fish barrier study

Upload: dyc123

Post on 03-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 fish barrier study

    1/28

    R-93 -6

    N A C H E S /C O W IC H E D IV E R S IO ND A M S P I L L W A Y M O D I F IC A T I O N

    P R O J E C T - F I S H B A R R IE R S T U D Y

    S U M M A R Y O F IN V E S T IG A T I O N S

    Apri l 1993

    U .S . D E P A R T M E N T O F T H E I N T E R IO RBureau of Reclamat ionDenver Off iceResearch a nd Lab oratory Serv ices Div is ionHydrau l i cs Branch

  • 7/28/2019 fish barrier study

    2/28

    7-2090 (4-81)Bureau of Reclamation1 . R E P O R T N O .

    R - 9 3 - 64 . T I T L E A N D S U B T I T L E

    T E C H N I C A L R E P O R T S T A N D A R D T I TL E P A G E~',?::~~,~.~i::/?,:?~i--... ~ , - . . .

    NACHES/COWICHE DIVERSION DAM SPILLWAYMODIFICATION PROJE CT - FISH BARRIER STUDYSUMMARY OF INVESTIGATIONS7 . A U T H O R ( S )

    Roxanne George and Manuel (Manolo) Menendez Prieto

    3 . R E C I P I E N T ' S C A T A L O G N O .

    5 . R E P O R T D A T EApril 19936 . P E R F O R M I N G O R G A N I Z A T I O N C O D E

    D-3751S . P E R F O R M I N G O R G A N I Z A T I O N

    R E P O R T N O .] ] , -93-6

    9 . P E R F O R M I N G O R G A N I Z A T IO N N A M E A N D A D D R E S SBurea u of ReclamationDenver OfficeDenve r CO 80225

    1 2 . S P O N S O R I N G A G E N C Y N A M E A N D A D D R E S SSame

    1 0 . W O R K U N I T N O .

    1 1 . C O N T R A C T O R G R A N T N O .

    1 3 . T Y P E O F R E P O R T A N D P E R I O D C O V E R E D

    D I B R

    1 4 . S P O N S O R I N G A G E N C Y C O D E

    15.SUPPLEMENTARYNOTESMicrofiche and hard copy available at t h e Denver Office, Denver, Colorado. Ed: TH

    1 6 . A B S T R A C TA physical model having a scale of 2.5:1, Denver Office Hydraulic Laboratory, Bureau ofReclamation, was used to analyze the use of rubber dams and pne umatic crest gates aspossible methods for preventin g fish passage over the spillway at Naches/Cowiche DiversionDam, Washington. Velocity and depth of flow data were collected and analyzed for severalplacements an d or ientations of both types of designs for a range of discharges and t ailwa terelevations. These data were then compared to available biological data for the fish speciespresent at the site to determine the effectiveness of these types of designs as fish barriers.Analyses found tha t the Naches/Cowiche site does not allow development of sufficient head toachieve velocities in excess of the maxi mum fish dar tin g velocities for steelhead; therefore, a100-percent effective barr ier cannot be ensured. Fish ba rrie r efficiency cannot be closelyestimated based on the laboratory model tests. However, the best overshot gate option forincreasing barrier effectiveness is clearly the addition of a properly located crest gate. Thisconclusion was based on an evaluation of the combined effects of increased velocity andresulting work required to swim upstream, reduced flow depths, and abrupt changes in flowdirection.

    17.KEY W O R D S A N D D O C U M E N T A N A LY S ISa . D E S C R I P T O R S - h y d r a u l i c e n g i n e e r i n g / hy d r a u l i c l a b o r a t o r i e s / h y d r a u li c m o d e l s / c o n c r e t es t r u c t u r e s / d i v e r s i on d a m s / f i s h b a r ri e r s/ s t i ll i n g a s i n s /

    b . I D E N T I F I E R S - N a c h e s / C o w i c h e ] N a t i o n a l M a r i n e F i s h e ri e s S e r v i c e / W a s h i n g t o n D e p a r t m e n tof Fisheries/Bridges tone/CEDEX/c . C O S A T I F i e l d ~ G r o u p 1 3 B C O W R R : 13021 8 . D IS T R I B U T IO N S T A T E M E N T

