radiant barrier study

52
Civil, Environmental, and Architectural Engineering The University of Kansas 1 “Radiant Barrier Technology – A Must in Green Architecture” Mario A. Medina, Ph.D., P.E.

Upload: nx122

Post on 16-Apr-2017

2.170 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Radiant Barrier Study

Civil, Environmental, and Architectural EngineeringThe University of Kansas

1

“Radiant Barrier Technology – A Must in Green Architecture”

Mario A. Medina, Ph.D., P.E.

Page 2: Radiant Barrier Study

2

Introduction

““Preventing the sun's radiation from entering through the roof can make a significant contribution to comfort and reduction in cooling bills/needs.””

From: Sustainable Building Sourcebook Chapter: Energy  

Page 3: Radiant Barrier Study

3

Definition

A radiant barrier consists of a layer of metallic foil, with low emittance, that significantly reduces the transfer of heat energy radiated from “hotter” surfaces to “colder” surfaces (e.g., the deck of an attic to the attic floor). Among the benefits of installing radiant barriers are energy savings, $ savings, and comfort.

(Source: Florida Solar Energy Center)

Page 4: Radiant Barrier Study

4

Radiant Barriers

Installation Configurations

Pre-laminated Roof Sheathing

Page 5: Radiant Barrier Study

5

Radiant Barriers

How are they installed?

Page 6: Radiant Barrier Study

6

Radiant Barriers

How are they installed?

Page 7: Radiant Barrier Study

7

Radiant Barriers

How they work:– Radiant barriers reduce radiated heat transfer rate by

the combination of the low emittance/high reflectance properties of the foil.

Page 8: Radiant Barrier Study

8

Radiant Barriers

Modes of Heat Transfer

(Source: Btubusters)

Page 9: Radiant Barrier Study

9

Radiant Barriers

Heat transfer schematic

111111)("

2,31,321

42

41

21TTq

111)("

21

42

41

21

TTq

Radiant Barrier

Radiant Barrier

Page 10: Radiant Barrier Study

10

Radiant Barriers

In the present study, the performance of radiant barriers was assessed via:– Experiments

• Side by side monitoring of pre- and post-retrofit data.

– Modeling• Mathematical representation of thermal sciences that describe

the processes that take place. • Implemented using computer programming (e.g.,

FORTRAN).

– Model/Experiment Validation

Page 11: Radiant Barrier Study

11

Radiant Barriers

Experiments: Test Houses

Page 12: Radiant Barrier Study

12

Radiant Barriers

Experiments: Sensors

Page 13: Radiant Barrier Study

13

Radiant Barriers

Experiments: Monitoring Equipment

Page 14: Radiant Barrier Study

14

Radiant Barriers

Experimental Results: Calibration (No RB Case)Ceiling Heat Flux Indoor Air

Temperature

< 3 % < 0.3 oF

Page 15: Radiant Barrier Study

15

Radiant Barriers

Experimental Results: Calibration (RB Case)Ceiling Heat Flux Indoor Air

Temperature

< 3 % < 0.3 oF

Page 16: Radiant Barrier Study

16

Radiant Barriers

Experimental Results: Effect of Radiant Barriers (~28% Daily Heat Flow Reduction)

37.5%

Page 17: Radiant Barrier Study

17

Radiant Barriers

Experimental Results: Installation ComparisonsHorizontal Configuration vs. Truss Configuration?

Slight Advantage for the Horizontal Configuration

~ 5 %

Page 18: Radiant Barrier Study

18

Radiant Barriers

Experimental Results: Shingle Temperatures Horizontal Configuration Truss Configuration

vs. No RB Case vs. No RB Case

No difference in shingle temperature

Page 19: Radiant Barrier Study

19

Radiant Barriers

Experimental Results: Effects of Daily Solar Radiation

Page 20: Radiant Barrier Study

20

Radiant Barriers

Experimental Results: Effects of Attic Ventilation

Page 21: Radiant Barrier Study

21

Radiant Barriers

Experimental Results: Effects of Attic Insulation Level

42%

34%

25%

Page 22: Radiant Barrier Study

22

Radiant Barriers

Modeling: Based on Energy Balance Approach at Each Enclosing Surface

Page 23: Radiant Barrier Study

23

Radiant Barriers

ModelingEnergy Balance (General)

