fike p/n 06-153 micromist design manual

Upload: vizion2k4

Post on 05-Jul-2018

866 views

Category:

Documents


132 download

TRANSCRIPT

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    1/85

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    2/85

    REVISION HISTORY

    Manual P/N: 06-153

    Document Name: DESIGN, INSTALLATION, AND MAINTENANCE MANUALFOR MICROMIST

    Original release date of manual:................................................................................................................. April, 2000

    Revision / Description of Change Revision Date

    Revision A............................................................................................................................................February, 2003

    Revision 2 .................................................................................................................................................March, 20081) Add Revision History page and changed from revision letters to numbers2) Changed Cycle Time in Sections 2 and 33) Deleted Figures 2.3-A and 2.3-B in Section 2 page 6 of 104) Changed Duration of Protection for Turbine Generators to 10 minutes in Sections 1 and 55) Deleted Figure 5.9 in Section 5 page 8 of 86) Deleted reference to Cheetah and Cheetah Tracker, Added reference to Cheetah Xi and Xi 50 with

    C-Linx in Section 5 page 7 of 7

    7) Changed Pressures on N2 Cylinder Fill Chart in Section 7 page 3 of 48) Updated Parts List and Figures in Section 89) Changed Container fill capacity from 107 (405 L) gallons to 112 (424 L) gallons

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    3/85

      TABLE OF CONTENTS

    F.M. J.I. 3000746 Micromist  Table of Contents / Page 1 of 4Manual P/N: 06-153 Revision: 2

    Revision Date: March, 2008

    Page No.

    SECTION 1 ................................................................................................................................................. 3 Pages

    1.0 INTRODUCTION ...........................................................................................................................................1

    1.1 PURPOSE .....................................................................................................................................................2

    1.2 SYSTEM LIMITATIONS ................................................................................................................................21.3 OPERATING PRINCIPLES...........................................................................................................................3

    1.4 PERSONNEL SAFETY .................................................................................................................................3

    1.5 DEFINITIONS ................................................................................................................................................3

    SECTION 2 ............................................................................................................................................... 10 Pages

    2.0 EQUIPMENT .................................................................................................................................................1

    2.1 SYSTEM STRUCTURE.................................................................................................................................1

    2.1.1 70 Gallon (265 Liter) Micromist System ........................................................................................................2

    2.1.2 112 Gallon (424 Liter) Micromist System ......................................................................................................32.1.3 High-Pressure Side of System ......................................................................................................................4

    2.1.4 Regulator .......................................................................................................................................................4

    2.1.5 Low-Pressure Side of System .......................................................................................................................4

    2.1.6 Mounting Structure ........................................................................................................................................4

    2.2 NOZZLE ASSEMBLIES ................................................................................................................................5

    2.3 CONTROL PANEL........................................................................................................................................6

    2.4 CONTROL ACCESSORIES..........................................................................................................................7

    2.4.1 Detection........................................................................................................................................................7

    2.4.2 Control Modules.............................................................................................................................................7

    2.4.2.1 Fast Response Contact Monitor (FRCM)......................................................................................................7

    2.4.2.2 MINI Input Module (MIM) and Addressable Input Module (AIM)...................................................................7

    2.4.2.3 Supervised Output Module (SOM) ................................................................................................................7

    2.4.2.4 Solenoid Releasing Module (SRM) ...............................................................................................................8

    2.4.2.5 Duel Relay Module (R2M) .............................................................................................................................8

    2.4.3 Pressure Switch.............................................................................................................................................8

    2.5 MANUAL ACTIVATION ................................................................................................................................8

    2.6 PIPING NETWORK .......................................................................................................................................9

    2.7 CAUTION / ADVISORY SIGNS ....................................................................................................................9

    2.7.1 Water Mist Discharge Alarm (Exterior) – P/N 02-10262................................................................................9

    2.7.2 Water Mist Discharge Alarm (Interior) – P/N 02-10263.................................................................................9

    2.7.3 Water Mist Caution Sign – P/N 02-10264 ...................................................................................................10

    2.7.4 Water Mist System Release – P/N 02-10265..............................................................................................10

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    4/85

    TABLE OF CONTENTS

    Table of Contents / Page 2 of 4 Micromist  F.M. J.I. 3000746Revision: 2 Manual P/N: 06-153Revision Date: March, 2008

    SECTION 3 ............................................................................................................................................... 13 Pages

    3.0 DESIGN .........................................................................................................................................................1

    3.1 ELECTRICAL CLEARANCES ......................................................................................................................1

    3.2 DETECTOR REQUIREMENTS .....................................................................................................................1

    3.2.1 Design............................................................................................................................................................13.2.2 Detector Quantity and Spacing......................................................................................................................1

    3.3 SYSTEM SELECTION ..................................................................................................................................1

    3.3.1 Machinery Space ...........................................................................................................................................2

    3.2.1 Gas Turbine Space........................................................................................................................................2

    3.4 SYSTEM DESIGN – MACHINERY SPACES ...............................................................................................2

    3.4.1 Nozzle Layout ................................................................................................................................................3

    3.4.1.1 Nozzle Quantity .............................................................................................................................................3

    3.4.1.2 Nozzle Spacing..............................................................................................................................................3

    3.4.2 System Size Selection ...................................................................................................................................4

    3.4.3 Piping Network...............................................................................................................................................4

    3.4.3.1 Piping Layout .................................................................................................................................................4

    3.4.3.2 Determining Pipe Size...................................................................................................................................4

    3.5 SYSTEM DESIGN – GAS TURBINE SPACES ............................................................................................5

    3.5.1 Nozzle Layout ................................................................................................................................................6

    3.5.1.1 Nozzle Quantity .............................................................................................................................................6

    3.5.1.2 Nozzle Spacing..............................................................................................................................................7

    3.5.2 System Size Selection ...................................................................................................................................7

    3.5.3 Piping Network...............................................................................................................................................7

    3.5.3.1 Piping Layout .................................................................................................................................................7

    3.5.3.2 Determining Pipe Size...................................................................................................................................8

    3.6 PRESSURE DROP FACTORS AND EQUIVALENT LENGTHS .................................................................9

    3.6.1 Copper Tubing Tables ...................................................................................................................................9

    3.6.2 Stainless Steel Tubing Tables .....................................................................................................................11

    3.6.3 Stainless Steel Pipe Tables .........................................................................................................................13

    SECTION 4 ............................................................................................................................................... 24 Pages

    4.0 SAMPLE PROBLEMS ..................................................................................................................................1

    4.1 SAMPLE PROBLEMS – MACHINERY SPACES ........................................................................................1

    4.1.1 Problem Number 1 ........................................................................................................................................1

    4.1.1.1 Determining Hazard Volume .........................................................................................................................1

    4.1.1.2 Nozzle Quantity .............................................................................................................................................1

    4.1.1.3 Nozzle Spacing..............................................................................................................................................1

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    5/85

      TABLE OF CONTENTS

    F.M. J.I. 3000746 Micromist  Table of Contents / Page 3 of 4Manual P/N: 06-153 Revision: 2

    Revision Date: March, 2008

    4.1.1.4 System Size Selection ...................................................................................................................................2

    4.1.1.5 Piping Layout .................................................................................................................................................2

    4.1.1.6 Determining Pipe Size...................................................................................................................................3

    4.1.2 Problem Number 2 ........................................................................................................................................6

    4.1.2.1 Determining Hazard Volume .........................................................................................................................64.1.2.2 Nozzle Quantity .............................................................................................................................................7

    4.1.2.3 Nozzle Spacing..............................................................................................................................................7

    4.1.2.4 System Size Selection ...................................................................................................................................8

    4.1.2.5 Piping Layout .................................................................................................................................................8

    4.1.2.6 Determining Pipe Size...................................................................................................................................9

    4.2 SAMPLE PROBLEMS – GAS TURBINE SPACES ...................................................................................12

    4.2.1 Problem Number 1 ......................................................................................................................................12

    4.2.1.1 Determining Hazard Volume .......................................................................................................................12

    4.2.1.2 Nozzle Quantity ...........................................................................................................................................12

    4.2.1.3 Nozzle Spacing............................................................................................................................................13

    4.2.1.4 Piping Layout ...............................................................................................................................................14

    4.2.1.5 Determining Pipe Size.................................................................................................................................15

    4.2.2 Problem Number 2 ......................................................................................................................................16

    4.2.2.1 Determining Hazard Volume .......................................................................................................................16

    4.2.2.2 Nozzle Quantity ...........................................................................................................................................17

    4.2.2.3 Nozzle Spacing............................................................................................................................................17

    4.2.2.4 Piping Layout ...............................................................................................................................................18

    4.2.2.5 Determining Pipe Size.................................................................................................................................19

    SECTION 5 ................................................................................................................................................. 7 Pages

    5.0 SYSTEM INSTALLATION ............................................................................................................................1

    5.1 STORAGE CONTAINERS ............................................................................................................................1

    5.2 DISCHARGE PIPING CONNECTION...........................................................................................................1

    5.3 PIPING NETWORK MATERIALS.................................................................................................................1

    5.3.1 Tubing and Pipe.............................................................................................................................................1

    5.3.1.1 Recommended Tube Fittings ........................................................................................................................2

    5.3.2 Fitting Materials .............................................................................................................................................2

    5.3.3 Size Reductions.............................................................................................................................................2

    5.3.4 Pipe Joints .....................................................................................................................................................2

    5.4 INSTALLING MAIN DISCHARGE PIPING ...................................................................................................3

    5.5 NITROGEN VALVE CONNECTIONS ...........................................................................................................3

    5.5.1 70 Gallon (265 Liter) Nitrogen Valve Connection..........................................................................................4

