows:

    The vector pointing from I to J is defined to be parallel to the local x- axis.

    The cross-product of vectors IJ and IK defines a vector parallel to the local

    z-axis, i.e., z = IJ x IK.

    The cross-product of vectors z and x defines a vector parallel to the local

    y- axis, i.e., y = z x x.

    The origin of the axes is at the center (average) of the 4 joint locations (3

    joint locations for a triangle).

  • 7/30/2019 FEM SLAB

    5/22

  • 7/30/2019 FEM SLAB

    6/22

  • 7/30/2019 FEM SLAB

    7/22

    AAPPPPLLIICCAATTIIOONN OOFF PPLLAATTEESS && SSHHEELLLLSS

    7

    Results:

    Elementsizemxm

    No. ofElements

    BMkN.m

    %error

    inBM

    Thicknessm

    1.00 18 10.20-

    10.29 0.150.50 72 10.93 -2.93 0.150.30 200 11.40 1.32 0.150.25 288 11.50 2.17 0.150.20 450 11.60 3.02 0.150.15 800 11.60 3.02 0.150.10 1800 11.60 3.02 0.15

    Convergence

    -12.00

    -10.00

    -8.00

    -6.00

    -4.00

    -2.00

    0.00

    2.00

    4.00

    18 72 200 288 450 800 1800

    No. of eleme nts

    %Error

  • 7/30/2019 FEM SLAB

    8/22

    AAPPPPLLIICCAATTIIOONN OOFF PPLLAATTEESS && SSHHEELLLLSS

    8

    Exact solution = w*l^2/8 = 11.25 kN.m

    Conclusion :

    From the above results we can conclude that the bending moments in the

    slab converges to exact solution by mesh refinement .

    For the element size 0.5m x 0.5m we get minimum +positive error and for

    element size 0.3m x 0.3m we get minimum negative error.

    Refinement of mesh further does help, and the negative error goes on

    increasing till the element size of 0.1m x 0.1m.

    PART 2Here we will model the supporting edge with beam elements instead of pinned

    supports of different sizes and get the results of bending moments for both slab

    and beam and check with exact classical solution.

  • 7/30/2019 FEM SLAB

    9/22

    AAPPPPLLIICCAATTIIOONN OOFF PPLLAATTEESS && SSHHEELLLLSS

    9

    Results:

    Beamsizemmxmm

    BM inslabkN.m

    BM inbeamkN.m

    %errorin BM

    300x300 13.40 40.88 -65.12300x450 12.00 55.45 -21.73300x600 11.61 60.81 -11.00300x750 11.46 63.00 -7.14300x900 11.39 64.03 -5.42

    300x1200 11.32 64.88 -4.04

    Convergence

    -70.00

    -60.00

    -50.00

    -40.00

    -30.00

    -20.00

    -10.00

    0.00

    300x300 300x450 300x600 300x750 300x900 300x1200

    Size of Beam

    %Error

  • 7/30/2019 FEM SLAB

    10/22

    AAPPPPLLIICCAATTIIOONN OOFF PPLLAATTEESS && SSHHEELLLLSS

    10

    Conclusion :

    From the above results it can be concluded that, increasing the size ofedge beams the result converges to exact solution.

    Hence relative stiffness of beams and slab is governing criteria forconvergence of the bending moments for both, beam and slab.

    If the sizes of supporting beams are lesser than required, there is no slab-beam effect and act together as slab elements with just edged havingmore stiffness.

    Again if the sizes of edge beams are different in sizes, the results arehigher for stiffer beam and carry more bending moments than the onewhich is comparatively weaker.

    300x900

    BM = 69.5kN.m

    300x600

    BM = 55.6kN.m

  • 7/30/2019 FEM SLAB

    11/22

    AAPPPPLLIICCAATTIIOONN OOFF PPLLAATTEESS && SSHHEELLLLSS

    11

    3. AASSSSIIGGNNMMEENNTT 22 TTWWOO--WWAAYY SSLLAABBSS

    Problem Statement :

    1. Comparative study of two-way slabs bending moments using IS-456guidelines (Table 26) and finite element analysis.

    2. Convergence of results for slab with line loads.3. Effect on panel under consideration due to change in size of adjacent

    panel.