Energy Balance (Heat Transport Processes)

Outdoor Energy Balance

Indoor Energy Balance

Q Q Q Qconducted to from convected to from radiated net latent condensation evaporation( / ) ( / ) ( ) ( / ) 0

Y Tsi Tr X Tso Tr

CR q ho T Tsohro T Tso q

i jj i

N Si n j i j

j i

N Si n j

i o i n i amb i n

i sky surr i n sol i

,,

,, ,

,

,,

( , ) ,

/ , ,

( ) ( )

" ( )( ) "

0 1 0 1

1

0

Z Tsi Tr Y Tso Tr

CR q hi Tsi T

hri Tsi Tsi q

i jj i

N Si n j i j

j i

N Si n j

i i i n i i n attic air n

i k i nk i

s sk n latent i

,,

,, ,

,

,,

( , ) , ,

, ,,

,, ,

( ) ( )

" ( )

( ) "

0 1 0 1

1

1 10

Page 24: Radiant Barrier Study

24

Radiant Barriers

Modeling: Solar Modeling

Page 25: Radiant Barrier Study

25

Radiant Barriers

Verification of Model/Experiments (No RB Case)

Page 26: Radiant Barrier Study

26

Radiant Barriers

Verification of Model/Experiments

Horizontal Configuration Truss Configuration

Page 27: Radiant Barrier Study

27

Radiant Barriers

Verification of Model/Experiments (Winter)

No Radiant Barrier Configuration Horizontal Configuration

15 % Reduction in Heat Leaving Across the Attic

Page 28: Radiant Barrier Study

28

Radiant Barriers

Verification of Model/Experiments

No Radiant Barrier Configuration Horizontal Configuration

Page 29: Radiant Barrier Study

29

Radiant Barriers

Computer Simulations: Yearly Performance

Horizontal Configuration Truss Configuration

34 %Jun - Aug

32 %Jun - Aug

Page 30: Radiant Barrier Study

30

Radiant Barriers

Computer Simulations: Yearly Performance

Page 31: Radiant Barrier Study

31

Radiant Barriers

Computer Simulations: Attic Ventilation Pattern (Soffit/Soffit)

Jun - Aug

33.1% 31.6%

Horizontal

Truss

No RB

Page 32: Radiant Barrier Study

32

Radiant Barriers

Computer Simulations: Attic Ventilation Pattern (Roof/Soffit)

Jun - Aug

31.4% 26.2%

Horizontal

Truss

No RB

Page 33: Radiant Barrier Study

33

Radiant Barriers

Computer Simulations: Attic Ventilation Pattern (Soffit/Ridge)

Jun - Aug

32.3% 28.2%

Horizontal

Truss

No RB

Page 34: Radiant Barrier Study

34

Radiant Barriers

Computer Simulations: Impact of Radiant Barrier on Cooling Demand as a Function of Insulation Degradation

Page 35: Radiant Barrier Study

35

Radiant Barriers

Computer Simulations: Climate Influence

Page 36: Radiant Barrier Study

36

Radiant Barriers

Computer Simulations: Climate Influence

Climate

SummerMonthly

Dry Bulb Air Temperature

oC(oF)

SummerMonthly RelativeHumidity

(%)

Summer Monthly Wind

Speedkm/h(mi/h)

Area Covered

km2

(mi2)

Percent Area

Covered(%)