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    6/85

    TABLE OF CONTENTS

    Table of Contents / Page 4 of 4 Micromist  F.M. J.I. 3000746Revision: 2 Manual P/N: 06-153Revision Date: March, 2008

    5.5.2 112 Gallon (424 Liter) Nitrogen Valve Connections......................................................................................5

    5.6 SOLENOID VALVE WIRING ........................................................................................................................6

    5.7 LIQUID LEVEL SWITCH WIRING ................................................................................................................7

    5.8 WATER TANK FILL PROCEDURE..............................................................................................................7

    5.9 PROGRAMMING THE CHEETAH CONTROL PANEL................................................................................7

    SECTION 6.0 ............................................................................................................................................... 2 Page

    6.0 FINAL SYSTEM CHECKOUT .......................................................................................................................1

    6.1 HAZARD AREA CHECK ..............................................................................................................................1

    6.1.1 Area Configuration.........................................................................................................................................1

    6.1.2 Area Security .................................................................................................................................................1

    6.1.3 Personnel Safety ...........................................................................................................................................1

    6.2 SYSTEM CHECK

    6.2.1 Containers .....................................................................................................................................................16.2.2 Discharge Piping............................................................................................................................................1

    6.2.3 Nozzles ..........................................................................................................................................................1

    6.2.4 Auxiliary Functions.........................................................................................................................................1

    6.2.5 Control Panel .................................................................................................................................................1

    SECTION 7 ................................................................................................................................................... 4 Page

    7.0 SYSTEM MAINTENANCE ............................................................................................................................1

    7.1 DISCHARGE PIPING ....................................................................................................................................1

    7.2 DISCHARGE NOZZLES ...............................................................................................................................17.3 NFPA 750 INSPECTION, MAINTENANCE, AND TESTING FREQUENCIES ............................................1

    7.4 RECHARGING OF NITROGEN CYLINDERS ..............................................................................................2

    7.4.1 Recharge Procedure .....................................................................................................................................2

    7.4.2 Quality Assurance..........................................................................................................................................3

    7.4.2 Nitrogen Cylinder Fill Chart ...........................................................................................................................3

    7.5 POST FIRE MAINTENANCE ........................................................................................................................4

    SECTION 8 ................................................................................................................................................. 6 Pages

    8.0 PARTS LIST..................................................................................................................................................18.1 MICROMIST SYSTEM PACKAGES.............................................................................................................1

    8.1.1 Micromist System Packages .........................................................................................................................1

    8.1.2 Micromist System Packages with Pressure Switch(s)...................................................................................1

    8.2 MICROMIST NOZZLES ................................................................................................................................1

    8.2.1 Micromist Nozzle Assemblies........................................................................................................................1

    8.3 MICROMIST SYSTEM SPARE PARTS .......................................................................................................2

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    7/85

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    8/85

      INTRODUCTION

    F.M. J.I. 3000746 Micromist  Section 1 / Page 1 of 3Manual P/N: 06-153 Revision: 2

    Revision Date: March, 2008

    1.0 INTRODUCTION

    Fike Corporation is proud to present the Fike Micromist Fire Suppression System. The Fike Micromist Systemis a self-contained, single fluid, pre-engineered, water mist fire suppression system for total compartmentprotection of machinery spaces and gas turbine spaces.

    Micromist is an intermediate pressure, 175 to 500 psi (11,207 to 3,447 kPa), system that uses a fine water spray

    to extinguish a fire. The fine spray extinguishes a fire by cooling the flame and fire plume, displacing oxygenwith water vapor, and reducing the amount of radiant heat.

    Micromist systems are designed, and have been tested, for use in protecting flammable liquid (Class B)processes and incidental combustible (Class A) materials. Micromist applications include, but are not limited to,the following:

      Compartmentalized gas turbines

      Engine test cells

      Generator rooms

      Machinery spaces with incidental storage of flammable liquids

      Oil pumps

      Lubrication skids

      Oil reservoirs

      Diesel emergency rooms  Fuel filters

      Dipping, electrostatic coating, or cleaning processes using flammable liquids

      Gear boxes

      Drive shafts

      Engine driven generators

      Chemical processes

      Flammable or combustible liquid pumps, piping, or containers under pressure such as may be usedwith hydraulic pumping equipment

    For applications not listed above, contact Fike Product Support (1-816-229-3405) for application approval.

    1.1 PURPOSE

    This manual will assist the Fike Sales Outlets in the proper design, installation, and maintenance of Micromistsystems. In addition, the Authority Having Jurisdiction (AHJ) over the installed Micromist system will be able touse this manual to easily confirm that all design parameters have been met.

    Micromist Systems must be designed and installed within the limitations established by Factory Mutual (FM)approvals, NFPA 750, “Standard for the Installation of Water Mist Fire Protection Systems”, and this manual,P/N 06-153, which complies with these requirements and limitations.

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    9/85

    INTRODUCTION

    Section 1 / Page 2 of 3 Micromist  F.M. J.I. 3000746Revision: 2 Manual P/N: 06-153Revision Date: March, 2008

    1.2 SYSTEM LIMITATIONSThe following limitations apply to the use and application of Fike Micromist Systems:

    1. Micromist systems are capable of protecting hazards with maximum volumes not exceeding 9,175 ft3

    (260 m3), with a maximum ceiling height of 16 ft. (4.9 m).

    2. The following items pertain to the hazard enclosure:

      The protected hazard should be equipped with: Automatic door closures, a ventilation system, andautomatic fuel shutdown.

      Lubrication supply should be shutoff as soon as possible.

      It is recommended that all, non-emergency, electrical power to the protected space be interrupted atthe time of system discharge.

    3. Micromist skid must be installed in a location where the ambient temperature is maintained within+40°F to +130°F (4.4°C to 54.4°C) and must be protected from inclement weather, mechanical, chemical, orother damage.

    4. The Micromist System shall not be used for direct application to materials, or products, that react with waterto produce violent reactions or significant amounts of hazardous products. These materials include:

      Reactive metals (e.g. Sodium, Potassium, Magnesium, Titanium, Lithium, Uranium, and Plutonium)

      Metal Alkoxides (e.g. Sodium Methoxide)  Metal Amides (e.g. Sodium Amide)

      Carbides (e.g. Calcium Carbide)

      Halides (e.g. Benzoyl Chloride)

      Hydrides (e.g. Lithium Aluminum Hydride)

      Oxyhalides (e.g. Phosphorus Oxybromide)

      Silanes (e.g. Trichlormethyl Silane)

      Sulfides (e.g. Phosphorus Pentasulfide)

      Cyanates (e.g. Methylisocyanate)

      The Micromist System SHALL NOT be used for direct application to liquefied gases at cryogenictemperatures, such as liquefied natural or propane gases, which boil violently when heated bywater.

    5. Micromist Systems CAN be used to protect an area having a flammable liquid present, provided it is aFlammability Class of 1, 2, or 3 as defined by the Fire Protection Guide to Hazardous Materials, 2001Edition. Examples of Class 1, 2, and 3 flammable liquids are:

      Fuels such as #2 Diesel Fuel, Gasoline, Kerosene, Mineral Spirits, and Jet Fuels (4, 5, & 6)

      Oils such as Lubricating, Hydraulic Oil & Fluid, Transformer, and Crude.

    6. Liquids with a flash point below 73°F (22.8°C) and a boiling point below 100°F (37.8°C) are Class 1A liquidsthat CANNOT be protected with a Micromist System. Liquids with a flash point above 73°F (22.8°C) thatare categorized as Class 1B, 1C, 2, or 3 (A or B) as defined by the Fire Protection Guide to HazardousMaterials, 2001 Edition CAN be protected with a Micromist System.

    7. Micromist Systems CANNOT be used to protect an area with a Class 4 flammable liquid as defined by FireProtection Guide to Hazardous Materials, 2001 Edition. Examples of Class 4 flammable liquids are:Methane, Propane, Natural Gas, Butane, and Hydrogen.

    Exception: Natural Gas and Propane driven Turbine Generator units may be protectedproviding the fuel source is shut down prior to discharge.

    8. The Micromist System provides 10 minutes of active protection for both Machinery Spaces and Gas TurbineSpaces.

    9. Micromist Systems can be used to protect hazards having a range in temperature from +40°F to +325°F(+4.4°C to +162.7°C).

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    10/85

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    11/85

    SSeeccttiioonn 22

    EEqquuiippmmeenntt

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    12/85

    EQUIPMENT

    F.M. J.I. 3000746 Micromist  Section 2 / Page 1 of 10Manual P/N: 06-153 Revision: 2

    Revision Date: March, 2008

    2.0 EQUIPMENTThis section covers the hardware included in a Micromist System, and includes optional items that are available.

    2.1 SYSTEM STRUCTUREThe Micromist System is offered in 70 and 112 gallon (265 and 424 Liter) configurations. The 70 gallon systemconsists primarily of one nitrogen cylinder and a water storage container (See Figure 2.1-A). The 112 gallonsystem has two nitrogen cylinders and one water storage container (See Figure 2.1-B).

    70 GALLON (265 LITER)MICROMIST SYSTEM

    Figure 2.1-A

    112 GALLON (424 SYSTEMFigure 2.1-B

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    13/85

    EQUIPMENT

    Section 2 / Page 2 of 10 Micromist  F.M. J.I. 3000746Revision: 2 Manual P/N: 06-153Revision Date: March, 2008

    2.1.1 70 GALLON (265 LITER) MICROMIST SYSTEMThe 70 gallon (265 Liter) Micromist System is shipped with all major components pre-assembled.

    Note:  A 70 gallon (265 Liter) Micromist System may be purchased with a pressure switch on the controlvalve assembly for monitoring the nitrogen tank pressure.

    The following drawing shows the overall dimensions of the system and the location of the system componentsthat are to be assembled in the field (See Figure 2.1.1).

