fluorinated esters : synthesis and identification

116
Portland State University Portland State University PDXScholar PDXScholar Dissertations and Theses Dissertations and Theses 1988 Fluorinated esters : synthesis and identification Fluorinated esters : synthesis and identification Jilla Schaff Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Chemistry Commons Let us know how access to this document benefits you. Recommended Citation Recommended Citation Schaff, Jilla, "Fluorinated esters : synthesis and identification" (1988). Dissertations and Theses. Paper 3921. https://doi.org/10.15760/etd.5805 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected].

Upload: others

Post on 28-Jun-2022

14 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fluorinated esters : synthesis and identification

Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

1988

Fluorinated esters : synthesis and identification Fluorinated esters : synthesis and identification

Jilla Schaff Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

Part of the Chemistry Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation Schaff, Jilla, "Fluorinated esters : synthesis and identification" (1988). Dissertations and Theses. Paper 3921. https://doi.org/10.15760/etd.5805

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected].

Page 2: Fluorinated esters : synthesis and identification

AN ABSTRACT OF THE THESIS OF Jilla (Khalilolahi) Schaff for

the Master of Science in Chemistry presented August 25, 1988.

Title: Fluorinated Esters, Synthesis and Identification

APPROVED BY MEMBERS OF THE THESIS COMMITTEE:

Gard,

Alf re~L\S:- Le,Tlnson

Raymor1 P. Lutz

Paul Hammond

Reactions of different alcohols with 2-hydroxy - 1-

trifluoromethyl -1,2,2-trifluoroethanesulfonic acid sultone

F3CCFCF20S02 were studied. Six new esters were prepared:

C6F50C(O)CF(CF3)S02F 1 CH3CH20C(O)CF(CF3)S02F 1

CF3CH20C(O)CF(CF3)S02F 1 (CF3)2CHOC(O)CF(CF3)S02F 1

CH2=CHCH20C(O)CF(CF3)S02F 1 (CH20C(O)CF(CF3)S02F)2

Analytical data, infrared, nmr and mass spectra are

presented supporting the proposed structures for these new

compounds.

Page 3: Fluorinated esters : synthesis and identification

FLUORINATED ESTERS, SYNTHESIS AND IDENTIFICATION

by

JILLA (KHALILOLAHI) SCHAFF

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE in

CHEMISTRY

Portland State University 1989

Page 4: Fluorinated esters : synthesis and identification

TO THE OFFICE OF GRADUATE STUDIES:

The members of the Committee approve the thesis of Jilla (Khalilolahi) Schaff presented in 1989.

- y L.7Gard, cnairman

Alfred\ Lev ins on

Lutz RaymonrP·

Paul Hammond

APPRO~D:

~own, Chair, Department of-Chemlstry

Bernard Ross, Vice Provost for Graduate Studies

Page 5: Fluorinated esters : synthesis and identification

ACKNOWLEDGEMENTS

The author extends appreciation to Dr. Gary L. Gard

for his helpfulness, guidance and patience; to Dr. Alfred

S. Levinson and Dr. Raymond Lutz for serving on the thesis

committee; Dr. Lutz also helped with the proposed

mechanisms of the reactions; to Dr. Roger Sheets for

obtaining and help in interpreting the NMR spectra; to Mr.

Javid Mohtasham for synthesis of the sultone and to Mr.

Allen Cook NMR manager at Rice University for his help in

interpreting the NMR spectra.

Page 6: Fluorinated esters : synthesis and identification

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

ACKNOWLEDGEMENTS

CHAPTER

I

II

III

IV

v

INTRODUCTION

EXPERIMENTAL METHODS

SYNTHESIS OF FLUORINATED ESTERS

ANALYTICAL RESULTS

CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

REFERENCES CITED

PAGE

v

vii

iii

1

23

28

36

98

102

Page 7: Fluorinated esters : synthesis and identification

LIST OF TABLES

TABLE PAGE

I-IV List of Previously Snythesized Fluorinated Esters

I Synthesis of Unsaturated Esters Part I ...•...... 11

II Synthesis of Fluoroesters Part II .•....••....... 19

III Synthesis of Esters Part III .................... 21

IV Summary of IR Spectra of New Esters ............. 40

V Infrared Spectrum of CF3CH20C(O)CF(CF3)S02F ..... 41

VI Infrared Spectrum of CH3CH20C(O)CF(CF3)S02F ..... 42

VII Infrared Spectrum of CH2=CHCH20C(O)CF(CF3)S02F .. 43

VIII Infrared Spectrum of (CH20C(O)CF(CF3)S02F)2 ..... 44

IX Infrared Sprectrum of C6F50C(O)CF(CF3)S02F .....• 45

X Infrared Spectrum of (CF3)2CHOC(O)CF(CF3)S02F ... 46

XI Mass Spectrum for CH2=CHCH20C(O)CF(S02F)CF3 ..... 57

XII Mass Spectrum for CH3CH20C(O)CF(S02F)CF3 ..•..... 59

XIII Mass Spectrum for (CF3)2CHOC(O)CF(S02F)CF3 ...•.. 61

XIV Mass Spectrum for CF3CH20C(O)CF(S02F)CF3 ........ 62

XV Mass Spectrum for C6F50C(O)CF(S02F)CF3 .•........ 63

XVI Summary of Chemical Shifts for Various Molecular Groups ............................ 68

