figure 9-1. schematic representation of the hydrologic cycle. numbers in parentheses are the volume...

49
T able 9-1.In ventory of w ater at the earth’s surface R eservoir V olum e 10 6 km 3 % ofT otal O ceans 1400 95.96 M ixed layer 50 Therm ocline 460 A byssal 890 Ice caps and glaciers 43.4 2.97 G round w ater 15.3 1.05 Lakes 0.125 0.009 Rivers 0.0017 0.0001 Soil m oisture 0.065 0.0045 A tm osphere 0.0155 0.001 T errestrial 0.0045 O ceanic 0.0110 B iosphere 0.002 0.0001 T otal 1459

Upload: suzanna-hood

Post on 28-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Table 9-1. In ventory of water at the earth’s surface

ReservoirVolume106 km3 % of Total

Oceans 1400 95.96

Mixed layer 50

Thermocline 460

Abyssal 890

Ice caps and glaciers 43.4 2.97

Ground water 15.3 1.05

Lakes 0.125 0.009

Rivers 0.0017 0.0001

Soil moisture 0.065 0.0045

Atmosphere 0.0155 0.001

Terrestrial 0.0045

Oceanic 0.011 0

Biosphere 0.002 0.0001

Total 1459

Figure 9-1. Schematic representation of the hydrologic cycle. Numbers in parentheses are the volume of water (106 km3) in each reservoir. Fluxes are given in 106 km3 y-1.

Table 9-2. Decomposition reactions for common primary minerals

Mineral Co mposition

CommonlyOccur inRock-type(s) Reaction

Olivine (Mg,Fe)SiO4 Igneous O xidation of FeCongruent d issolution by acids

Pyro xenes (Mg,Fe)SiO3

Ca(Mg,Fe)Si2O6

Igneous O xidation of FeCongruent d issolution by acids

A mphiboles Ca2(Mg,Fe)5Si8O22(OH)2

(also some Na and Al)IgneousMetamorphic

O xidation of FeCongruent d issolution by acids

Plagioclase feldspar

NaAlSi3O8 to CaAl2Si2O8 IgneousMetamorphic

Incongruent d issolution by acids

K-feldspar KAlSi3O8 IgneousMetamorphicSedimentary

Incongruent d issolution by acids

Biotite K(Mg,Fe)3(AlSi3O10)(O H)2 MetamorphicIgneous

Incongruent d issolution by acidsO xidation of Fe

Muscovite KAl3Si3O10(OH)2 Metamorphic Incongruent d issolution by acids

Volcanic glass(not a mineral)

Ca,Mg,Na,K,Al,Fe-silicate Igneous Incongruent d issolution by acidsIncongruent d issolution by water

Quartz SiO2 IgneousMetamorphicSedimentary

Resistant to dissolution

Calcite CaCO3 Sedimentary Congruent d issolution by acids

Dolomite CaMg(CO3)2 Sedimentary Congruent d issolution by acids

Pyrite FeS2 Sedimentary O xidation of Fe and S

Gypsum CaSO42H2O Sedimentary Congruent d issolution by water

Anhydrite CaSO4 Sedimentary Congruent d issolution by water

Halite NaCl Sedimentary Congruent d issolution by water

Table 9-3. Mineral weatherability listed in orderof increasing resistance to weathering