    1) 73-007 Assembly, Control Valve2) 73-005 Assembly, Control Valve W / Pressure Switch3) CO2-1290 Hose, Braided 1/4” (8mm) JIC Ends x 7 1/2” (191mm) long, SS / Brass4) 02-4543 Connector 1/4” (8mm) x 1/8” (4mm), Brass5) 02-4521 Orifice 1/8” (4mm), Brass6) 02-4537 Tee, Run 1/8” (4mm), Brass7) 02-4606 Hose, Braided 1/2” (15mm) NPT x 1/2” (15 mm) JIC x 12” (305mm) Long,

    SS / Brass

    70 Gallon Micromist SystemFigure 2.1.1

    HIGH-PRESSURE SIDE

    WITH OPTIONAL

    PRESSURE SWITCH

    29 1 2"

    (0.7 m)

    HIGH-PRESSURE SIDE

    WITH STANDARD

    PRESSURE GAUGE

    3

    1

    4 5

    2

    7

    -OR-

    66 3 4"(1.7 m)

    47 12"

    (1.2 m)

    34" NPT

    Water Outlet

    55" Approx.

    (1.4 m)

    LOW-PRESSURE SIDE

    7

    53

    466

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    14/85

    EQUIPMENT

    F.M. J.I. 3000746 Micromist  Section 2 / Page 3 of 10Manual P/N: 06-153 Revision: 2

    Revision Date: March, 2008

    2.1.2 112 GALLON (424 LITER) MICROMIST SYSTEMThe 112 gallon (424 Liter) Micromist System is shipped with all major components pre-assembled.

    Note:  A 112 gallon (424 Liter) Micromist System may be purchased with a pressure switch on the controlvalve assemblies for monitoring the nitrogen tank pressure.

    The following drawing shows the overall dimensions of the system and the location of the system componentsthat are to be assembled in the field (See Figure 2.1.2).

    1) 73-007 Assembly, Control Valve2) 73-005 Assembly, Control Valve W / Pressure Switch3) CO2-1290 Hose, Braided 1/4” (8mm) JIC Ends x 7 1/2” (191mm) long, SS / Brass4) 02-4543 Connector 1/4” (8mm) x 1/8” (4mm), Brass5) 02-4539 Tee, Branch 1/8” (4mm), Brass6) 02-4533 Hose, Braided 1/2” (15mm) NPT x 1/2” (15mm) JIC x 23” (584mm) Long, SS / Brass7) 02-4538 Hose, Braided 1/8” (4mm) NPT x 1/4” (8mm) JIC x 13 1/2” (343mm) Long, SS / Brass8) 02-4521 Orifice 1/8” (4mm), Brass9) 02-4537 Tee, Run 1/8” (4mm), Brass10) 73-009 Assembly, Pressure Gauge (Tank 2)11) 73-008 Assembly, Pressure Switch (Tank 2)

    112 Gallon Micromist SystemFigure 2.1.2

    OPTIONAL PRESSURE SWITCHESHIGH-PRESSURE SIDE WITH

    2912"(0.7 m)

    STANDARD PRESSURE GAUGESHIGH-PRESSURE SIDE WITH

    1

    3

    45

    4

    6

    10

    78

    9

    76" Approx.

    (1.9 m)

    4712"(1.2 m)

    851 2"(2.7 m)

    LOW-PRESSURE SIDE

    Water Outlet3/4" NPT

    4

    3

    54 6

    78

    9

    2

    11

    -OR-

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    15/85

    EQUIPMENT

    Section 2 / Page 4 of 10 Micromist  F.M. J.I. 3000746Revision: 2 Manual P/N: 06-153Revision Date: March, 2008

    2.1.3 HIGH-PRESSURE SIDE OF SYSTEMThe high-pressure sides of both the 70 gallon (265 Liter) and 112 gallon (424 Liter) Micromist Systems consist ofall the parts up to the regulator. These parts include the following:

      Nitrogen Tank Assembly(s) consisting of 4,100 in3 (67.2 Liter) spun steel cylinder(s), with a DOT

    rating of 3AA-2300, and Fike Nitrogen Valve Assembly(s), pressurized to 1,850 – 1,980 psi @ 70°F(12,893 – 13,652 kPa @ 21°C).

      Solenoid Control Assembly containing a pressure gauge, with an option for a pressure switch, tocontrol the cycling of pressure in the Nitrogen Tank Assembly(s).

      High-pressure fittings and hoses to supply Nitrogen to the regulator as well as the pilot port(s) ofadditional Fike Nitrogen Valve Assembly(s), as required.

    The nitrogen is used as the driving force to propel the water from the Water Container through the piping networkto the discharge nozzles.

    2.1.4 REGULATOR A factory preset pressure regulator is used to reduce the high pressure from the Nitrogen Tank Assembly(s) tomaintain 320 psi (2,206 kPa) in the Water Storage Container, during active operation. The brass regulator israted for a maximum inlet pressure of 3,000 psi (20,684 kPa) and is pre-set to supply an outlet pressure of 320psi (2,206 kPa) to the Water Storage Container. Inlet and outlet gauges are supplied for monitoring nitrogenpressures during operation.

    2.1.5 LOW-PRESSURE SIDE OF SYSTEMThe low-pressure side of the 70 gallon (265 Liter) and 112 gallon (424 Liter) Micromist Systems consist of all theparts after the regulator. These parts include the following:

      Water Storage Container, 70 or 112 gallon (265 or 424 Liter) capacity steel tank, with a DOT ratingof 4BA-500, epoxy coated interior, and exterior painted red, normally at atmospheric pressure.

      Water Valve Assembly is used to cycle the flow of water from the container, and consists of an airactuator, ball valve, solenoid, fittings, and hoses.

      Liquid level switch to assure a proper level of water in the Water Storage Container. This switch isa normally open, SPST switch, that closes when the water drops below the predetermined level.

      Components to deliver pressure to water storage tank and air actuator, as listed below:

    1) Rupture disc assembly to protect the water storage container from over-pressurization. Therupture disc is designed for a specified burst pressure of 500 psi @ 72°F (3,447 kPa @ 22°C).

    2) 1/2” (15mm) check valve to keep water out of regulator and air actuator.3) 1/2” (15mm) vent valve for air discharge when filling the Water Storage Container.4) 1/2” (15mm) cross for connecting the above 3 items to the tank.5) 1/2” (15mm) tee to direct air to tank and hoses connected to air actuator.6) Adapters to connect regulator to tee, cross to tank and hoses to Water Valve Assembly.7) Drain / fill valve with supervision / locking capability attached to bottom of tank having a 2”

    (50mm) x 1/2” (15mm) male adapter.8) Inline filter attached to drain / fill valve to collect contaminants when filling and refilling the

    Water Storage Container.9) Siphon tube attached to water valve assembly to assure drawing the water from the bottom of

    the Water Storage Container.

    2.1.6 MOUNTING STRUCTUREEach Micromist System is factory pre-assembled and mounted on a welded steel skid. The Water Storage

    Container is attached to the Nitrogen Tank Assembly(s) with mounting straps and a Uni-strut bracket. Thismakes it easy to install the Micromist System by minimizing the amount of assembly required in the field.

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    16/85

    EQUIPMENT

    F.M. J.I. 3000746 Micromist  Section 2 / Page 5 of 10Manual P/N: 06-153 Revision: 2

    Revision Date: March, 2008

    2.2 NOZZLE ASSEMBLIESThe Micromist System nozzle is designed to produce a fine water mist, which isextremely effective when utilized within the specified limits. The nozzle is constructedof Brass, and utilizes a diffuser plate to slice the small jets of pressurized water thatflows through the nozzle orifice. The nozzle comes with a strainer screen to catch anyparticles that might clog the nozzle orifice. The nozzle is equipped with 1/2” (15 mm)NPT female threads to facilitate connection to the pipe network. The nozzle has anominal flow rate of 2.1 gallons/ minute (7.9 liters/minute).

    There are two different Micromist System nozzles, which are used depending on thehazard being protected. The nozzles are identical, except for the distance of thediffuser plate from the nozzle orifice. The nozzles used for the protection of GasTurbine spaces have the diffuser plate somewhat closer to the nozzle orifice than thenozzle for the machinery spaces. With the plate closer to the nozzle orifice, the streamhits the diffuser plate a slightly different angle, creating an overall smaller water mist.

    The part number is etched on the side, and a colored sticker is applied to identify each nozzle. A red stickerindicates a Turbine Generator Space and a blue sticker indicates a machinery space nozzle (See Figure 2.2).

    1/2" NPT

    StainlessSteel Screw

    StainlessSteel Washer 

    Orifice

    Strainer 

    Nozzle

    Female

    PlateOrifice

    Diffuser 

    P/N 73-0024Machinery Space Nozzle

    Sticker Blue

    P/N 73-0023

    RedSticker 

    Plate StainlessSteel Washer 

    StainlessSteel Screw

    Diffuser Plate

    NozzleBody

     Adapter Nozzle

    1/2" NPT

    Strainer 

    Nozzle

    Female

    Spacer 

    NozzleBody

    Nozzle Adapter 

    Gas Turbine Space Nozzle

    NozzleAssembliesFigure 2.2

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    17/85

    EQUIPMENT

    Section 2 / Page 6 of 10 Micromist  F.M. J.I. 3000746Revision: 2 Manual P/N: 06-153Revision Date: March, 2008

    2.3 CONTROL PANELThe Cheetah Fire Detection and Control System is a microprocessor basedanalog addressable system. The system is capable of controlling a maximumof 8 Micromist Systems simultaneously.

    The basic system consists of a controller with two signaling line circuitscapable of supporting up to 254 addressable points, a 5.0 amp power supply,

    4.0 amps of power limited auxiliary power, two (2) notification appliancecircuits, three Form-C dry contacts.