XVII Summary of NMR Spectrum of (CH20C(O)CF(CF3)S02F)2 71

XVIII Summary of NMR Spectrum of H2C=CHCH20C(O)CF(CF3)S02F ...........•..•...• 71

Page 8: Fluorinated esters : synthesis and identification

vi

XIX Summary of NMR Spectrum of (CF3)2CHOC(O)CF(CF3)S02F •..••.....•.•••..••. 72

XX Summary of NMR Spectrum of F5C60C(O)CF(CF3)S02F ••••••••...•.•..•••..••. 72

XXI Summary of NMR Spectrum of CH3CH20C(O)CF(CF3)S02F ••••••..••.•..••...•.. 73

XXII Summary of NMR Spectrum of CF3CH20C(O)CF(CF3)S02F •••..•.•...••.••.••••• 73

XXV Elemental Analysis of Fluorinated Esters •...••.. 97

Page 9: Fluorinated esters : synthesis and identification

LIST OF FIGURES

FIGURE PAGE

1. Glass Vacuum Manifold ••••••••.••••••.•••••.•••..•• 27

2. Infrared Spectrum of (CF3)2CHOC(O)CF(CF3)S02F •••.. 47

3. Infrared Spectrum of CH3CH20C(O)CF(CF3)S02F .•••..• 48

4. Infrared Spectrum of CF3CH20C(O)CF(CF3)S02F •••••.• 49

5. Infrared Spectrum of CH2=CHCH20C(O)CF(CF3)S02F .••. 50

6. Infrared Spectrum of C6F50C(O)CF(CF3)S02F .•..••... 51

7. Infrared Spectrum of (CH20C(O)CF(CF3)S02F)2 . . . . . . . 52

8. Infrared Spectrum of the First Polymerization Trial 53

9. Infrared Spectrum of the Second Polymerization Trial 54

10. Fluorine NMR Spectrum of (CF3)2CHOC(O)CF(CF3)S02F 1 CF region ...••.•••.. 74

11. Proton NMR Spectrum of (CF3)2CHOC(O)CF(CF3)S02F ••. 75

12. Fluorine NMR Spectrum of (CF3)2CHOC(O)CF(CF3)S02F 1 CF3 region ••..•..••. 76

13. Fluorine NMR Spectrum of (CF3)2CHOC(O)CF(CF3)S02F 1 SF region ..•..•••..• 77

14. Fluorine NMR Spectrum of CH2=CHCH20C(O)CF(CF3)S02F 1 CF region ••••.•••.• 78

15. Proton NMR Spectrum of CH2=CHCH20C(O)CF(CF3)S02F .• 79

16. Fluorine NMR Spectrum of CH2=CHCH20C(O)CF(CF3)S02F 1 CF3 region •.•.•••.• 80

17. Fluorine NMR Spectrum of CH2=CHCH20C(O)CF(CF3)S02F 1 SF region ••.••••.•• 81

18. Fluorine NMR Spectrum of CH3CH20C(O)CF(CF3)S02F, CF region .•....•...•.. 82

Page 10: Fluorinated esters : synthesis and identification

viii

19. Proton NMR Spectrum of CH3CH20C(O)CF(CF3)S02F .•.... 83

20. Fluorine NMR Spectrum of CH3CH20C(O)CF(CF3)S02F 1 CF3 region •...........• 84

21. Fluorine NMR Spectrum of CH3CH20C(O)CF(CF3)S02F, SF region .•....•.•....• 85

22. Fluorine NMR Spectrum of (CH20C(O)CF(CF3)S02F)2 1 CF region ...•...•.•.... 86

23. Proton NMR Spectrum of (CH20C(O)CF(CF3)S02F)2 . . . . . . 87

24. Fluorine NMR Spectrum of (CH20C(O)CF(CF3)S02F)2, CF3 region .......•..... 88

25. Fluorine NMR Spectrum of (CH20C(O)CF(CF3)S02F)2 1 SF region .••..••....... 89

26. Fluorine NMR Spectrum of CF3CH20C(O)CF(CF3)S02F 1 CF region ..........•.... 90

27. Proton NMR Spectrum of CH3CH20C(O)CF(CF3)S02F ....... 91

28. Fluorine NMR Spectrum of CF3CH20C(O)CF(CF3)S02F 1 CF3 region .......•...... 92

29. Fluorine NMR Spectrum of CF3CH20C(O)CF(CF3)S02F 1 SF region .....•....•.•.. 93

30. Fluorine NMR Spectrum of C6F50C(O)CF(CF3)S02F 1 CF region .•.....•.....•... 94

31. Fluorine NMR Spectrum of C6F50C(O)CF(CF3)S02F 1 CF3 region ................ 95

32. Fluorine NMR Spectrum of C6F50C(O)CF(CF3)S02F 1 SF region ................. 96

Page 11: Fluorinated esters : synthesis and identification

CHAPTER I

INTRODUCTION

The interest in monofluorinated esters dates back to

1896 when Swarts(l) prepared the first "published" method

for the synthesis of such esters; this involved a fluorine

exchange through the use of silver or mercurous fluoride, as

shown below:

2 ICH2C02CH3 + Hg2F2 ------> 2FCH2C02CH3 + Hg2I2