    S R I M :1 9 . S E C U R I T Y C L A S S 2 1 . N O . O F P A G E ScrH,s~Po~ 21

    UNCLASSIFIED2 0 . S E C U R I T Y C L A S S 2 2 . P R I C E(THIS PAGE')~J~;~M,Fst~t~o

  • 7/28/2019 fish barrier study

    3/28

    R - 9 3 - 6

    N A C H E S / C O W IC H E D IV E R S IO N D A M S P IL L W A YM O D I FIC A T IO N P R O J E C T - F IS H B A R R I E R S T U D Y

    S U M M A R Y O F I N V E S TIG A T IO N S

    b yRo x a n n e G e o r g eManuel Menendez Pr ie to

    Hydraulics BranchResearch and Laboratory Services DivisionDenve r OfficeDenver, ColoradoApril 1993

    U N I TED STAT ES D EP AR T M EN T OF TH E I N TER I OR -k BUREAUOF RECLAMATION

  • 7/28/2019 fish barrier study

    4/28

  • 7/28/2019 fish barrier study

    5/28

  • 7/28/2019 fish barrier study

    6/28

    I N T R O D U C T I O NT h e P N ( P a c if i c N o r t h w e s t ) R e g i o n r e q u e s t e d t h e D e n v e r O f f ic e H y d r a u l i c s B r a n c h t o c o n d u c t as t u d y f o r s p i l l w a y m o d i f i c at i o n t o t h e N a c h e s / C o w i c h e d i v e r s i o n d a m , l o c a t e d n e a r Y a k i m a ,W a s h i n g t o n ( f ig . 1 ). T h e p u r p o s e o f t h e s p i l l w a y m o d i f ic a t i o n i s to p r e v e n t a n a d r o m o u s f i s hf ro m b y p a s s i n g a n e x i s t in g f is h l a d d e r a n d c a t c h m e n t f a ci li ty . C u r r e n t ly , m i g r a t i n g f i s h a r ea b l e to p a s s u p a n d o v e r t h e o g e e c r e s t s p il l w a y .T h e t w o o p t i o n s f o r f i s h b a r r i e r s s t u d i e d , u s i n g a s e c t i o n a l m o d e l o f t h e d a m , w e r e a w a t e r - f i l l e dr u b b e r d a m a n d a p n e u m a t i c c r e s t g a t e , e a c h a t t a c h e d t o t h e t o p o f t h e e x i s t i n g s p i l l w a y c re s t .

    C O N C L U S I O N S T h e N a c h e s / C o w i c h e s i t e d o e s n o t a l l o w t h e d e v e l o p m e n t o f s u f f i c ie n t h e a d t o a c h i e v ev e l o c it ie s i n e x c e s s o f t h e m a x i m u m f i s h d a r t i n g v e l o c i ti e s f o r s t e e l h e a d ; t h e r e f o r e , a1 0 0 - p e r c en t e f f e c ti v e b a r r i e r c a n n o t b e e n s u r e d . F i s h b a r r i e r e f f ic i e n cy c a n n o t b e c l o se l y e s t i m a t e d b a s e d o n t h e l a b o r a t o r y m o d e l t e s t s.H o w e v e r , t h e b e s t o v e r s h o t g a t e o p t i on f o r i n c r e a s i n g b a r r i e r e f f e c ti v e n e s s i s c l e a r l y t h ea d d i t i o n o f a p r o p e r l y l o c a t e d c r e s t g a t e . T h i s c o n c l u s io n w a s b a s e d o n a n e v a l u a t i o n o f t h ec o m b i n e d a f f e c ts o f i n c r e a s e d v e l o c i t y a n d t h e r e s u l t i n g w o r k r e q u i r e d t o s w i m u p s t r e a m ,r e d u c e d f l o w d e p t h s , a n d a b r u p t c h a n g e s i n f l o w d i r ec t io n .