    Data :

    Slab Panel : 5m x 6m

    Loading : 10kN/m2

    Slab : 150mm

    Boundary condition : One short edge continuous (case 8)

    For the given problem we will start the meshing of panel from 1m x 1m and use

    mesh refinement for convergence.

    Analysis will be done using staad-prov8i software.

    Results

    Elementsizemxm

    No. ofElements

    BM MX+ve

    BM MY+ve

    BM MX-ve

    BM MY-ve

    % errorBM

    X+ve

    % errorBM

    Y+ve

    % errorBM Y-

    ve

    1.00 30 11.20 10.20 0.00 12.10 -31.70 -5.39 -17.77

    0.50 120 11.30 10.30 0.00 17.40 -30.53 -4.37 18.10

    0.25 480 11.40 10.40 0.00 20.90 -29.39 -3.37 31.82

    0.20 750 11.50 10.40 0.00 21.70 -28.26 -3.37 34.33

    0.10 3000 11.50 10.45 0.00 23.20 -28.26 -2.87 38.58

    IS-456 14.75 10.75 0.00 14.25

    Convergence

    -60.00

    -40.00

    -20.00

    0.00

    20.00

    40.00

    60.00

    0 500 1000 1500 2000 2500 3000 3500

    No. of Elements

    %Erro MX+ve

    My +ve

    MY -ve

  • 7/30/2019 FEM SLAB

    12/22

    AAPPPPLLIICCAATTIIOONN OOFF PPLLAATTEESS && SSHHEELLLLSS

    12

  • 7/30/2019 FEM SLAB

    13/22

    AAPPPPLLIICCAATTIIOONN OOFF PPLLAATTEESS && SSHHEELLLLSS

    13

  • 7/30/2019 FEM SLAB

    14/22

    AAPPPPLLIICCAATTIIOONN OOFF PPLLAATTEESS && SSHHEELLLLSS

    14

    Conclusion :

    For the given case, the mesh refinement converges the positive X and Y

    moments for size 0.25m x 0.25m.

    From the results it can be concluded that the positive moments from IS-

    456 table is higher than results from finite elements analysis after

    convergence.

    For negative Y moments the results crosses the exact solution for element

    size between 1.0m x 1.0m to 0.5m x 0.5m.

    So for negative moments further mesh refinement add to positive error

    and the results of finite element analysis are more than the one calculated

    from IS-456, which is exactly opposite of the case with positive moments.

    Also on changing the size of adjacent panel by half of the original, there is

    decrease in negative moments at support and increase in mid span

    moments.

  • 7/30/2019 FEM SLAB

    15/22

    AAPPPPLLIICCAATTIIOONN OOFF PPLLAATTEESS && SSHHEELLLLSS

    15

    4. AASSSSIIGGNNMMEENNTT 33 CCAANNTTIILLEEVVEERR BBEEAAMM

    Problem Statement :

    Convergence of results for cantilever beam with concentrated load at end.

    Data :

    Beam span : 3m

    Loading : 10kN at free end

    Size : 300x600mm

    For the given problem we will start meshing size from 0.2m x 0.2m and furtherrefinement will be done to get the convergence.

    Results :

  • 7/30/2019 FEM SLAB

    16/22

    AAPPPPLLIICCAATTIIOONN OOFF PPLLAATTEESS && SSHHEELLLLSS

    16

    Element sizemxm

    No. ofElements

    BMkN.m

    %errorBM

    0.2mx0.2m 45 25.8 -16.500.15mx0.15m 80 27.4 -9.550.10mx0.1m 180 28.6 -4.730..05mx0.5m 720 29.511 -1.66

    Convergence

    -20.00

    -15.00

    -10.00

    -5.00

    0.00

    0 100 200 300 400 500 600 700 800

    No. of Elements

    %Erro

    BM

    Conclusion :

    For the given problem we can conclude that the result for bendingmoments converges to exact solution for the plate size of 0.05m x 0.05m.