The interest in monofluorocarbon esters began in

Belguim and was later picked up in Germany because of their

possible use as insecticides. The British government became

interested in fluorocarbons in the early 1940's when it was

important to look at the toxicity of fluoroesters in case

they were used against the Allies in World War II(2). The

main work was done by Saunders and some of his work will be

discussed later in this portion of the thesis. The interest

in fluorinated esters and fluorine compounds in general, in

addition to their potential toxic properties, lies in their

use as monomers for polymers, oil lubricants and possible

blood substitute. It is the purpose of this portion of the

thesis to present a summary of several synthetic methods

discovered by various investigators. Our research group is

interested in fluorinated esters, particularly esters

containing the sulfonyl fluoride group (S02F) . These esters

Page 12: Fluorinated esters : synthesis and identification

can be converted to fluorinated sulfonic acids which are

useful as fuel cell electrolytes, Nafion-like products and

strong acids.

While it is possible to present a review of

fluoroesters from several different view points it was

decided to follow the chronological approach.

In 1911, the following method was introduced(3):

(o,m,p) FC6H4C02H + CH30H -----> (o,m,p) FC6H4C02CH3+H20

2

As shown in the above equation, an aryl fluorinated

ester was obtained through reaction of an aryl carboxylic

acid with alcohol. As will be seen later, this method was

widely used to synthesize many different esters. At the

same time another investigator(4) independently reported the

synthesis of the same ester via a different process:

(o,m,p)FC6H4COCl + CH30H ----> (o,m,p)FC6H4C02CH3 + HCl

This method too was used later for synthesis of several

esters.

Swarts(5) used the basic technique of halogen exchange

again in 1914 to synthesize the following fluoroesters:

H3CC02CH2CH2Br + AgF -----> CH3C02CH2CH2F + AgBr

In 1933, chlorocarbonic acid(6) reacted with thallous

fluoride according to the following equations:

ClC02CH3 + TlF ----> FC02CH3 + TlCl

ClC02CH2CH3 + TlF ----> FC02CH2CH3 + TlCl

Thallous fluoride was also used by Ray(7) for the

following equations:

BrCH2C02CH3 + TlF -----> FCH2C02CH3 + TlBr

Page 13: Fluorinated esters : synthesis and identification

3

BrCH2C02CH2CH3 + TlF -----> FCH2C02CH2CH3 + TlBr

Hanford(8), working for DuPont patented a technique in

1947 for the preparation of polyfluorocarbonyl compounds.

These carbonyl compounds included esters, acids, aldehydes,

ketones and acid anhydrides. These compounds were prepared

by treating the carbonyl compound with CF2=CF2 under

pressure at 75 - 350°c and in the presence of an initiator

such as benzoyl peroxide. Some of the esters which were

prepared through this method are:

H(CF2CF2)nC02CH3 (where n varies from 1 to 25)

Some of the starting carbonyl compounds were:

CH3CH2C02CH2CH3, CH3C02H 1 CH3CH2C02H 1 CH2(C02CH2CH3)2

H3CC02CH2CH20COCH3, CH2(CH2)4CO, CH3CH2COCH3, (CH3C(0))20

and H3CC02CH2CH20COCH3

The chemical equation through which these esters are

prepared may be shown as:

6 CF2=CF2 + HC02CH3 + Bz202 -----> H(CF2CF2)6 C02CH3

These esters were reported to be nonflammable, noncorrosive

and nontoxic. They also have high thermal and chemical

stability. They are reported to be useful as lubricants and

as solvents and reaction media.