    Programming the Cheetah Fire Control System, (See Cheetah Manual)results in a cycle application of water mist into the protected area.

    The mist is directed into the protected area for 40 seconds and turned off for40 seconds (8 cycles “on” and 7 cycles “off”) for a minimum of 10 minutes.

    This on/off cycle time applies to both Machinery Space and Gas TurbineGenerator Space applications.

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    18/85

    EQUIPMENT

    F.M. J.I. 3000746 Micromist  Section 2 / Page 7 of 10Manual P/N: 06-153 Revision: 2

    Revision Date: March, 2008

    2.4 CONTROL ACCESSORIESThe control accessories required for the operation of the Micromist System are described in the followingparagraphs.

    2.4.1 DETECTIONThe recommended detector for Micromist, is a vertical, “stick” type, thermal detector, due to the extremeconditions encountered in most Micromist applications (i.e., extended temperatures, presence of fumes, dust and

    dirt, etc.). The thermal detector is used to detect the presence of heat exceeding the detector’s set-point. Thedetector contacts are normally open, closing on a temperature rise. The detector electrical rating is 5.0 amps @125 VAC and 2.0 amps @ 24 VDC (Resistive). Table 2.4.1 lists the available part numbers and their temperatureset-points.

    Part Number Temperature Set-point

    60-021 190°F ( 87.8°C)

    60-018 225°F (107.1°C)

    60-038 275°F (134.8°C)

    60-022 325°F (162.6°C)

    C60-007 450°F (231.9°C)

    Table 2.4.1

    2.4.2 CONTROL MODULESThe Control Modules listed below can be used in the Micromist System Controls.

    2.4.2.1 FAST RESPONSE CONTACT MODULE ( FRCM ) - P/N 55-019, or 55-020The FRCM is used to monitor the status of dry contacts for a wide range of applications(e.g. monitoring thermal detectors, manual release stations, low pressure switches, etc.).They can be programmed as various input conditions such as alarm, trouble, supervisory,detection, etc. The module uses an interrupt driven digital protocol to ensure reliableoperation. FRCM’s come in either a 4” or shrink wrapped version, depending on theapplication. The shrink wrapped version, P/N 55-020, is not shown.

    2.4.2.2 MINI INPUT MODULE ( MIM ) – P/N 55-030 and ADRESSABLE INPUTMODULE (AIM) - P/N 55-031

    The MIM and AIM operate identically. The MIM is a mini version and the AIMmounts to a 4” square backbox. The MIM and AIM are used to monitor the statusof dry contacts for a wide range of applications (e.g. monitoring thermal detectors,manual release stations, low pressure switches, etc.). They can be programmedas various input conditions such as alarm, trouble, supervisory, detection, etc., inthe same manner as the FRCM. Each provide one, NFPA style B (class B),normally open initiating device circuit and contain a red/green bi-colored L.E.D. which indicates the modulesstatus/condition. Both modules are addressed via user dipswitch settings on the product. The AIM is not shown.

    2.4.2.3 SUPERVISED OUTPUT MODULE ( SOM ) - P/N 55-021The SOM is used to operate notification appliances (e.g. strobes, horns, and bells). TheSOM provides one Class B circuit rated for 2.0 amps @ 24 VDC. The SOM maintainsimportant operating parameters in nonvolatile RAM to ensure fast and reliable operation.

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    19/85

    EQUIPMENT

    Section 2 / Page 8 of 10 Micromist  F.M. J.I. 3000746Revision: 2 Manual P/N: 06-153Revision Date: March, 2008

    2.4.2.4 SOLENOID RELEASING MODULE ( SRM ) - P/N 55-022The SRM is used to operate the Micromist System solenoids during system activation. Asingle SRM is capable of activating the two 12 VDC solenoids required to activate theMicromist System. The SRM maintains important operating parameters in non-volatileRAM to ensure fast and reliable operation.

    2.4.2.5 DUAL RELAY MODULE ( R2M ) - P/N 55-023The R2M provides two independently configured SPDT relays rated for 2 amps @ 24VDC, which can be used for a wide variety of applications (e.g. door closures, fuelshutdown, damper closure, generator shutdown, etc.). The R2M maintains importantoperating parameters in non-volatile RAM to ensure fast and reliable operation.

    2.4.3 PRESSURE SWITCH - P/N 02-4550The Pressure Switch is used to monitor the nitrogen tank pressure. Inthe event that the supply pressure becomes less than 1,580 psi (10,894

    kPa) a signal is sent to the Cheetah Control Panel to alert the user ofthe problem. The Switch is activated at 1,580 psi (10,894 kPa) andreset when the supply tank(s) are filled above 1,800 psi (12,411kPa).The unit has a 1/2” (15mm) conduit connection and a contact currentcapacity of 7 amps with an inductance of 4 amps when used with up to28 VDC.

    2.5 MANUAL ACTIVATION All Micromist Systems SHALL have a manual release station provided at every point of egress from the protectedspace. These stations can be placed inside, or outside, each exit door. Location is subject to the approval of the

     Authority Having Jurisdiction (AHJ) for the specific project. Manual station(s) shall be wired to a Fast ResponseContact Module (FRCM) in the Cheetah Control Panel.

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    20/85

    EQUIPMENT

    F.M. J.I. 3000746 Micromist  Section 2 / Page 9 of 10Manual P/N: 06-153 Revision: 2

    Revision Date: March, 2008

    2.6 PIPING NETWORKThe piping or tube used for a Micromist System shall have a corrosion resistance at least equivalent to pipingspecified in the following table (excerpted from N.F.P.A. 750).

    Materials and Dimensions Standard

    Copper Tube (Drawn, Seamless) Copper tube shall have a wall thickness of Type K* or Type L*

    Standard Specification for Seamless Copper Tube* ASTM B 75

    Standard Specification for Seamless Copper Water Tube* ASTM B 88

    Standard Specification for General Requirements for Wrought Seamless Copper & Copper-AlloyTube

     ASTM B 251

    Stainless Steel

    Standard Specification for Seamless & Welded Austenitic Stainless Steel Tubing for GeneralService

     ASTM A 269

    Standard Specification for Seamless & Welded Austenitic Stainless Steel Tubing (Small-Diameter)for General Service

     ASTM A 632

    Standard Specification for Welded, Unannealed Austenitic Stainless Steel Tubular Products ASTM A 778

    Standard Specification for Seamless & Welded Ferritic/Standard Stainless Steel Tubing (Small-Diameter) for General Service

     ASTM A 789/ A789M

    *Denotes tube suitable for bending in accordance with ASTM Standards.

    Fittings shall have a minimum-rated working pressure equal to or greater than 320 psi @ 130°F(2,206 kPa @ 54°C).

    2.7 CAUTION / ADVISORY SIGNS

    Signs shall be placed in accordance with NFPA 72 and NFPA 750.

    2.7.1 Water Mist Discharge Alarm (Exterior) - P/N 02-10262

    This sign explains the presence of horns and/or strobes locatedoutside the protected area. It should be located next to or underaudible or visual alarms outside the entrances to that protectedarea. The sign alerts personnel that the water mist system hasdischarged and the appropriate actions should be taken. The sign isa 6”x 9” (15.2 cm x 22.9 cm) piece of white plastic with blacklettering.

    2.7.2 Water Mist System Alarm (Interior) - P/N 02-10263

    This sign explains the presence of horns and/or strobes located

    inside the protected area. It should be located next to or underaudible or visual alarms inside the protected area. The sign alertspersonnel that the water mist system will discharge and theappropriate actions should be taken. The sign is a 6”x 9” (15.2 cm x22.9 cm) piece of white plastic with black lettering.

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    21/85

    EQUIPMENT

    Section 2 / Page 10 of 10 Micromist  F.M. J.I. 3000746Revision: 2 Manual P/N: 06-153Revision Date: March, 2008

    2.7.3 Water Mist Caution Sign - P/N 02-10264

    This sign should be located next or on the doors that enterthe protected area. The sign alerts personnel that all doorsshould remain closed in the event of a fire. The sign is a10”x 13” (25.4 cm x 33.0 cm) piece of white plastic with

    black lettering.

    2.7.4 Water Mist System Release - P/N 02-10265

    This sign should be located under each manual pull station.The sign identifies the place where the water mist system canbe manually discharged. This sign distinguishes the dischargepull station from a fire alarm device. The sign is a 2-1/4” x 4”(5.72 cm x 10.16 cm) piece of red plastic with white lettering.

    LIFT AND PULL

    EXTINGUISHING

    Fike

    WATER MIST

    SYSTEM RELEASE

    02-10265-NC

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    22/85

    SSeeccttiioonn 33

    DDeessiiggnn

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    23/85

      DESIGN

    F.M. J.I. 3000746 Micromist  Section 3/ Page 1 of 13Manual P/N: 06-153 Revision: 2

    Revision Date: March, 2008

    3.0 DESIGNThis section will detail the steps necessary to design a Micromist System. Your final design must be checkedutilizing Fike’s MicroCalc™ pressure drop calculation program, or by performing hand calculations to determinethe total pressure drop for the system.

    Caution: Each application should be equipped with automatic door closures, the air handling systemmust be shut down, and the fuel MUST be cut off. The lubrication supply should be shutoff as soon as

    possible.

    3.1 ELECTRICAL CLEARANCES All system components (e.g., nozzles, piping, detectors, etc.) shall be located to maintain minimum clearancesfrom unenclosed and uninsulated, energized electrical components in accordance with NFPA 70, NationalElectrical Code. Refer to NFPA 750, Standard on Water Mist Fire Protection Systems, for further information andclearance data.

    Warning: Cheetah components (i.e. control panel and control modules) and Micromist skid shall belocated outside the protected area, so they are not subject to mechanical, chemical, or other damagethat could render them inoperable.