    B A C K G R O U N D IN F O R M A T IO N6

    N a c h e s / C o w i c h e d i v e r s i o n d a m i s lo c a t e d o n t h e N a c h e s R i v e r , a b o u t 2 m i w e s t o f Y a k i m a ,W a s h i n g t o n . T h e d i v e r s i o n d a m i s a c o n c re t e o g e e s p i l l w a y s t r u c t u r e , a b o u t 2 1 2 .5 i t w i d e b y15 I t h igh , co ns i s t i ng o f a 5 -R- long c re s t , a 21 - f t - l ong ogee sp i l lwa y , and a 21 - f t - l ong ap ron .R a d i o t a g g i n g o f s p r i n g c h i n oo k s a l m o n a n d s t e e l h e a d t r o u t a t t h e s i te c o n f ir m e d t h e n e e d t oc r e a t e a s t r o n g e r b a r r i e r t o a d u l t f i s h p a s s a g e . T h e p r o je c t r e q u i r e s a m o r e p o s i t i v e f is h b a r r i e rd u r i n g k e y p e r i o d s o f t h e y e a r w h i l e r e t a i n i n g t h e a b i l i t y t o p a s s f l o o d f l ow s u n d e r c o n d i t io n ss i m i l a r t o t h e e x i s t i n g c on d i ti o n s . A n e v a l u a t i o n o f t h e o p e r a t i o n s a n d f i s h b a r r i e r n e e d si n d i c a te d t h a t a n o v e r s h ot - ty p e s t r u c t u r e t h a t c o ul d b e r a i s e d a n d l o w e r e d w o u ld b e s t m e e t t h er e q u i r e m e n t s .F i s h B a r r i e r C r i t e r ia

    T w o b a s i c d e s i g n s f o r f i s h b a r r i e r d a m s h a v e b e e n d e v e lo p e d : O n e d e s i g n is b a s e d o n c r e a t i n g a b a r r i e r b y m a i n t a i n i n g , a t a l l s t r e a m f l o w s , a d r o p o f

    s u f f i c ie n t h e i g h t t o p r e v e n t f i s h m i g r a t i o n u p s t r e a m . T o b e e ff e c ti v e f o r s a l m o n a n d t r o u ts p e c ie s , t h i s t y p e o f b a r r i e r r e q u i r e s a t l e a s t 1 0 i t o f f r e e o ve r fa U . T h i s d e s i g n w a s n o tf e a s i b le f o r N a c h e s / C o w i c h e d i v e r s i o n d a m .

    1

  • 7/28/2019 fish barrier study

    7/28

    #J

    C, ,t

    /

    D . D . Y l k t m a

    x '~ ,,_ ZT " 4 3T o w n O . O .

    ~ E l l e n s b u r ' g . "

    N

    ',, r . J - - - C ; ~ ;" ~ . %

    ~ R i ~ O Ck L

    ,

    . , _ ~' " - J Y A K I~M~Al

    I\

    Y A K I M A IN D I A N R E S E R V A T I O N

    ~KIMA

    O . D .. ~

    P a p a t o O . O .L ~ u n n y s i d e O . O .

    T o p p e n i s h Q , ,

    o . #/

    ' . _ , " . - - - ~ o . . .I / P _ . JI' .,'

    ,~, , ,s

    s u n n y s i d e Jn ,

    /

    P R O J E C T L O C A T I O N -N A C H E S / C O W l C H E C A N A LA N D D I V E R S I O N D A M

    H o r n R a p i d s O . O .R t c h l a n d ~ ', '~ P a s c o G ~

    B E N T O NL s k e

    Wallula

    KL ICK I TAT

    0 | 0 2 0I I I I I I ' I I ~ P ~ E O F WXLJ

    I| WASHNGTONh ' ; L . , . . , , ,

    K E Y M A P

    . AREAHOWN.F i g u re 1 . - L o c a t i o n m a p - N a c h e s / C o w i c h e C a n a l .

    Y A K Z M A P R O J E C T - W A S H I N G T O NF I S H P A S S A B E ~ P R O T E C T IV E F A C I L I T I E S

    G E N E R A LL O C A T I O N M A P

    . u , . x o,.o " ~ ' " ' I 3 3 - I 0 0 - i 6 6 9 "

    9 .