Halite

Gypsum, anhydrite

Pyrite

Calcite

Dolomite

Volcanic glass

Olivine

Ca-plagioclase

Pyroxenes

Ca-Na plagioclase

Amphibo les

Na-plagioclase

Biotite

K-feldspar

Muscovite

Vermiculite, s mectite

Quartz

Kaolinite

Gibbsite, hematite, goethite

Table 9-4. Weathering reactions an d free energies per gram atom

Mineral Weathering reactionΔG o

RkJ mol-1

ΔG oR

kJ (g atom)-1

Fayalite Fe2SiO4 + 1

2O

2 Fe2O3 + SiO2 -220.5 -27.53

Forsterite Mg2SiO4 + 4H+ 2Mg2+ + 2H2O + SiO2 -184.1 -16.74

Clinoenstatite MgSiO3 + 2H+ Mg2+ + H2O + SiO2 -87.4 -12.47

Diopside CaMgSi2O6 + 4H+ Mg2+ + Ca2+ + 2H2O + 2SiO2 -159.4 -11.38

Anthophyllite Mg7Si8O22(OH)2 + 14H+ 7Mg2+ + 8H2O + 8SiO2 -574.0 -10.42

Tremolite Ca2Mg5Si8O22(OH)2 + 14H+ 5Mg2+ + 2Ca2+ + 8H2O + 8SiO2 -515.5 -9.37

Anorthite CaAl2Si2O8 + 2H+ + H2O Al2Si2O5(OH)4 + Ca2+ -100.0 -5.52

Albite 2NaAlSi3O8 + 2H+ + H2O Al2Si2O5(O H)4 + 4SiO2 + 2Na+ -96.7 -3.14

Microcline 2KAlSi3O8 + 2H+ + H2O Al2Si2O5(O H)4 + 4SiO2 + 2K+ -72.4 -1.34

Muscovite 2KAl3Si3O10(OH)2 + 2H+ + 3H2O 2K+ + 3Al2Si2O5(OH)4 -72.4 -1.34

Table 9-4. Weathering reactions an d free energies per gram atom

Weathering reactionΔG o

RkJ mol-1

ΔG oR

kJ (g atom)-1

Fe2SiO4 + 1

2O

2 Fe2O3 + SiO2

Mg2SiO4 + 4H+ 2Mg2+ + 2H2O + SiO2

Figure 9-2. Solubility, at 25oC, of quartz and amorphous silica as a function of pH. pH = 9.83 and pH = 13.17 correspond to the first and second dissociation constants, respectively, of silicic acid.

Table 9-5. Constants for Al an d Fe33++ solu bility calculations at 25ooC

Phase pKsp pKβ1pKβ2

pKβ3pKβ4

Al(OH)3 (am) 31.2 5.00 10.1 16.9 22.7

Al(OH)3 gibbsite 33.9 5.00 10.1 16.9 22.7

Fe(OH)3 (am) 37.1 2.19 5.67 12.56 21.6

Fe(OH)3 goeth ite 44.2 2.19 5.67 12.56 21.6

pKo pK1 pK2 pK3 pK4

Kaolinite -3.72 1.28 6.38 13.18 18.98

pKβ1pKβ2

pKβ3pKβ4

5.00 10.1 16.9 22.7

Figure 9-3. Total concentration of aluminum in solution, as a function of pH, for a solution in equilibrium with gibbsite.

Table 9-6. Thermodynamic data for stability diagram calculations

Species or mineralΔG o

R

kJ mol-1 Source

Na+ -261.9 Robie et al. (1978)

K+ -282.5 Robie et al. (1978)

Ca2 + -553.5 Robie et al. (1978)

H2O -237.15 Robie et al. (1978)

H4SiO4 (aq) -1308.0 Robie et al. (1978)

Quartz [SiO2] -856.3 Robie et al. (1978)

Amorphous SiO2 -849.1 Drever (1997)

Albite [NaAlSi3O8] -3711.7 Robie et al. (1978)

Microcline [KAlSi3O8] -3742.3 Robie et al. (1978)

Anorthite [CaAl2Si2O8] -4017.3 Robie et al. (1978)

Muscovite [KAl3Si3O10(OH)2] -5600.7 Robie et al. (1978)

Kaolinite [Al2Si2O5(OH)4] -3799.4 Robie et al. (1978)

Pyrophyllite [Al2Si4O10(OH)2] -5269.3 Garrels (1984)

Gibbsite [Al(OH)3] -1159.0 Garrels (1984)

Illite [K0 .8Al1.9(Al0 .5Si3.5)O1 0(OH)2] -5471.8 Garrels (1984)

Na-beidellite [Na0 .33Al2 .33Si3 .67O10(OH)2] -5368.1 Langmuir (1997)

Ca-beidellite [Ca0.1 67Al2 .33Si3.67O10(OH)2] -5371.6 Calculated

Montmorillonite [K0.3Al1.9Si4O10(OH)2] -5303.2 Garrels (1984)

Table 9-6. Thermodynamic data for stability diagram calculations

ΔG oR

kJ mol-1

Figure 9-4a. Equilibrium equations 9-16 to 9-20 plotted on a log([Na+]/[H+]) versus log[H4SiO4 (aq)] diagram. Numbers on the diagram indicate corresponding equations in the text.

Figure 9-4b. Mineral stability fields as delineated by equilibrium equations plotted in Figure 9-4a. The labeled curve indicates the changes in chemistry of a solution in equilibrium with albite during weathering in a closed system. See text for discussion.