    3.2 DETECTOR REQUIREMENTSThe specific detector requirements for each system vary according to the hazard requirements. It is because ofthese variances, that only general guidelines are discussed in this section. It is the responsibility of the systemdesigner to determine the precise location and quantity of detectors required for each individual protectedenclosure.

    3.2.1 DETECTOR SELECTIONDue to the wide range of hazard conditions, selecting the appropriate thermal detector is critical to the properoperation of the Micromist System. When selecting which thermal detector to use, consideration shall be given tonormal temperatures incurred during system operation, as well as ventilation inside the protected enclosure.Refer to Section 2.4.1 for recommended detectors.

    Caution: Field conditions vary from application to application. Therefore, Fike recommends that a sitesurvey be conducted for each application prior to selecting the temperature rating of the thermaldetector(s).

    3.2.2 DETECTOR QUANTITY AND SPACINGThe quantity and spacing of detectors shall be installed in accordance with NFPA 72 National Fire Alarm Code,NFPA 750 Standard on Water mist Fire Protection Applications, and the AHJ.

    The number of thermal detectors required will vary dependant upon the size, shape, and contents of the protectedenclosure. A minimum of 2 detectors are required for any enclosure 10 ft x 10 ft (3 m x 3 m) or larger.

    Note:  For Gas Turbine Spaces, additional thermal detectors may be needed near the floor where thefire hazards are present and ventilation would not allow for sufficient build up of heat at ceiling mounteddetectors.

    3.3 SYSTEM SELECTION

    The first step in designing a Micromist System is to select the design concept to be used. This decision is basedon the type of equipment located within the protected area.

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    24/85

    DESIGN

    Section 3/ Page 2 of 13 Micromist  F.M. J.I. 3000746Revision: 2 Manual P/N: 06-153Revision Date: March, 2008

    3.3.1 MACHINERY SPACE A Machinery Space System is defined as an enclosure housing machinery such as oil pumps or reservoirs,cleaning processes, gear boxes, drive shafts, lubrication skids, diesel engine driven emergency generators,internal combustion engine test cells, or machinery spaces with incidental storage of flammable liquids.

      Refer to Section 3.4 for design calculation details for Machinery Spaces.

    3.3.2 GAS TURBINE SPACE A Gas Turbine Space System is defined as an enclosure that houses the turbine portion of an uninsulated orinsulated gas turbine. The system is designed to provide 10 minutes of fire protection for the duration of theturbine coast down. In addition, the Micromist system can be used to protect auxiliary turbine rooms (i.e., oilpumps, oil tanks, fuel filters, generators, gear boxes, drive shafts, and lubrication skids, diesel emergency rooms),and other similar machinery spaces (Refer to section 3.4). Where the turbine and auxiliary equipment are housedin the same enclosure, the hazard must be designed as a Gas Turbine Space (Refer to section 3.5).

      Refer to Section 3.5 for design calculation details for Gas Turbine Spaces.

    3.4 SYSTEM DESIGN – MACHINERY SPACESMachinery Space Systems are designed to provide 10 minutes of active fire protection. The system is pre-engineered and consists of nitrogen tank(s), water storage tank, and piping system with a network of dischargenozzles.

    Machinery Space protection utilizing a Micromist System, is limited to a maximum volume of 9,175 ft3 (260 m

    3)

    with a maximum ceiling height of 16 ft. (4.9 m). The volume of the protected space is determined by multiplying:

    Length x Width x Height.

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    25/85

      DESIGN

    F.M. J.I. 3000746 Micromist  Section 3/ Page 3 of 13Manual P/N: 06-153 Revision: 2

    Revision Date: March, 2008

    3.4.1 NOZZLE LAYOUT – MACHINERY SPACESThis section covers the method used to determine the number of Micromist Nozzles required and their locationwithin the protected space. The following are the nozzle placement requirements:

      Maximum spacing between nozzles is 8 feet (2.4 m)

      Maximum distance between the wall and a nozzle is 4 feet (1.2 m)

      Maximum distance between the ceiling and a nozzle is 1 foot (0.3 m)  Spacing between the nozzles can be less than 8 feet (2.4 m)

      Micromist nozzles are arranged in a rectangular grid.

    3.4.1.1 NOZZLE QUANTITYTo determine how many nozzles are needed for the length of the room, divide the length of the room by 8 ft.(2.4 m). Round the result up to the next higher whole number.

      Number of nozzles along length dimension = length  8 ft. (2.4 m)

    To determine the number of nozzles required for the width of the room, divide the width of the room by 8 ft.(2.4 m). Round the result up to the next higher whole number.

      Number of nozzles along width dimension = width  8 ft. (2.4 m)

    3.4.1.2 NOZZLE SPACINGTo determine the nozzle spacing (actual distance between nozzles) for the length of the grid, divide the room

    length by its required number of nozzles. Nozzle spacing from the end wall to the nearest nozzle is up to half ofthe distance between nozzles.

      Distance between nozzles for length dimension = length  number of nozzles along length dimension

      Distance between nozzles and end wall = distance between nozzles for length dimension  2

    A Typical Micromist System for Machinery SpacesFi ure 3.4.1

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    26/85

    DESIGN

    Section 3/ Page 4 of 13 Micromist  F.M. J.I. 3000746Revision: 2 Manual P/N: 06-153Revision Date: March, 2008

    To determine the distance between nozzles for the width of the grid, divide the room width by its required numberof nozzles. Nozzle spacing from the side wall to the nearest nozzle for the width of the room is up to half thedistance between nozzles.

      Distance between nozzles for width dimension = width  number of nozzles along width dimension

      Distance between nozzles and side wall = distance between nozzles for width dimension  2

    3.4.2 SYSTEM SIZE SELECTIONThe Water Supply Tank selected must assure that the system has sufficient water to provide active for 10 minutesfor the machinery space.

      Systems with six or less nozzles require a 70 Gallon Micromist System.

      Systems with seven to nine nozzles require a 112 Gallon Micromist System.

    Machinery Spaces that utilize 10 or more nozzles require additional Micromist Systems to achieve the correctwater supply for the number of nozzles per system. Each system requires independent piping networks, althougha single Cheetah Control Panel can be utilized to control both systems. If the systems piping layouts are notidentical, each layout MUST be calculated separately. The maximum protected volume cannot exceed 9,175 ft

    3

    (260 m3) with a maximum ceiling height of 16 ft (4.88 m).

    3.4.3 PIPING NETWORKThis section covers the calculations required to design the piping for Machinery Spaces. It is intended to give adesigner the information required to complete a preliminary piping layout. Strict adherence to the systemlimitations listed in this section is MANDATORY. Pipe installation SHALL NOT begin until the piping layout hasbeen properly calculated.

    3.4.3.1 PIPING LAYOUTPiping layout is an important part of the system design. The piping layout MUST BE designed to provide water to

    each nozzle in the Micromist System at a pressure of 310 psi  15 psi (2,137 kPa  103 kPa).

      The optimal pressure condition is achieved by designing the piping layout to maintain a maximumpressure drop of 20 psi (138 kPa) from the Water Supply Tank to the farthest nozzle.

      The piping layout must also be designed to maintain a maximum net pressure rise of 5 psi (34.5 kPa).This increase will occur only when the final calculation from elevation changes results in a negativevalue exceeding the calculated pressure drop of the system.

    When the maximum pressure drop to the farthest nozzle is maintained, all nozzles have sufficient pressure andflow to perform within the system design limitations.

    Stainless steel pipe or tubing, or Copper pipe or tubing, are recommended for use with the Micromist System. Thenozzle piping layout does not need to be balanced. The selection of the exact pipe route and connecting thenozzles to one another is left to the discretion of the systems designer. There are several different “correct”piping layouts for every enclosure. Refer to the Sample Problem, Section 4, for examples of four possible pipingnetworks.

    3.4.3.2 DETERMINING PIPE SIZEThe proper size of each section of piping must be determined for the entire piping network. Working with thepiping layout planned per Section 3.4.3.1, determine the smallest, logical, pipe size for each section of the pipingnetwork, using the process described below.

    The piping layout and estimated pipe sizes time are used as a preliminary piping network design. CalculationsMUST be made on this preliminary design to confirm that the maximum pressure drop from the Water StorageTank to the farthest nozzle is less than 20 psi (138 kPa).

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    27/85

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    28/85

    DESIGN

    Section 3/ Page 6 of 13 Micromist  F.M. J.I. 3000746Revision: 2 Manual P/N: 06-153Revision Date: March, 2008

    3.5.1 NOZZLE LAYOUTThe nozzle layout for all Micromist Systems Gas Turbine Spaces is predetermined. All systems are pre-engineered, with the number of nozzles and their positioning as shown in the following paragraphs.

    3.5.1.1 NOZZLE QUANTITYThe length of the Gas Turbine Space determines the nozzle grid. If the enclosure is 24 feet long, or less, thenozzle grid consists of 6 nozzles positioned as shown below.

    If the Gas Turbine Space is longer than 24 feet, the nozzle grid consists of 12 nozzles positioned as shown below.

    Note:  Gas Turbine Space protection utilizing a Micromist System, is limited to a maximum volume of9,175 ft

    3 (260 m

    3) with a maximum ceiling height of 16 ft. This limitation applies to all Gas Turbine

    Spaces regardless of the length of the side walls.

    The opposite end wall also has 2nozzles near the top corners ofthe wall. However, the nozzle

    near the bottom corner isdiagonally opposite the nozzlenear the bottom corner of the

    opposite end wall.

    One end wall of theenclosure has 2nozzles near the

    top corners of thewall and 1 nozzlenear one of thebottom corners.