    Also the results vary for different width of beam, here we tried to convergethe results for beam size of 300x600mm

    The results for width other than 300mm, the bending moments aredifferent for same number of elements.

    Hence unlike classical solution, where we dont take the effect of width incalculation of bending moments, in finite element analysis the width of

    beam influences the bending moments.

  • 7/30/2019 FEM SLAB

    17/22

    AAPPPPLLIICCAATTIIOONN OOFF PPLLAATTEESS && SSHHEELLLLSS

    17

    5. AASSSSIIGGNNMMEENNTT 44 WWAATTEERR TTAANNKKSS

    Problem Statement :

    Comparison of .moments, shear and hoop forces for water tanks using FEMand IS-3370.a) Rectangular tanksb) Cylindrical tanks

    Data :

    a) Rectangular tanks

    Tank size : 3.75m x 5.0m hieght

    Loading : 50kN/m

    Wall: 150mm

    For the given problem we will use the meshing of panel 0.25m x 0.25m as we

    have concluded this size from above examples

  • 7/30/2019 FEM SLAB

    18/22

    AAPPPPLLIICCAATTIIOONN OOFF PPLLAATTEESS && SSHHEELLLLSS

    18

  • 7/30/2019 FEM SLAB

    19/22

    AAPPPPLLIICCAATTIIOONN OOFF PPLLAATTEESS && SSHHEELLLLSS

    19

    Vertical Table 1

    y = 0 (Centre) y = b/4 (Quarter ) y = b/2 (at wall)

    b/H x/H MY staad %error MY staad %error MY staad %error

    0.75 0 0.00 0.49 100.00 0.00 0.08 100.00 0.00 -0.36 100.00

    1/4 1.25 1.65 24.24 0.00 0.42 100.00 -2.50 -1.84 -35.87

    1/2 6.25 4.80 -30.21 2.50 1.68 -48.81 -5.00 -3.59 -39.31

    3/4 11.25 10.00 -12.50 6.25 4.75 -31.58 -6.25 -3.90 -60.46

    1 0.00 3.55 100.00 0.00 2.12 100.00 0.00 -0.72 100.00

    Horizontal Table 1

    y = 0 (Centre) y = b/4 (Quarter ) y = b/2 (at wall)

    b/H x/H MX staad %error MX staad %error MX staad %error

    0.75 0 0.00 1.02 100.00 0.00 0.15 100.00 0.00 -1.23 100.00

    1/4 7.50 6.68 -12.28 2.50 1.06 -135.85 -15.00 -10.91 -37.45

    1/2 13.75 12.90 -6.59 3.75 2.48 -51.27 -27.50 -21.53 -27.76

    3/4 13.75 14.02 1.93 6.25 3.93 -59.03 -31.25 -24.42 -27.951 0.00 2.54 100.00 0.00 1.09 100.00 0.00 -3.52 100.00

    Vertical Table 2

    y = 0 (Centre) y = b/4 (Quarter ) y = b/2 (at wall)

    b/H x/H MY staad %error MY staad %error MY staad %error

    0.75 0 0.00 -0.15 100.00 0.00 -0.11 100.00 0.00 -0.59 100.00

    1/4 1.25 1.00 -25.00 0.00 -0.27 100.00 -3.75 -2.21 -69.68

    1/2 6.25 4.34 -44.11 2.50 1.42 -75.56 -5.00 -3.64 -37.36

    3/4 12.50 14.02 10.83 7.50 4.71 -59.40 -6.25 -3.89 -60.59

    1 0.00 3.55 100.00 0.00 2.12 100.00 0.00 -0.72 100.00

    Horizontal Table 2y = 0 (Centre) y = b/4 (Quarter ) y = b/2 (at wall)