Table 9-7. Compositions of selected surface an d groun d waters

Concentration (mg L-1)

Ca2+ Mg2+ Na+ K+ Cl- SO 24 HCO

3 SiO2 TDS Ref

River

Colorado 83 24 95 5.0 82 270 135 9.3 703 1

Columbia 19 5.1 6.2 1.6 3.5 17.1 76 10.5 139 1

Mississippi 39 10.7 17 2.8 19.3 50.3 117 7.6 265 1

Rio Grande 109 24 117 6.7 171 238 183 30 881 2

U. Rhine 41 7.2 1.4 1.2 1.1 36 114 3.7 307 3

U. Amazon 19 2.3 6.4 1.1 6.5 7.0 68 11.1 122 4

L. Amazon 5.2 1.0 1.5 0.8 1.1 1.7 20 7.2 38 4

L. Negro 0.2 0.1 0.4 0.3 0.3 0.2 0.7 4.1 6 4

Za mbeze 9.7 2.2 4.0 1.2 1 3 25 12 58 1

Nile 25 7.0 17 4.0 7.7 9 134 21 225 1

Ganges 25.4 6.9 10.1 2.7 5 8.5 127 8.2 194 5

Yellow 42 17.7 55.6 2.9 46.9 71.7 182 5.1 424 6

Groun d water(dominant rock)

Central Florida(carbonate)

34 5.6 3.2 0.5 4.5 2.4 124 12 - 7

Central Pennsylvania(carbonate)

83 17 8.5 6.3 17 27 279 - - 8

Montana (sandstone) 3.0 7.4 857 2.4 71 1.6 2080 16 3098 9

New Me xico(gypsum)

636 43 17 - 24 1570 143 29 2480 9

California(serpentine)

34 242 184 18 265 6.6 1300 175 2226 9

Rhode Island(granite)

6.5 2.6 5.9 0.8 5 0.9 38 20 82 9

Maryland (gabbro) 5.1 2.3 6.2 3.2 1.0 9.2 37 39 109 9

Hawaii (basalt) 17 42 38 3.1 63 15 84 18 251 9

New Me xico(rhyolite)

6.5 1.1 38 2 17 15 77 103 222 10

North Carolina( mica schist)

17 1.7 6.4 1 1.1 6.9 69 29 98 10

West Virginia(sand and gravel)

58 13 23 2.8 39 116 101 10 338 10

Alabama (limestone) 46 4.2 1.5 0.8 3.5 4.0 146 8.4 222 10

Concentration (mg L-1)

SO 24 HCO

3

Figure 9-5. Stiff diagram for Columbia and Rio Grande river waters and Central Pennsylvania groundwater. See text for discussion

Figure 9-6. Piper diagram for Columbia and Rio Grande river waters and Central Pennsylvania groundwater. See text for discussion.

Figure 9-7. Hydrochemical facies. After Back (1966).

Figure 9-8a. Plot of total dissolved solids versus relative cation abundances for surface waters. Filled circles are river, unfilled circles are lake, and pluses are ocean waters. From R. J. Gibbs (1970).

Figure 9-8b. Plot of total dissolved solids versus relative anion abundances for surface waters. Filled circles are river, unfilled circles are lake, and pluses are ocean waters. From R. J. Gibbs (1970).

Figure 9-9. Graphical representation of the processes that control the chemistry of surface waters. See text for discussion. From R. J. Gibbs (1970).

Table 9-8 . Stallard an d Edmon d (1983) river classification

Type

TotalCationicCharge

(µeq L-1)~TDS

(mg L-1)

Predo minantSource-Rock

Type

CharacteristicWater

Chemistry( mole ratios) Examples

GibbsCategory

1 < 200 <20 Intenselyweathered (cation-poor) siliceousrocks and soils(thick regolith)

Si-enriched; lowpH; Si/(Na + K) =2; high Na/(Na +Ca)

A mazontributaries

Atmosphere-precipitationcontrolled

2 200-450 20-40 Siliceous (cation-rich); igneousrocks and shales(sed imentarysilicates)

Si-enriched;(higher Si fromigneous andmetamorphicrocks); Si/(Na +K) = 2;intermediateNa/(Na + Ca)