    A Typical Micromist System for Gas Turbine SpacesFigure 3.5.1.1 - A

     At the midpoint of both sidewalls, near the ceiling, are 2

    nozzles, each pointing to anend wall. Two more are nearthe floor, diagonally oppositethe nozzles near the floor by

    the end wall. These also pointto both end walls.

    Nozzles on the end walls arenear both of the top cornersof the wall and 1 near abottom corner. Both endwalls have the same nozzlesites. All end wall nozzlesare directly across theenclosure from each other.

    A Typical Micromist System for Larger Dimension Gas Turbine SpacesFigure 3.5.1.1 - B

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    29/85

      DESIGN

    F.M. J.I. 3000746 Micromist  Section 3/ Page 7 of 13Manual P/N: 06-153 Revision: 2

    Revision Date: March, 2008

    3.5.1.2 NOZZLE SPACINGThe nozzles are located a specific distance from the ceiling, floor and adjacent side walls. The following formulais used to determine the distance from the ceiling down to the upper nozzles. The same formula is used todetermine the distance from the floor up to the bottom nozzles.

      Distance from ceiling or floor to adjacent nozzle = 0.26 x height = d1

    Note:  The units of d1 are the same as height. (For example, if height is measured in ft, d1 is in ft.)

    The following formula is used to determine the distance from the adjacent wall to the corresponding nozzles.

      Distance from the side wall to adjacent nozzle = 0.17 x width = d2

    Note:  The units of d2 are the same as width. (For example, if width is measured in ft, d2 is in ft.)

    Refer to Gas Turbine Space Sample Problem, Section 4, for an illustration showing d1 and d2.

      Distance from the end wall to the center nozzles is = 0.5 x length

    3.5.2 SYSTEM SIZE SELECTION  The Micromist System for Gas Turbine Spaces 24 feet long or less utilize 1, 112 Gallon (424 Liter)

    Micromist System.

      Gas Turbine Spaces greater than 24 feet long utilize 2, 112 Gallon (424 Liter) Micromist Systems.

    3.5.3 PIPING NETWORKThis section covers the piping calculations required to design a Micromist System for Gas Turbine Spaces and isintended to give the systems designer the information required to complete a preliminary piping layout. Strictadherence to the system limitations listed in this section is MANDATORY. Pipe installation SHALL NOT beginuntil the piping layout has been calculated using the following procedure.

    3.5.3.1 PIPING LAYOUT

    For Gas Turbine Spaces the number of nozzles is fixed at 6 per Micromist System. The location of the nozzleswith regard to their distance from the walls, floor and ceiling is also fixed, by design based on the dimensions ofthe enclosure. The piping system supplying the nozzles however is not fixed. The same rule applies for GasTurbine Space piping systems as does with Machinery Spaces (refer to Section 3.4.3.1).

      The piping layout MUST BE designed to provide water to each nozzle in the Micromist System at a

    pressure of 310  15 psi (2,137  103 kPa). This assures that each of the nozzles perform asdesigned. Maintaining a maximum pressure drop from the Water Supply Tank to the farthest nozzleof no more than 20 psi (138 kPa) does this.

      The maximum allowable pressure condition is achieved by designing the piping layout to maintain amaximum net pressure rise of 5 psi (34.5 kPa). This increase will occur only when the finalcalculation from elevation changes results a negative value exceeding the calculated pressure drop ofthe system.

    When the correct maximum pressure drop to the farthest nozzle is maintained, all nozzles have sufficientpressure and flow to perform within system design limitations. Stainless steel tubing, stainless steel pipe, copperpipe, or copper tubing is recommended for use with the Micromist System. (For detailed description, refer toEquipment, Section 2.6).

     All the nozzles are interconnected with a piping distribution network that is connected to the Water Supply Tank.

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    30/85

    DESIGN

    Section 3/ Page 8 of 13 Micromist  F.M. J.I. 3000746Revision: 2 Manual P/N: 06-153Revision Date: March, 2008

    3.5.3.2 DETERMINING PIPE SIZETo determine the proper size of the piping for the entire piping network, select the smallest logical size for eachpipe section in the piping network. The same method is used to determine the total pressure drop for GasTurbine Spaces as was used for Machinery Spaces.

      If there is any doubt as to which nozzle has the greatest pressure drop, you MUST perform the

    calculations for each nozzle.  Calculations MUST be made to confirm that the maximum pressure drop from the Water Storage

    Tank to any nozzle is less than 20 psi (138 kPa).

    Warning:  This is extremely important because it confirms whether or not the preliminary piping networkparameters result in adequate pressure to all the nozzles.

    A. Start with the nozzle farthest from the Water Storage Tank to determine the equivalent pipe length for eachsection of pipe back to the Water Storage Tank. In order to do this, the following information must be knownfor each section of the piping network:

      Pipe size and length

      Number and type of fittings in the section of pipe

      Number of nozzles supplied by the section of pipe

    Note: Experience dictates the nozzle used for the maximum pressure drop calculation for Gas TurbineSpaces is the one on the end wall, farthest from the Water Storage Tank and at the ceiling level. Eventhough the nozzle just below is actually farther away, there is a pressure increase at the lower nozzlelocation due to the elevation drop. Therefore, the upper nozzle has more pressure drop than the lower.Refer to Sample Problems, Section 4, for an illustration of an example showing the “Selected Nozzle”location.

    B. The equivalent length for a section of pipe or tubing is determined by adding the straight length of pipe ortubing to the equivalent length of all the fittings in the section. The tables in section 3.6 give the equivalentlengths for fittings that may be found in each section of the piping network. Using these equivalent lengths ofpipe, calculate the pressure drop for all the pipe in the longest piping run of the network.

    To determine the total pressure drop for the longest piping run in the system, multiply the equivalent lengthsfor each of the different nozzle flows by their corresponding pressure drop factors. These factors are listed inthe tables in Section 3.6.

    C.  Add the pressure drop due to any changes in elevation to determine the total pressure drop for the piping run.

    The pressure change due to a drop or rise in elevation is calculated by multiplying the length of the elevationchange by 0.43 psi/ft (1.41 psi/m). Rises, in elevation, increase the pressure drop in a system, and areconsidered positive. Drops, in elevation, decrease the pressure drop in a system, and are considerednegative.

    D. Verify that the total pressure drop for the piping run to the nozzle with the maximum pressure drop is withinthe design limits. If this pressure drop is greater than 20 psi (138 kPa), the preliminary piping network MUST

    be changed to reduce the equivalent length.

    Note:  Increasing pipe sizes and / or reducing the number of fittings are possible steps that may resultin an acceptable pressure drop.

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    31/85

      DESIGN

    F.M. J.I. 3000746 Micromist  Section 3/ Page 9 of 13Manual P/N: 06-153 Revision: 2

    Revision Date: March, 2008

    3.6 PRESSURE DROP FACTORS AND EQUIVALENT LENGTHS

    3.6.1 COPPER TUBING TABLES

    SOLDERED COPPER TUBE FITTINGS AND BENDS

    Equivalent Lengths

    (ENGLISH UNITS – ft) (METRIC UNITS – m)

    TubeSize

    90°Elbow

    45°Bend

    90°Bend

    ThruTee

    CouplingSideTee

    TubeSize

    90°Elbow

    45°Bend

    90°Bend

    ThruTee

    CouplingSideTee

    1/2" 1 0.5 0.5 0 0 2 15 mm 0.30 0.15 0.15 0 0 0.61

    5/8" 1.5 0.5 1 0 0 2 18 mm 0.46 0.15 0.30 0 0 0.61

    3/4" 2 0.5 1 0 0 3 20 mm 0.61 0.15 0.30 0 0 0.91

    1" 2.5 0.5 1 0 0 4.5 25 mm 0.76 0.15 0.30 0 0 1.37

    1-1/4" 3 1.0 2 0.5 0.5 5.5 32 mm 0.91 0.30 0.61 0.15 0.15 1.68

    TYPE L COPPER TUBING

    Pressure Drop Per Foot of Equivalent Length (psi/ft)

    Pipe Size 1 Nozzle 2 Nozzles 3 Nozzles 4 Nozzles 5 Nozzles 6 Nozzles 7 Nozzles 8 Nozzles 9 Nozzles

    1/2” 0.041 0.139 0.284 0.474 0.707 ---- ---- ---- ----

    5/8” 0.016 0.053 0.107 0.179 0.266 0.368 0.485 0.617 0.763

    3/4” 0.007 0.024 0.049 0.081 0.120 0.166 0.219 0.278 0.344

    1” ---- 0.007 0.014 0.022 0.033 0.046 0.060 0.076 0.094

    1-1/4” ---- ---- 0.005 0.008 0.012 0.017 0.022 0.028 0.034

    TYPE L COPPER TUBING

    Pressure Drop Per Meter of Equivalent Length (kPa/m)

    Pipe Size 1 Nozzle 2 Nozzles 3 Nozzles 4 Nozzles 5 Nozzles 6 Nozzles 7 Nozzles 8 Nozzles 9 Nozzles

    15 mm 0.927 3.144 6.424 10.722 15.993 ---- ---- ---- ----

    18 mm 0.362 1.199 2.420 4.049 6.017 8.324 10.971 13.957 17.260

    20 mm 0.158 0.543 1.108 1.832 2.714 3.755 4.954 6.289 7.781

    25 mm ---- 0.158 0.317 0.498 0.746 1.041 1.357 1.719 2.126

    32 mm ---- ---- 0.113 0.181 0.271 0.385 0.498 0.633 0.769

    Note: The pressure drop calculations are based on ASTM B88 Type L Copper Tube minimuminternal diameter

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    32/85

    DESIGN

    Section 3/ Page 10 of 13 Micromist  F.M. J.I. 3000746Revision: 2 Manual P/N: 06-153Revision Date: March, 2008

    TYPE K COPPER TUBING

    Pressure Drop Per Foot of Equivalent Length (psi/ft)