  • 7/28/2019 fish barrier study

    8/28

  • 7/28/2019 fish barrier study

    9/28

    A b a r r i e r c a n a l s o b e e s t a b l i s h e d b y c r e a t i n g f lo w v el o ci ti es g r e a t e r t h a n t h e s u s t a i n e ds w i m m i n g s p e e d o f t h e f i s h s p e c i e s (v e lo c i ti e s g r e a t e r t h a n 1 5 R / s f or s t e e l h e a d ) f o r a s u f f i c i e n td i s t a n c e . A s s u m i n g a n a v e r a g e d a r t i n g d u r a t i o n o f 7 .5 s e c o n ds a s g i v e n b y B e l l , t h e a v e r a g ed a r t i n g d i s t a n c e o f a s t e e l h e a d c a n b e e s t i m a t e d a s :D m = 7 . 5 . ( 2 6 - V a ) (2 )

    w h e r e :D m = m a x i m u m d a r t i n g d i s t a n c e (i~ )V a = a v e r a g e f l o w v e l o c i ty ov e r t h e d i s t a n c e t r a v e l e d ( R /s )

    F o r a k n o w n s t r u c t u r e l e n g t h , e q u a t i o n 2 c a n a ls o b e u s e d t o d e t e r m i n e t h e a v e r a g e v e l o c i tyr e q u i r e d o n t h e s p i l l w a y f ac e to p r e v e n t p a s s a g e . T h e l e n g t h o f h i g h v e l o c i t y f l ow a tN a c h e s / C o w i c h e i s r o u g h l y b e t w e e n t h e s p i l l w a y c r e s t a n d t h e t a i l w a t e r , o r a b o u t 1 2 i~ .S u b s t i t u t i n g a d i s t a n c e o f 1 2 f t i n to e q u a t i o n 2 g i v e s a r e q u i r e d a v e r a g e v e l o c i ty o f 2 4 .5 f d sa l o n g t h e e n t i r e 1 2 -f t l e n g t h . W i t h t h e l i m i t e d a v a i l a b l e h e a d a t N a c h e s / C o w i c h e , th e s e c r i t e r i aa r e a l s o u n a t t a i n a b l e .F l o w D e p t h B a r r i e r . - - W h e n c o m b i n e d w i t h f l o w v e l o c it ie s i n t h e d a r t i n g r a n g e , i t isg e n e r a l l y e x c e p te d t h a t d e p t h s l e s s t h a n a b o u t 0 .5 t o 0 .6 7 i~ a r e e f fe c t iv e b a r r i e r s ( W a g n e r ,1967).F l o w D i r e c t i o n B a r r i e r . - - T h e m o s t d i f f ic u l t a s p e c t o f a b a r r i e r t o e v a l u a t e i s t h e e f fe c t o fa b r u p t c h a n g e s i n t h e f lo w d i r e c ti o n o r tu r b u l e n c e l e v e ls e n c o u n t e r e d b y m i . g r a t in g fi s h .W a g n e r c i te s o t h e r f i s h b a r r i e r s w h i c h h a v e s h o w n t h a t f r ee j e t s i m p i n g i n g i n s h a l lo w f lo ww h e r e m a n e u v e r i n g i s l i m i t e d a r e h i g h l y e f fe c ti v e.T h e r e f o r e , i n t h e m o d e l s t u d y , t h e c o m b i n a t i o n o f f i s h b a r r i e r p a r a m e t e r s ( h i g h v e lo c i ti e s,s h a l l o w d e p t h s , a n d r a p i d c h a n g e s i n t h e f l o w d i r e ct i o n ) o f e a c h o v e r s h o t - t y p e s t r u c t u r e w e r ee v a l u a t e d i n c o m p a r i s o n to t h e p e r f o r m a n c e o f t h e a s - b u i l t s t r u c t u r e .R u b b e r D a m S t u d ie sR u b b e r d a m s c a n b e a t ta c h e d t o a n e x i s t i n g h y d r a u l i c s tr u c t u r e t o i n c r e a s e h y d r a u l i c h e a d ,t h e r e b y i n c r e a s i n g v e l o c it ie s d o w n s t r e a m . R u b b e r d a m s c o n s i s t o f a t u b e , n o r m a l l y c o n s t r u c t e do f r u b b e r l a m i n a t e d w i t h n y l o n r e i n f o r c i n g p l ie s , a n c h o r e d t o a f o u n d a t i o n i n a w a t e r c o u r s e o rt o a n e x i s t i n g h y d r a u l i c s t ru c t u r e . T h e r e a r e t w o m a i n t y p e s o f r u b b e r d a m s : a i r - f il l e d a n dw a t e r - f il l ed . P i p i n g a n d a c o m p r e s s o r o r p u m p p e r m i t t h e f l o w o f a i r o r w a t e r i n t o a n d o u t o ft h e r u b b e r b o d y, t h e r e b y r a i s i n g a n d l o w e r i n g i t.T h e a ir -f il le d a m , b e c a u s e o f i ts s u p p l y a n d d i s c h a r g e s y s t e m s , i s r e l a t i v e l y s i m p l e a n de c o n o m i c a l a n d h a s o p e r a t i n g a d v a n t a g e s . H o w e v e r , a ir -f il le d u b b e r d a m s t e n d t o V - n o t c h i nt h e c e n t e r o f t h e t u b e w h e n p a r t i a l l y in f la t e d . T h i s V - n ot c h a ct io n c a n d i m i n i s h t h e b a r r i e re f f e c ti v e n e s s b e c a u s e f i s h c o u ld l i k e l y p a s s t h r o u g h t h e n o t c h a r e a . T h e r e f o r e , a n a i r - f il l e dr u b b e r d a m r e q u i r e s f u l l i n f l a t i o n t o p e r f o r m a s a n e f fe c ti v e f i s h b a r r ie r .