L.A mazonOrinocoZaire

Betweenatmosphere-precipitationcontrolled androck-dominated

3 450-3000 40-250 Marine sediments;carbonates, pyrite;minor evaporites

Na/Cl = 1; (Ca +Mg)/(0.5HCO3 +SO4) = 1; lowNa/(Na + Ca)

Mostmajorrivers

Rock-weatheringdominated

4 >3000 >250 Evaporites; CaSO4

and NaClNa/Cl = 1; (Ca +Mg)/(0.5 H CO3 +SO4) = 1; highNa/(Na + Ca)

RioGrande

Evaporation-crystallization

Table 9-9. Sources of major elements in river water (%)

Atmosphere Weathering

Species Cyclic Salt Carbonates Silicates Evaporites Pollution

Ca 2+ 0.1 65 18 8 9

HCO 3 <<1 61 37 0 2

Na+ 8 0 22 42 28

Cl- 13 0 0 57 30

SO 24 2 0 0 22 54

Mg2+ 2 36 54 << 1 8

Na+ 1 0 87 5 7

H4SiO4 <<1 0 >99 0 0

Ca 2+

HCO 3

Na+

Cl-

SO 24

Mg2+

Figure 9-10. Simplified groundwater system showing the movement of water through the system. See text for discussion.

Figure 9-11. Mole ratio of Na+/Ca2+ versus mole ratio of HCO2-/SiO2 (aq) for waters

from various types of igneous rocks. Most of the waters plot between the theoretical curves for incongruent dissolution of plagioclase to montmorillonite and the incongruent dissolution of plagioclase to kaolinite. See text for discussion. From Garrels (1967).

Figure 9-12. Plot of Ca2+ + pH versus SiO2 for various groundwater samples. Stability boundaries for various phases are shown in the diagram. Solid curves with arrows indicate evolution of groundwater chemistry for systems open or closed with respect to atmospheric CO2. See text for discussion. From Garrels (1967).

Table 9-10. Origin of major aqueous s pecies in groun d water

Aqueous species Origin

Na+ NaCl d issolution (some pollution)

Plagioclase weathering

Rainwater addition

K+ Biotite weathering

K-feldspar weathering

Mg2+ A mphibole and pyroxene weathering

Biotite (and chlorite) weathering

Dolo mite weathering

Olivine weathering

Rainwater addition

Ca2+ Calcite weathering

Plagioclase weathering

Dolo mite weathering

HCO 3 Calcite and dolomite weathering

Silicate weathering

SO 24 Pyrite weathering (some pollution)

CaSO4 dissolution

Rainwater addition

Cl- NaCl d issolution (some pollution)

Rainwater addition

H4SiO4 (aq) Silicate weathering

HCO 3

SO 24

Figure 9-13. Generalized depth-temperature profiles for a midlatitude lake during the summer and winter.

Figure 9-14. Two-compartment box model for a lake. See text for details.

Figure 9-15. Variations in the concentration of the various carbonate species as a function of pH, in freshwater at a temperature of 25oC, given a total carbonate concentration of 1 x 10-3 mol L-1. For these conditions the carbonate system loses its buffering capacity at pH = 4.65.

Table 9-11. Point of zero net proton charge

Material pHpznpc Material pHpznpc

α-Al(OH)3 5.0 δ-MnO2 2.8

γ-AlOOH 8.2 SiO2 2.0

Fe 3O4 6.5 Feldspars 2 - 2.4

α-FeOOH 7.8 Kaolinite 4.6

α-Fe 2O3 8.5 Montmorillonite 2.5

Fe(OH)3 (am) 8.5 Albite 2.0

Figure 9-16. Adsorption of metal cations as a function of pH. From AQUATIC CHEM ISTRY, 3 rd Edition by W. Stumm and J. J. Morgan. Copyright 1996. This material is used by permission of John Wiley & Sons, Inc.

Table 9-12. Size ranges for colloidal particles in natural waters

SampleA mount( mg L-1)

Size observed(µm)

Size peaks(µm)

Rainwater 0.006 0.08

Northern Pacific Ocean 0.38 - 1

Gulf of Me xico 0.02 - 8

Biscaye Bay 0.5 - 150

Lake 0.04 - 0.4 0.1

Chuckawa Creek 50 0.3 - 1.3 0.2

Mississippi River 350 0.3

Yarra River 1 - 10 0.1 - 0.5 0.22

Noiraigue spring 0.5 - 10 0.5 - 60 0.8 - 1

Ground water (Gorleben) 0.005 - 0.01

Ground water (Grimsel) 0.1 0.04 - 1

Figure 9-17. Partitioning of monovalent and divalent cations between solution and adsorber. Concentrations are given as an equivalent fraction of Na. Kna/Ca = 0.5. The divalent cation is much more strongly adsorbed in the low ionic strength (low normality) solution.