    Pipe Size 1 Nozzle 2 Nozzles 3 Nozzles 4 Nozzles 5 Nozzles 6 Nozzles 7 Nozzles 8 Nozzles 9 Nozzles

    1/2” 0.049 0.166 0.341 0.569 0.850 ---- ---- ---- ----5/8” 0.018 0.059 0.120 0.200 0.298 0.413 0.545 0.693 0.858

    3/4” 0.009 0.031 0.064 0.106 0.158 0.219 0.288 0.366 0.453

    1” ---- 0.008 0.016 0.026 0.039 0.054 0.070 0.089 0.110

    1-1/4” ---- ---- 0.005 0.009 0.013 0.018 0.024 0.030 0.037

    TYPE K COPPER TUBING

    Pressure Drop Per Meter of Equivalent Length (kPa/m)

    Pipe Size 1 Nozzle 2 Nozzles 3 Nozzles 4 Nozzles 5 Nozzles 6 Nozzles 7 Nozzles 8 Nozzles 9 Nozzles

    15 mm 1.108 3.755 7.714 12.871 19.228 ---- ---- ---- ----

    18 mm 0.407 1.335 2.714 4.524 6.741 9.342 12.328 15.676 19.408

    20 mm 0.204 0.701 1.448 2.398 3.574 4.954 6.515 8.279 10.247

    25 mm ---- 0.181 0.362 0.588 0.882 1.222 1.583 2.013 2.48832 mm ---- ---- 0.113 0.204 0.294 0.407 0.543 0.679 0.837

    Note:  The pressure drop calculations are based on ASTM B88 Type K Copper Tube minimum internaldiameter.

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    33/85

      DESIGN

    F.M. J.I. 3000746 Micromist  Section 3/ Page 11 of 13Manual P/N: 06-153 Revision: 2

    Revision Date: March, 2008

    3.6.2 STAINLESS STEEEL TUBING TABLES

    STAINLESS STEEL SWAGELOK  FITTINGS AND TUBE BENDS

    Equivalent Lengths (ft)

    NominalSize

    Elbows

    90 Tee Side Tee Thru Coupling 90 Bend 45 Bend

    1/2” 2 2 0 0 0.5 0.5

    5/8” 2.5 2.5 0 0 1 0.5

    3/4” 3 3 0 0 1 0.5

    1” 4.5 4.5 0 0 1 0.5

    1-1/4” 5 5 0.5 2 2 1

    STAINLESS STEEL TUBING

    Pressure Drop Per Foot of Equivalent Length (psi/ft)

    Tube Size 1 Nozzle 2 Nozzles 3 Nozzles 4 Nozzles 5 Nozzles 6 Nozzles 7 Nozzles 8 Nozzles 9 Nozzles

    1/2" 0.329 1.120 2.316 3.895 5.842 ---- ---- ---- ----

    5/8" 0.071 0.239 0.490 0.820 1.224 1.701 2.249 2.866 3.553

    3/4" 0.032 0.109 0.223 0.371 0.553 0.768 1.013 1.290 1.597

    1" ---- 0.022 0.045 0.075 0.111 0.154 0.202 0.257 0.317

    1-1/4" ---- ---- 0.012 0.020 0.030 0.041 0.054 0.068 0.084

    Pressure Drop Per Meter of Equivalent Length (kPa/m)

    Pipe Size 1 Nozzle 2 Nozzles 3 Nozzles 4 Nozzles 5 Nozzles 6 Nozzles 7 Nozzles 8 Nozzles 9 Nozzles

    12 mm 7.781 26.53 54.88 92.29 138.46 ---- ---- ---- ----

    16 mm 1.968 6.673 13.71 22.94 34.27 47.66 63.02 80.37 99.67

    20 mm 0.475 1.629 3.303 5.519 8.211 11.38 15.02 19.11 23.64

    25 mm ---- 0.565 1.131 1.900 2.805 3.981 5.135 6.515 8.05

    30 mm ---- ---- 0.475 0.792 1.176 1.629 2.149 2.714 3.35

    STAINLESS STEEL TUBING PROPERTIES

    Tube Size Nominal OD Wall Thickness Nominal ID

    1/2” 1.5 0.065 0.37

    5/8” 2 0.065 0.495

    3/4” 2 0.083 0.584

    1” 2.5 0.095 0.81

    1-1/4” 3 0.095 1.06

    Note:  The above stainless steel tubing is to be in accordance with ASTM 269. The pressure dropcalculation is based on the minimum internal diameter. Minimum internal diameter is calculated usingan outside diameter equal to the tube size less 0.1 inches and a maximum permitted wall thicknesswhich is 10% greater than the nominal wall thickness.

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    34/85

    DESIGN

    Section 3/ Page 12 of 13 Micromist  F.M. J.I. 3000746Revision: 2 Manual P/N: 06-153Revision Date: March, 2008

    STAINLESS STEEL TUBING PROPERTIES

    Tube Size Wall Thickness Nominal ID

    12 mm 1.5 9

    16 mm 2 12

    20 mm 2 16

    25 mm 2.5 20

    30 mm 3 24

    Note:  The above stainless steel tubing is to be in accordance with ASTM 269. The pressure dropcalculation is based on an outside diameter equal to tithe tube size less 0.08 mm and a maximumpermitted wall thickness equal to 10% greater than the nominal wall thickness.

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    35/85

      DESIGN

    F.M. J.I. 3000746 Micromist  Section 3/ Page 13 of 13Manual P/N: 06-153 Revision: 2

    Revision Date: March, 2008

    3.6.3 STAINLESS STEEL PIPE TABLES

    SCHEDULE 40 STAINLESS STEEL THREADED PIPE FITTINGS AND BENDS

    Equivalent Lengths

    (ENGLISH UNITS – ft) (METRIC UNITS – m)PipeSize

    Union45 

    Elbows90 

    Elbows

    ThruTee

    SideTee

    Pipe Size Union45 

    Elbows90 

    Elbows

    ThruTee

    SideTee

    1/2" 0.4 0.8 1.7 1.0 3.4 15 mm 0.12 0.24 0.52 0.30 1.04

    3/4" 0.5 1.0 2.2 1.4 4.5 20 mm 0.15 0.30 0.67 0.43 1.37

    1" 0.6 1.3 2.8 1.8 5.7 25 mm 0.18 0.40 0.85 0.55 1.74

    1-1/4" 0.8 1.7 3.7 2.3 7.5 32 mm 0.24 0.52 0.13 0.70 2.29

    SCHEDULE 40 STAINLESS STEEL PIPE

    Pressure Drop Per Foot of Equivalent Length (psi/ft)

    Pipe Size 1 Nozzle 2 Nozzles 3 Nozzles 4 Nozzles 5 Nozzles 6 Nozzles 7 Nozzles 8 Nozzles 9 Nozzles

    1/2” 0.023 0.081 0.174 0.300 0.460 0.653 0.879 1.139 1.432

    3/4” ---- 0.020 0.042 0.072 0.110 0.155 0.208 0.269 0.337

    1” ---- ---- ---- 0.022 0.033 0.046 0.061 0.079 0.099

    1-1/4” ---- ---- ---- ---- ---- 0.012 0.016 0.020 0.025

    Note: The thickness of the pipe or tubing wall shall be calculated in accordance with ASME B31.1Power Piping Code. For Micromist use an internal pressure of 320 psi (2,206 kPa). Mechanical fittingsused with stainless steel tubing must be designed for that purpose and have a minimum pressure rating

    of 320 psi (2,206 kPa).

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    36/85

    SSeeccttiioonn 44

    SSaammppllee PPr r oobblleemmss

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    37/85

      SAMPLE PROBLEMS

    F.M. J.I. 3000746 Micromist  Section 4 / Page 1 of 24Manual P/N: 06-153 Revision: 2

    Revision Date: March, 2008

    4.0 SAMPLE PROBLEMSThis section of the manual gives step by step examples of the process and calculations used in the design ofMicromist Systems. This design process results in a pre-engineered system designed to comply with all theguidelines and limitations. Sample calculations are given to cover the design of systems for both MachinerySpaces and Gas Turbine Spaces.

    Note:  Some values in the sample problems have been rounded. For accuracy when performing handcalculations, do not round.

    4.1 SAMPLE PROBLEMS – MACHINERY SPACES

    4.1.1 Problem #1:  A machinery space, 26 ft (7.92m) long x 16 ft (4.88m) wide x 16 ft (4.88m) high

    4.1.1.1 DETERMINING HAZARD VOLUMEVerify the protected volume of the Machinery Space is within system design limits.

    The volume is determined by multiplying:

    length x width x height.

    HAZARD VOLUME

    (English Units) (Metric Units)26 ft x 16 ft x 16 ft = 6,656 ft

    37.92 m x 4.88 m x 4.88 m = 188.61 m

    3

    The volume of the enclosure is within system design limits as it is less than the 9,175 ft3 (260 m

    3) maximum

    protected volume allowed for the Micromist System.

    4.1.1.2 NOZZLE QUANTITYTo determine how many nozzles are needed, divide the room length and width by 8 ft (2.44 m), the maximumspacing allowed between nozzles. Round the result up to the next higher whole number.

    NUMBER OF NOZZLES REQUIRED

    (English Units) (Metric Units)

    LENGTH: 26 ft 8 ft = 3.25Number of nozzles required for this length = 4 LENGTH: 7.92 m

     2.44 m = 3.25Number of nozzles required for this length = 4

    WIDTH: 16 ft  8 ft = 2Number of nozzles required for this width = 2

    WIDTH: 4.88 m  2.44 m = 2Number of nozzles required for this length = 2

    TOTAL NOZZLES  4 (length) x 2 (width) = 8 TOTAL NOZZLES  4 (length) x 2 (width) = 8

    4.1.1.3 NOZZLE SPACINGTo determine the required distance between nozzles, divide the room length/width by the number of nozzlesrequired for the length/width. Divide that number by 2 for the nozzle spacing from the wall to the nearest nozzle.