    4

  • 7/28/2019 fish barrier study

    10/28

    M a n u f a c t u r e r s c l a i m w a t e r - f i ll e d r u b b e r d a m s a r e l e s s s u b j e c t t o V - n o t c h i n g t h a n t h e a i r -f i ll e d ,a l t h o u g h n o m a n u f a c t u r e s w e r e a b l e to p r o v id e t e s t d a t a o n V - n o t c h i n g o f w a t e r - f i l l e d d a m s .T h e p l a c e m e n t o f w a t e r -f i ll e d d a m s i s r e s t ri c te d , b e c a u s e t h e y m u s t b e m o u n t e d o n a h o r i z o n t a ls u r f a c e l a r g e e n o u g h t o s u p p o r t t h e d e f l a t e d s iz e o f t h e d a m . A h o r i z o n t a l s u r f a c e i s n e c e s s a r yt o e n s u r e t h e d a m d e f l a t e s c o m p le t e ly .P n e u m a t i c C r e s t G a t e S t u d i e sTh e second type of overshot gate tested wa s a pne uma tic activated crest gate. Th e crest gatesyst em consists of a ro w of steel panels hinge d an d anch ored to the spillway along the gate'su p s t r e a m e d g e . T h e s t e e l p a n e l s a r e r a i s e d b y a n i n f l a t a b l e a i r b l a d d e r l o c a t e d d o w n s t r e a mf r o m t h e g a t e h i n g e p o i n t . T h e g a t e s c a n b e o p e r a t e d b e t w e e n 0 a n d a b o u t 6 0 r e f e r e n c e d t ot h e p l a n e o f t h e h i n g e p o i n t . T h u s , t h e u p s t r e a m p o o l e l e v a t i o n is c o n t r o ll e d b y t h e a n g l e a tw h i c h t h e s t e e l p a n e l s a r e i n c l i n e d in t h e d i r e c t io n o f f lo w .S o m e o f t h e a d v a n t a g e s o f p n e u m a t i c c r e s t g a t e s a s g i v e n b y t h e m a n u f a c t u r e r s a r e :

    ( 1 ) T h e y p r o v i d e a c c u r a t e a u t o m a t i c p o o l e l e v a t i o n c o n t r o l e v e n u n d e r p o w e r f a i l u r econd i t i ons ;( 2) U n l i k e s t e e l c r e s t g a te s , p n e u m a t i c c r e s t g a t e p a n e l s a r e s u p p o r t e d f o r t h e i r e n t i r e w i d t hb y a n i n f l a t a b l e b l a d d e r , r e s u l t i n g i n s i m p l e f o u n d a t i o n r e q u i r e m e n t s a n d a c o s t - e f f e c t i v ea n d e f f ic i e n t s t r u c t u r e ;(3) Th e t h in p ro f i l e o f t he g a t e e f f i c i en t ly pas ses f l ood f l ows , i ce , an d deb r i s ;( 4) U n l i k e r u b b e r d a m s , t h e s t e e l p a n e l s o v e r h a n g t h e r u b b e r b l a d d e r i n a l l p o s i ti o n s ,t h e r e b y p r o t e c t i n g t h e b l a d d e r f r o m f l o a t i n g l og s , d e b r i s , ic e , et c. ; a n d( 5) T h e g a t e s h a v e l o w m a i n t e n a n c e a n d i n s t a l l a t i o n c o s ts .