Figure 9-18. Relative transport distances in a groundwater system for a nonadsorbed tracer species and an adsorbed species. C/C o is the measured concentration of the species relative to its original concentration at distance x. Note that the concentration of the species varies with distance because of dispersion.

Table 9-13. S olubility products of some metal oxalates

Metal oxalate T (oC) pKsp

Cd 2C2O4·3H2O 25 7.85

CaC2O4·H2O 25 8.59

CuC2O4 25 7.54

PbC2O4 25 9.07

MgC2O4·2H2O 25 5.32

MnC2O4·2H2O 25 6.77

Ag2C2O4 25 11.27

Hg2C2O4 25 12.76

SrC2O4·H2O 18 7.25

ZnC2O4·2H2O 25 8.86

Figure 9-19. Interaction between various earth reservoirs. Adapted from Larocque and Rasmussen (1998).

Figure 9-20. Human impact on the “metal cycle”. Adapted from Larocque and Rasmussen (1998).

Figure 9-21. Present-day mercury cycle. The fluxes are given in Mmol L-1. HgP represents mercury adsorbed to particles. Anthropogenic inputs are approximately 20 Mmol y-1; half is returned to the surface close to the source and the other half is transferred to the atmosphere as volatile mercury. Adapted from Mason et al. (1994).

Table 9-14. Igeogeo classes and sediment quality

Igeo Class Sediment Quality

0 Unpolluted

1 Unpolluted to moderately polluted

2 Moderately polluted

3 Moderately to highly polluted

4 Highly polluted

5 Highly to very highly polluted

6 Very highly po lluted

Figure 9-22. The nuclear fuel cycle. Modified from Faure (1998).

Table 9-15. Representative radioactive isotopes for nuclear wastes

Isotope Half-lifeDecaymode Isotope Half-life

Decaymode

Fission products Fission products

85Kr 10.8 y β 137Cs 30 y β

89Sr 51 d β 141Ce 33 d β

90Sr 28 y β 147P m 2.6 y β

95Zr 64 d β

95Nb 35 d β Transuranics

99Tc 2.1 x 105 y β 237Np 2.1 x 106 y α

106Ru 1 y β 239Pu 2.4 x 104 y α

131I 8 d β 240Pu 6.6 x 103 y α

133Xe 5.2 d β 241A m 433 y α

Figure 9-23a. Radioactivity as a function of time after removal of a fuel element from a power reactor. Curves are drawn for both SURF and HLW (after reprocessing) and the two types of radioactive components, fission products and actinides (Th, Pa, U, Np, Pu, Am, and Cm). The data are for a pressurized water reactor (PWR) with a fuel burn-up of 33 GW-day tonne-1 normalized to 1 metric ton of heavy metal in the original fuel element. TBq = 1012 Bq. Plotted from the data of Roxburgh (1987).

Figure 9-23b. Heat production as a function of time, after a five-year cooling period, for SURF and HLW. The data are for a pressurized water reactor (PWR) with a fuel burn-up of 33 GW-day tonne-1 normalized to 1 metric ton of heavy metal in the original fuel element. Plotted from the data of Roxburgh (1987).

Table 9-16. Estimates of solubilities (mg L-1-1) of importantradioisotopes at 25ooC an d 1 atm

Reducing conditions Oxidizing cond itions

Eh = -0.2V Eh = +0.2V

Ele ment pH 9 pH 6 pH 9 pH 6

Sr 0.6 high 0.6 high

Cs high high high high

Tc 10-10 high high high

I high high high high

U 10-3 10-6 high high

Np 10-4 10-4 10-2 10-1

Pu 10-5 10-4 10-5 10-3

Am 10-8 10-5 10-8 10-5

Ra 10-3 10-1 10-3 10-1

Pb 10-1 1 10-1 1

Table 9 -17 . Retardation factors for radioactive isotopes in various geomedia

Element Granite Basalt Volcanic ash Shale (or clay)