    Example of nozzle spacing calculation: From our example with a nozzle quantity of 4 x 2.

    NOZZLE SPACING

    (English Units) (Metric Units)

    LENGTH: Nozzle spacing is 26 ft  4 nozzles = 6.5 ft

    Spacing from wall to nozzle is 6.5  2 = 3.25 ft

    LENGTH: Nozzle spacing is 7.92 m  4 nozzles= 1.98 m

    Spacing from wall to nozzle is 1.98  2 = 0.99 m

    WIDTH: Nozzle spacing is 16 ft  2 nozzles = 8.0 ft

    Spacing from wall to nozzle is 8.0  2 = 4.0 ft

    WIDTH: Nozzle spacing is 4.88 m  2 nozzles= 2.44 m

    Spacing from wall to nozzle is 2.44  2 = 1.22 m

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    38/85

    SAMPLE PROBLEMS

    Section 4 / Page 2 of 24 Micromist  F.M. J.I. 3000746Revision: 2 Manual P/N: 06-153Revision Date: March, 2008

    Problem #1 - Nozzle spacing layout for Machinery Space SystemFigure 4.1.1.3

    4.1.1.4 SYSTEM SIZE SELECTIONThe number of nozzles determines the size and number of Micromist Systems that are required for a MachinerySpace.

      Nozzle grids containing 6 or less nozzles require a 70 Gallon (265 Liter) Micromist System.

      Nozzle grids containing 7 to 9 nozzles require a 112 Gallon (424 Liter) MicromistSystem.

    Our example has 8 nozzles. Therefore, a 112 Gallon (424 Liter) Micromist System is required.

    4.1.1.5 PIPING LAYOUT After the number and location of the nozzles has been determined, they must be connected with a piping networkthat provides the nozzles with the proper flow and pressure. There are several “correct” layouts for everyenclosure. Figure 4.1.1.5 shows four possible piping networks for the example.

    Possible Piping ArrangementsFigure 4.1.1.5

    Once the piping arrangement has been chosen, the network must be connected to the water storage tank. ForProblem #1, we have selected the piping layout “Arrangement D”, in Figure 4.1.1.5.

    26'-0"

    16'-0"

    (7.92m)

    (1.98m)(0.99m)3'-3"

    (4.88m) (2.44m)8'-0"

    4'-0"(1.22m)

    6'-6"

     Arrangement C Arrangement D

     Arrangement A Arrangement B

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    39/85

      SAMPLE PROBLEMS

    F.M. J.I. 3000746 Micromist  Section 4 / Page 3 of 24Manual P/N: 06-153 Revision: 2

    Revision Date: March, 2008

    4.1.1.6 DETERMINING PIPE SIZEThe pipe size for the entire piping system is first estimated, then calculated to assure proper pressure will besupplied to the nozzles. Choose the pipe type and estimate pipe sizes for each section of piping. For Problem#1, Copper Tubing “Type L” was selected with the lengths and sizes as shown in Figure 4.1.1.6.

    Problem #1 - Machinery Space Nozzle Piping SystemFigure 4.1.1.6

            1        1        '   -        4        "

    5  - 1  1  "  

      1  ' -  8  "   3   /   4  "  

      1  ' -  0  "

    8  '  - 0  "  

    5   /   8  "  

      6  ' -  6  "

      5  /  8  "

            3        /        4        "

      5  /  8  "

      5  /  8  "

      1  /  2  "

     4  ' -  1  0

      "

      6  ' -  6  "

      1  /  2  "

      1  /  2  "

      6  ' -  6  "

      1

      2

      3

      5

      6

      8

    4  

      1  /  2  "

      6  ' -  6  "

      6  ' -  6  "

      1  /  2  "

      1  ' -  0  "

      5  /  8  "

      2  ' -  0  "

      3  / 4  "

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    40/85

    SAMPLE PROBLEMS

    Section 4 / Page 4 of 24 Micromist  F.M. J.I. 3000746Revision: 2 Manual P/N: 06-153Revision Date: March, 2008

    4.1.1.6 DETERMINING PIPE SIZE (CONTINUED)Starting at the nozzle farthest from the Water Storage Tank, determine the equivalent length of each Node. Theequivalent length for each Node is determined by adding the straight lengths of pipe and the equivalent lengths ofall the fittings in the Node. These equivalent lengths are taken from Section 3.6.

    The section of pipe supplying the farthest nozzle consists of a 6’-6” (1.98 m) length of 1/2” (15 mm) pipe. The

    fittings are a 1/2” (15 mm) thru tee and a 1/2” (15 mm) 90 elbow. Therefore, the equivalent length for this first

    pipe Node is:

    NODE 1

    Single Nozzle Flow – (English Units) Single Nozzle Flow – (Metric Units)

    6’-6” of 1/2” pipe = 6.50 ft

    1pc. 1/2” 90 elbow = 1.00 ft1pc. 1/2” thru tee = 0.00 ft

      Total = 7.5 ft

    1.98 m of 15 mm pipe = 1.98 m

    1pc. 15 mm 90 elbow = 0.30 m1pc. 15 mm thru tee = 0.00 m

      Total = 2.28 m

    Note:  The thru tee is counted in this section because the water flowing thru this tee supplies a single nozzle.

    Proceed to the next Node. This Node is supplying 2 nozzles. It has a 6’-6” (1.98 m) length of 1/2” (15 mm) pipe.The fitting is a 1/2” (15 mm) thru tee. Therefore, the equivalent lengths are:

    NODE 2

    2 Nozzle Flow – (English Units) 2 Nozzle Flow – (Metric Units)

    6’-6” of 1/2” pipe = 6.50 ft1pc. 1/2” thru tee = 0.00 ft

      Total = 6.5 ft

    1.98 m of 15 mm pipe = 1.98 m1pc. 15 mm thru tee = 0.00 m

      Total = 1.98 m

    The next calculation is for the 3 nozzle flow: The pipe is a 6’-6” (1.98 m) length of 1/2” (15 mm) pipe. The fittingis a 1/2” thru tee. The equivalent lengths are:

    NODE 3

    3 Nozzle Flow – (English Units) 3 Nozzle Flow – (Metric Units)6’-6” of 1/2” pipe = 6.50 ft1pc. 1/2” thru tee = 0.00 ft

      Total = 6.5 ft

    1.98 m of 15 mm pipe = 1.98 m1pc. 15 mm thru tee = 0.00 m

      Total = 1.98 m

    The next Node has 4 nozzle flow. The pipe is 2 x 1’-0” (.30 m) lengths of 5/8” (18 mm) pipe and an 8’-0” (2.44 m)

    section of 5/8” (18 mm) pipe, for a total of 10’-0” (3.05 m). Fittings consist of 2 x 1/2” (15 mm) 90 elbows and a1/2 x 5/8” x 1/2” (15 mm x 18 mm x 15 mm) thru tee. The equivalent lengths are:

    NODE 4

    4 Nozzle Flow – (English Units) 4 Nozzle Flow – (Metric Units)

    10’-0” of 5/8” pipe = 10.0 ft2pc. 5/8” 90 elbows = 2.00 ft1pc. 5/8” thru tee = 0.00 ft

      Total = 12. ft

    3.05 m of 18 mm pipe = 3.05 m2pc. 18 mm 90 elbows = 0.61 m1pc. 18 mm thru tee = 0.00 m

      Total = 3.66 m

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    41/85

  • 8/16/2019 FIKE P/N 06-153 Micromist Design Manual

    42/85

    SAMPLE PROBLEMS

    Section 4 / Page 6 of 24 Micromist  F.M. J.I. 3000746Revision: 2 Manual P/N: 06-153Revision Date: March, 2008

    4.1.1.6 DETERMINING PIPE SIZE (CONTINUED)The final consideration is the pressure drop/rise due to elevation changes. Pressure is changed 0.43 psi/ft(9.72 kPa/meter) of drop/rise. The net elevation change in our example is an 11.33 ft (3.45 m) rise. Multiply thenet elevation change by 0.43 psi/ft (9.73 kPa/meter). If the calculated nozzle is higher than the water containeroutlet, add the answer to the calculated pressure drop. If the nozzle is lower, subtract the two numbers.

    ELEVATION CHANGE (TOTAL SYSTEM PRESSURE DROP)(English Units) (Metric Units)

    11.33 ft x 0.43 psi/ft = 4.87 psi4.87 psi + 13.7 psi = 18.57 psi

      3.45 m x 9.73 kPa/m = 33.57 kPa33.57 kPa + 94.2 kPa = 127.77 kPa

    Therefore, our example system meets the requirement of a total pressure drop less than 20 psi (137.9 kPa).

    4.1.2 Problem #2 -  A machinery space, 25 ft (7.62m) long x 16 ft (4.88m) wide x 16 ft (4.88m) high (Volume1) with a 8 ft (2.44 m) long x 7 ft (2.13 m) wide x 16 ft (4.88 m) high section (Volume 2).

    4.1.2.1 DETERMINING THE HAZARD VOLUMEVerify the protected volume of the Machinery Space is within design limits.

    The volume is determined by multiplying: length x width x height.

    HAZARD VOLUME

    (English Units) (Metric Units)

    25 ft x 16 ft x 16 ft = 6,400 ft3 – (Volume 1)

    8 ft x 7 ft x 16 ft = 896 ft3 – (Volume 2)

    7.62 m x 4.88 m x 4.88 m = 181.47 m3 – (Volume 1)

    2.44 m x 2.13 m x 4.88 m = 25.36 m3 – (Volume 2)