Humid Subtropical 29(84) 68 13.7

(8.5)1,939,636(750,430) 24.03

Humid Continental Warm Summer

25(77) 70 14.1

(8.8)1,655,112(640,350) 20.50

Desert 28(83) 47 13.0

(8.1)1,223,467(473,350) 15.16

Humid ContinentalCool Summer

21(70) 67 14.0

(8.7)905,291

(350,250) 11.21

Steppe 17(62) 43 12.7

(7.9)739,043

(285,930) 9.15

Marine West Coast 15(59) 80 13.3

(8.3)560,259

(216,760) 6.94

Mediterranean 17(63) 74 16.1

(10.0)508,837

(196,865) 6.30

Western High Areas 20(68) 50 13.7

(8.5)481,581

(186,320) 5.97

Tropical Savanna 28(83) 77 12.9

(8.0)59,484

(23,014) 0.74

TOTAL 8,072,711(3,123,269) 100.00

Page 37: Radiant Barrier Study

37

Radiant Barriers

Computer Simulations: Climate Influence

Page 38: Radiant Barrier Study

38

Radiant Barriers

Computer Simulations: Climate Influence

Page 39: Radiant Barrier Study

39

Radiant Barriers

Computer Simulations: Climate Influence

Page 40: Radiant Barrier Study

40

Radiant Barriers

Computer Simulations: Climate Influence

0

50

100

SIPR PHPR

0

50

100

SIPR PHPR 0

50

100

SIPR PHPR

0

50

100

SIPR PHPR

0

50

100

SIPR PHPR

0

50

100

SIPR PHPR 0

50

100

SIPR PHPR

0

50

100

SIPR PHPR

0

50

100

SIPR PHPR

Page 41: Radiant Barrier Study

41

Radiant Barriers

Computer Simulations: Climate Influence

Climate Sample Station

Sample Summer

Integrated Percent

Reduction(SIPR)

(%)

Average

Peak-Hour Percent

Reduction (PHPR)

(%)

Humid SubtropicalSan Antonio, TXNew York- NY

Atlanta, GA

34.332.538.5

35.1 31

Humid ContinentalWarm Summer

Topeka, KSIndianapolis, IN

30.030.1 30.5 46

Desert Las Vegas, NVTucson, AZ

19.223.0 21.1 23

Humid Continental CoolSummer

Minneapolis, MNDetroit, Michigan

25.724.3 25.0 54

Steppe Pocatello, IDHelena, MT

16.013.7 14.9 36

Marine West Coast Astoria, OR 9.6 9.6 ~100

Mediterranean San Francisco, CA 2.3 2.3 97

Western High Areas Boulder, CO 19.7 19.7 44

Tropical Savanna Miami, FL 36.8 36.8 42

Page 42: Radiant Barrier Study

42

Radiant Barriers

Parametric Analyses: Outdoor Air Temperature

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70 80 90

Average Hourly Ambient Temperature for Period (deg F)

Perc

enta

ge R

educ

tion

in C

elin

g He

at F

lux

for P

erio

d(%

)

Page 43: Radiant Barrier Study

43

Radiant Barriers

Parametric Analyses: Mean Hourly Relative Humidity

Page 44: Radiant Barrier Study

44

Radiant Barriers

Parametric Analyses: Mean Hourly Global (H) Radiation

0

5

10

15

20

25

30

35

40

45

0 50 100 150 200

Mean Hourly Global Horizontal Solar Radiation for period(Btu/h-sf)

Perc

enta

ge R

educ

tion

in C

eilin

g He

at

Flux

for P

erio

d(%

)

Page 45: Radiant Barrier Study

45

Radiant Barriers

Parametric Analyses: Latitude

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50

Latitude of Location(deg N)

Perc

enta

ge R

educ

tion

in C

eilin

g He

at

Flux

for P

erio

d(%

)

Page 46: Radiant Barrier Study

46

Radiant Barriers

Parametric Analyses: Altitude

Page 47: Radiant Barrier Study

47

Radiant Barriers

Parametric Analyses: Roof Solar Absorptivity

Page 48: Radiant Barrier Study

48

Radiant Barriers

Parametric Analyses: Radiant Barrier Emissivity

Page 49: Radiant Barrier Study

49

Radiant Barriers

Parametric Analyses: Attic Airflow Rate

Page 50: Radiant Barrier Study

50

Radiant Barriers

Parametric Analyses: Roof Slope

Page 51: Radiant Barrier Study

51

Radiant Barriers

In Conclusion….

Page 52: Radiant Barrier Study

52

THANK YOUTHANK YOU