    M O D E L T E S T SA 4-ft-wide y 8-R-high by 90-It-long lass-walled aboratory lum e w as use d for the study. Th eflume wa s modified to a 2-It idth for the Nache s/Co wich e model. A 2.5:1 Fro Ude scale sectionalmo del including the d a m crest, gee spillway, an d stilling asin we re constructed in the flu me(fig. ). T h e m o d e l s c al e w a s c h o s e n b a s e d o n m o d e l i n g a m a x i m u m p r o to t y pe u n i t d i s ch a r ge o f23 .9 It3/s/It.Dim ens ion s of the spillway an d stilling asin were take n from draw ings provided by the P NRegion. Tests wer e conducted at discharges an d tailwater conditions as given in table 1. Th em a x i m u m p e r mi s s ib l e p s t r e a m p o o l e l ev a ti o n a s g i v e n a s 1 1 7 1 It.D e p t h m e a s u r e m e n t s a l o ng t h e s p i ll w a y w e r e t a k e n a t s ta ti o ns v e r y 0. 8 R i n th e m o d e l ( 2. 0 Itprototype), beginning at the crest C (point of crest curvature). Th es e points are referred to int h e d a t a a s X - 0 It , X = 2 . 0 It , e tc . S i x p o i n t s a l o n g t h e s p i l l w a y w e r e e v a l u a t e d . W h e r ep o s si b le , d e p t h s w e r e m e a s u r e d v e r t i c a l ly a n d t h e n c o n v e r t ed to n o r m a l d e p t h s p e r p e n d i c u l a r

    5

  • 7/28/2019 fish barrier study

    11/28

    t

    ( a ) U p s t r e a m v i e w o f t h e 2 - f~ - w i d e s e c ti o n a l m o d e l o fN a c h e s / C o w i c h e d i v e r s i o n d a m .

    ( b ) S i d e v i e w o f w a t e r p a s s in g o v e r t h e a s - b u il t s p il lw a y .F i g u r e 2 . - - V i e w s o f s e c ti o n a l m o d e l .

  • 7/28/2019 fish barrier study

    12/28

  • 7/28/2019 fish barrier study

    13/28

  • 7/28/2019 fish barrier study

    14/28

  • 7/28/2019 fish barrier study

    15/28

  • 7/28/2019 fish barrier study

    16/28

  • 7/28/2019 fish barrier study

    17/28

  • 7/28/2019 fish barrier study

    18/28

  • 7/28/2019 fish barrier study

    19/28

  • 7/28/2019 fish barrier study

    20/28

    Table 4. - - Hydraulic data with the crest gate located 1.25 t~ upstream from the crest PCand at a 60angle. The 60 angle corresponds to a vertical gate height of 3.00 i~.Summary of results

    Discharge (f0/s) 1,000 2,000 3,000 4,500Reservoir elevation (i~) 116 9.2 0 1 1 6 9 . 9 8 117 0.65 1171.45Pool depth behind gate (ft) 0.95 1.25 1.40 1.48Nappe impingement point (fi) 3.90 4.95 5.60 5.95(horizontal from crest PC)Total head on gate (ft) +---H 15.08 15.65 16.52 17.32Discharge head (i~) ~--Hc 1.20 1.98 2.65 3.45Discharge coefficient (---C 4.03 3.82 3.68 3.73

    D e p t h a n d v e l o c i ty data along spillwayDischarge 1,000 2,000 3,000 4,500

    -- Depth Velocity Depth Velocity Depth Velocity Depth VelocityPC dist (ft) (ft/s) (f0 . (ft/s) (l~) (fl/s) (ft) (fl/s)~7= 0.0 ft~7= 2.0 t~X:= 4.0 i~~= 6.0 ft~(= 8.0 ft