Sr 20 - 4000 50 - 3000 100 - 100000 100 - 100000

Cs 200 - 100000 200 - 100000 500 - 100000 200 - 100000

Tc 1 - 40 1 - 100 1 - 100 1 - 40

I 1 1 1 1

U 40 - 500 100 - 500 40 - 400 100 - 2000

Np 20 - 500 20 - 200 20 - 200 50 - 1000

Pu 20 - 2000 20 - 10000 20 - 5000 50 - 100000

Am 500 - 10000 100 - 1000 100 - 1000 500 - 100000

Ra 50 - 500 50 - 500 100 - 1000 100 - 200

Pb 20 - 50 20 - 100 20 - 100 20 - 100

Table 9-18. Classification of organic compoun ds in natural waters

Examples

Class Name Naturally Occurring Anthropogenic

1 Miscellaneousnonvolatilecompounds

Fulvic acid, humic acid,chlorophyll, xanthophylls, enzymes

Tannic acids, dyes, opticalbrighteners

2 Halogenatedhydrocarbons

Solvents (methylene chloride,chloroform, carbon tetrachloride),pesticides (aldrin, DDT, dieldrin),industrial chemicals (vinyl chloride,methyl chloride, PCBs)

3 Amino acids Glycine, alanine, aspartic acid

4 Phosphorouscompounds

Pesticides (diazinon, malathion,parathion)

5 Organometalliccompounds

Tetraethyllead, diethylmercury,copper phthalocyanine

6 Carboxylic acid Acetic acid, benzoic acid, butyricacid, formic acid

Acetic acid , benzoic acid, butyricacid, formic acid , phenoxy aceticpesticides (2,4-D, silvex, 2,4,5-T)

7 Phenols Phenol, cresol, p-hydroxybenzoicacids

Cresol, phenol, pyrocatechol,napthol, pesticides (dinitrocresol,2,4-dinitrophenol)

8 Amines Diethylamine, dimethylamine,benzidine, pyridine

9 Ketones Acetone, 2-butane, methyl propenyl

10 Aldehydes Formaldehyde

11 Alcohols Methanol, glycerol, terpinol,ethyleneglycol

12 Esters Dimethrin, omite, vinyl acetate

13 Ethers Diethyl ether, diphenyl ether Tetrahydrofuran, 1,4-dioxane

14 PAHs Anthracene, benzo[a]pyrene

15 Aromatichydrocarbons

Benzene, ethylbenzene, toluene Benzene, ethylbenzene, toluene

16 Alkanes, alkenesand alkynes

Methane, propane, propene, 2-hexene, 2-hexyne

Methane, propane, propene, 2-he xene, 2-hexyne

Figure 9-24. Solubility of fluorite at 25oC as a function of F- and Ca2+ concentrations. See text for discussion.

Figure 9-25. Binary mixture of groundwater (0.05 mg L-1 Br and 5 mg L-1 Cl) and brine (1 mg L-1 Br and 10,000 mg L-1 Cl). Labeled points are fraction of brine in the mixture. Groundwater samples from an aquifer (filled squares) fall along this line, suggesting they represent mixtures of uncontaminated groundwater and brine. The maximum amount of brine in the groundwater is approximately 31%.

Figure 9-26. The terrestrial nitrogen cycle. DON = dissolved organic nitrogen; DIN = dissolved inorganic nitrogen; PN = particulate nitrogen: PON = particulate organic nitrogen; N = total nitrogen. From Berner and Berner (1996).

Table 9 -19 . Trophic status of lakes

Total P(µg L-1)

Chlorophyll a(µg L-1)

Ultraoligotrophic <4 <1.0

Oligotrophic 4 - 10 1.0 - 2.5

Mesotrophic 10 - 35 2.5 - 8

Eutrophic 35 - 100 8 - 25

Hypertrophic >100 >25

Figure 9-27. Total nitrogen (as nitrate) and phosphorus (as phosphate) for selected rivers. Area enclosed by dashed lines represents unpolluted rivers. The diagonal lines represent constant N/P ratios (atomic). N/P = 16 is the Redfield ratio. From Berner and Berner (1996).

Figure 9-C2-1. Piper diagram showing the compositions of the mine and lake discharges and the mixed stream water. From Foos (1997).

Figure 9-C3-1. Piper diagram showing chemical evolution of groundwater in the Floridian aquifer from recharge areas to discharge areas. From Back and Hanshaw (1970).

Figure 9-C8-1. pH, redox, and hydrological characteristics of a typical acid sulfate soil. After Åström (2001).