    b/H x/H MX staad %error MX staad %error MX staad %error

    0.75 0 6.25 5.35 -16.82 1.25 0.75 -66.67 -10.00 -6.42 -55.69

    1/4 10.00 8.11 -23.30 2.50 0.89 -179.64 -16.25 -12.86 -26.38

    1/2 13.75 13.13 -4.72 5.00 2.39 -109.21 -27.50 -21.76 -26.36

    3/4 15.00 9.89 -51.67 5.00 3.91 -27.91 -32.50 -24.45 -32.92

    1 0.00 2.54 100.00 0.00 1.09 100.00 0.00 -3.52 100.00

    Vertical Table 3

    y = 0 (Centre) y = b/4 (Quarter ) y = b/2 (at wall)

    b/H x/H MY staad %error MY staad %error MY staad %error

    0.75 0 0.00 -0.12 100.00 0.00 -0.09 100.00 0.00 -0.61 100.00

    1/4 1.25 0.91 -36.91 0.00 -0.05 100.00 -2.50 -2.51 0.40

    1/2 6.25 5.13 -21.83 2.50 2.00 -25.00 -3.75 -3.26 -15.03

    3/4 8.75 7.76 -12.76 3.75 4.00 6.25 -3.75 -2.77 -35.38

    1 -30.00 -20.67 -45.14 -18.75 -11.91 -57.43 0.00 -1.07 100.00

    Horizontal Table 3

    y = 0 (Centre) y = b/4 (Quarter ) y = b/2 (at wall)

    b/H x/H MX staad %error MX staad %error MX staad %error

    0.75 0 5.00 5.37 6.82 1.25 0.75 -66.67 -8.75 -6.57 -33.18

    1/4 10.00 7.87 -27.10 2.50 0.97 -157.73 -13.75 -12.54 -9.65

    1/2 12.50 11.74 -6.48 3.75 2.47 -51.82 -21.25 -19.79 -7.39

    3/4 8.75 9.72 9.98 3.75 3.19 -17.55 -16.25 -17.81 8.75

    1 -6.25 -3.18 -96.36 -3.75 -1.85 -103.14 0.00 -1.07 100.00

  • 7/30/2019 FEM SLAB

    20/22

    AAPPPPLLIICCAATTIIOONN OOFF PPLLAATTEESS && SSHHEELLLLSS

    20

    Conclusion :

    For the water tank wall panels, with the given panel ratio and wallthickness the results are having 50% error

    This error may be due to the fact that IS-3370 coefficients does not takeinto effect the thickness of wall panel of tank apart from the width andheight.

    b) Cylindrical tanks

    Tank size : 5m (Height) x 6m (Radius)

    Loading : 50kN/m

    Wall: 150mm

    Boundary conditions : Top of tank Free and bottom hinged

    IS 3370 : Table 12,13 and 14.

    Results

    Hoop Tension IS 3370 Moment My IS 3370

    7.95 -0.03 -0.01 0.00

    37.05 29.38 -0.02 0.00

    66.60 59.10 -0.06 0.00

    97.65 89.75 -0.13 -0.13

    131.40 122.55 -0.18 -0.13

    168.60 159.47 -0.04 -0.12

    206.10 197.78 0.56 0.03

    230.40 228.12 1.89 1.53229.35 225.07 2.78 3.29

    119.85 153.30 3.66 4.17

    42.75 0.00 1.57 0.00

  • 7/30/2019 FEM SLAB

    21/22

    AAPPPPLLIICCAATTIIOONN OOFF PPLLAATTEESS && SSHHEELLLLSS

    21

    Vertical Moments

    0

    1

    2

    3

    4

    5

    6

    -1.00 0.00 1.00 2.00 3.00 4.00 5.00

    kNm

    mt.

    IS 3370

    Staad

    Hoop Tension

    0

    1

    2

    3

    4

    5

    6

    -100.00 0.00 100.00 200.00 300.00

    kN

    mt.

    IS 3370

    Staad

  • 7/30/2019 FEM SLAB

    22/22

    AAPPPPLLIICCAATTIIOONN OOFF PPLLAATTEESS && SSHHEELLLLSS

    Conclusion:

    For the given case, the results of staad pro and IS 3370 coefficients

    are nearly same with negligible, 1% error in case of hoop tension and

    about 13% error in moments.