    = 10.0 i~= 12.0 i~

    4.06 1.303.36 1.580.56 9.480,20 26.930.19 27.950:18 29.19TW NA2

    4.69 2~264.10 2.592.34 4.540.59 17.900.48 22.320.45 23.32TW 1 NA2

    5.18 3.074.63 3.433.34 4.761.31 12.160.83 19.13TW 1 NA~T W I N A 2

    5.77 4.145.31 4.504.35 5.492.53 9.431.38 17.311.20 19.95TW1 NA~

    1 = tailwater.2 = not applicable.C r e s t G a t e a t 6 0 . - -

    . D i s c h a r g e a t 2 , 0 0 0 f tS / s. B A max im um velocity of 24.1 fl/s occurred on the sp illw ay nea rthe ta ilwa ter contact. Depths less than 0.5 It were atta ined at X = 8 i t and beyond. Theup st re am pool elevation was 1170.0 ft. The dischar ge coefficient was 3.8.

    D i s c h a r g e a t 3 , 0 0 0 f tS / s . - - T h e velocity and de pth at the ta il water contact were about23.3 fl/s and 0.7 It, respectively. The ups tr eam pool elevation was 1170.6 ft. The discha rgecoefficient was 3.7. Velocities exceeded the sus tai ned s wi mm in g speed for stee lhea dbe t ween X= 6 andX = 10.

    D i s c h a r g e a t 4 , 5 0 0 f iS l s . - - T h e velocity and depth at the ta ilwa ter contact were about24.4 ft/s and 1.0 It, respectively. The up st re am pool elevatio n was 1171.45 It, whic h exceedsthe m ax im um pool elevation by 0.45 It. The d ischarg e coefficient was 3.7. Velocitiesexceeded the susta ined swi mmin g speed for s teelhead between X = 6 and X = 10.

    Additional tes ts of the crest gate were ma de with the gate angle set a t 45 and 15 abovehorizontal . These tes ts were conducted to evaluate flow characteris t ics over the s tr ucture a tpartia l openings. The hydraulic dat a from these partia l gate opening tes ts are given in tables 5and 6.

    15

  • 7/28/2019 fish barrier study

    21/28

  • 7/28/2019 fish barrier study

    22/28

    T a b l e 6 . - - H y d r a u l i c d a t a w i t h t h e c r e s t g a t e l o c a te d 1 .2 5 I t u p s t r e a m f r om t h e c r e s t P Ca n d l o w e r e d t o a 1 5 a n g l e . T h e 1 5 a n g l e c o r r e s p o n d s t o a v e r t i c a l g a t e h e i g h t o f 0 .9 2 I t .

    S u m m a r ~ o f r e s u l t sD i s c h a r g e ( i tS / s) 1 , 0 00 2 , 0 0 0 3 , 0 0 0 4 , 5 0 0

    R e s e r v o i r e l e v a t i o n ( it ) 1 1 6 7 . 2 7 1 1 6 8 . 1 0 1 1 6 8 . 7 5 1 1 6 9 . 6 5P o o l d e p t h b e h i n d g a t e ( it ) 0 . 5 2 F u l l F u l l F u l lN a p p e i m p i n g e m e n t p o i n t ( it ) 4 .4 8 N o n e N o n e N o n e( h o r i z o n t a l f r o m c r e s t P C )T o t a l h e a d o n g a t e ( i t ) ~ - - H 1 3 . 15 1 3 . 9 8 1 4 . 6 2 1 5 . 5 2D i s c h a r g e h e a d ( i t) ~ - - H 1 .3 5 2 . 1 8 2 . 83 3 . 7 3D i s c h a r g e c o e f f i c i e n t ~ - C 3 . 3 8 3 . 3 0 i 3 . 3 5 3 . 3 2

    D e p t h a n d v e l o c i t y d a t a a l o n g s p i l l w a yD i s c h a r g e 1 , 0 00 2 , 0 0 0 3 , 0 0 0 4 , 5 0 0

    - - D e p t h V e l o c i t y D e p t h V e l o c i t y D e p t h V e l o ci t y D e p t h V e l o c i t yP C d i s t ( i t) ( R / s ) ( i t) ( R / s ) ( i t) ( R / s ) ( i t) ( R / s )~ = 0 . 0 i t~ = 2 .0 It~ = 4 .0 tt~ = 6 . 0 i t~ ( = 8 . 0 I t

    = 1 0 . 0 I tk ' = 1 2 . 0 I t

    2 . 1 4 2 . 4 82 . 0 8 2 . 5 41 . 0 5 5 . 0 30 . 3 9 1 3 . 7 10 . 3 5 1 4 . 9 60 . 2 4 2 2 . 4 40 . 2 4 2 1 . 6 7

    2.68 3.962 . 5 5 4 . 1 72 . 0 2 5 . 2 60 . 8 4 1 2 . 6 40 . 5 8 1 8 . 1 40 : 5 1 2 0 . 7 3T W 1 N A 2

    3 . 0 1 5 . 2 83 . 0 2 5 . 2 62 . 5 3 6 . 2 91 . 3 7 1 1 . 5 90 . 8 5 1 8 . 6 70 . 7 7 2 0 . 6 7T W 1 N A 2

    4 . 1 4 5 . 7 73 . 6 8 6 . 4 93 . 0 7 7 . 7 72 . 1 2 1 1 . 2 41 . 3 6 1 7 . 5 9T W 1 N A 2T W 1 N A 2

    1 = t a i l w a t e r .2 = n o t a p p l i c a b l e .

    D ISCUSS ION T h e N a c h e s / C o w i c h e s i t e d o e s n o t a l l o w t h e d e v e l o p m e n t o f s u f f ic i e n t h e a d t o a c h i e v ev e l o c it i es i n e x c e ss o f t h e m a x i m u m f i s h d a r t i n g v e l o c it i e s f o r s te e l h e a d ; t h e r e f o r e , a1 0 0 - p e r c en t e f fe c ti v e b a r r i e r c a n n o t b e e n s u r e d . F i s h b a r r i e r e f f ic i e n cy c a n n o t b e c l o s el y e s t i m a t e d b a s e d o n t h e l a b o r a t o r y m o d e l t e s t s.H o w e v e r , t h e b e s t o v e r s h o t g a t e o p t i o n f o r i n c r e a s i n g b a r r i e r e f f e c t i v e n e s s i s c l e a r l y t h ea d d i t i o n o f a p r o p e r l y l o c a t e d c r e s t g a t e . T h i s c o n c l u s io n w a s b a s e d o n a n e v a l u a t i o n o f t h ec o m b i n e d e f f e ct s o f i n c r e a s e d v e l o c i t y a n d t h e r e s u l t i n g w o r k r e q u i r e d t o s w i m u p s t r e a m ,r e d u c e d f lo w d e p t h s , a n d a b r u p t c h a n g e s i n f l o w d ir ec tio n~ A d i s c u s s i o n o f e a c h o f t h e s eeffects fol lows.B a r r i e r E f f e c ti v e n e s s o f F l o w D e p t hThe f low depth on the as-built spil lway exceeds the 0 .5-R m axim um desired depth criterion atabout 2 ,000 itS/s . The addit ion of a 3-ft-high overshot gate structure extends the dischargerange for which depth is less than the 0 .5-R criterion, but only by a few hundred ftS/s .Therefore, th e decreased sp il lway depths achieved by adding a 3-ft-high overshot gate provideonly marginal im provem ent to the f ish barrier effectiveness .

    17

  • 7/28/2019 fish barrier study

    23/28

  • 7/28/2019 fish barrier study

    24/28

  • 7/28/2019 fish barrier study

    25/28

  • 7/28/2019 fish barrier study

    26/28

    REFERENCESBell, M . C. , F/sher ies Handbook of Engineering Requ irements a nd Biological Criteria,U.S. Arm y Corps of Eng ineers l N orth P acif ic Divis ion, 1991.Wagner , C. H. , Techn ica l Memorandum on F i sh Bar r i e r Dams , F i sh Fac i l i t i e s Sec t ion ,

    Co lumbia F i she r ie s P rog ram Office , Bu reau o f Com merc ia l F i she r ie s , Por t l and , Oregon ,1967.

    21

  • 7/28/2019 fish barrier study

    27/28

  • 7/28/2019 fish barrier study

    28/28