In the same year, Henne reported the synthesis of aceto

fluoroesters through Claisen condensation of a fluorinated

ester with another ester or a ketone to synthesize ester

such as(9):

CF3COCH2C02CH2CH3, CHF2COCH2C02CH2CH3

Page 14: Fluorinated esters : synthesis and identification

4

All condensations were performed in ether using sodium

ethoxide which was freshly prepared by treating one

equivalent of absolute ethanol with one equivalent of finely

dispersed sodium; one equivalent of dry fluorinated ester

was then added. To the product of this reaction, the second

ester was added and the mixture was refluxed for about fifty

hours. This was then followed by a series of steps taken to

isolate a product. Although the author does not specify the

specific reagents used for the synthesis of esters shown

above, the following equations represents the possible

reagents which may have been used:

CF3C02CH2CH3 1. NaOCH2CH3> CF3COCH2C02CH2CH3

2. CH3C02CH2CH3

CHF2C02CH2CH3 1. NaOCH2CH3> CHF2COCH2C02CH2CH3

2. CH3C02CH2CH3

Also in 1947, Henne(lO) reported the synthesis of

CH3CF2CH2C02C2H5 and CH3CH2CF2C02C2H5. Tetrolic acid

CH3C=CC02H was esterified to its ethyl ester derivative. To

the ester was added hydrogen fluoride (in a steel bomb).

Both of the two isomers were obtained:

H3CC=CC02CH2CH3+2HF -10°c> CH3CF2CH2C02CH2CH3 +

CH3CH2CF2C02CH2CH3

A year later Miller et al.(11) reported on the vapor

phase fluorination of acetyl fluorides by reacting

equivalent amounts of fluorine and acetyl fluoride, both

diluted with nitrogen. This mixture was passed into a

steam-jacketed copper reactor which was packed with ethyl

Page 15: Fluorinated esters : synthesis and identification

5

alcohol. The esters formed were fractionally distilled, the

ratio between the isolated ethyl fluoroacetate and ethyl

difluoroacetate was 6:1 and trace amounts of ethyl

trifluoroacetate was formed:

CH3COF + F2 Cu> [CF3COF + CH2FCOF + CHF2COF] = A

NaF

A + CH3CH20H ---> CF3C02CH2CH3, CH2FC02CH2CH3, CHF2C02CH2CH3

Ratio: Trace 6 1

The Imperial Chemical Industries Ltd of Britain(12)

reported synthesis of a new class of polymerizable fluorine

containing vinyl esters. These esters were prepared by

treating C2H2 with a fluorine containing saturated four

carbon cyclic carboxylic acids which have at least 2F atoms

attached directly to the ring. Example of such acids are:

tetrafluoro, tetrafluoromonochloro, trifluoromonochloro

carboxylic acids. An example of such reaction:

FDF liCOOH

F H F H

F H Benzene, 50°C r DC02CH=CH2

+ CH2=CH2 ---------> HgS04 ,HgO F F HH

The above reaction was done in the presence of

hydroquinone, and formation of a dark liquid is reported

which was then filtered and distilled at reduced pressure.

Saunders and Stacy(13) published in 1948 the result of

a study that they had done on the toxicity of fluorinated

esters. They reported synthesis of several fluorinated

Page 16: Fluorinated esters : synthesis and identification

6

esters as shown in the following equations:

CH2ClC02H + CH3CH20H NaF> CH2FC02CH2CH3 + NaCl + H20

CH2ClC02H + CH3CH2CH20H NaF> CH2FC02CH2CH2CH3 + NaCl + H20

CH2ClC02H + CH3CH(OH)CH3 NaF> CH2FC02CH(CH3)2 + NaCl + H20

(All the reactions listed above were carried out in a

rotating autoclave). Also

(CH3)2C(Br)C02CH2CH3 + AgF ----> (CH3)2CFC02CH2CH3 + AgBr

CH3CBrHC02CH2CH3 + AgF ----->

C6H50H + CH2FCOCl Pyridine>

ClC02CH2CH3 + KF -------------->

CH3CFHC02CH2CH3 + AgBr

CH2FC02C6H5

FC02CH2CH3 + KCl

In continuation of their studies, Saunders(14-17) et

al. studied the toxicity of other fluorinated esters, which

were prepared as shown below.

1.(15)CH2FCOCl+CH2FCH20H ----------> CH2FC02CH2CH2F

2. CH2ClCOCl+CH2FCH20H -------------> ClCH2C02CH2CH2F

3. CH2FCOCl+H2C = CHCH20H --------> CH2FC02CH2CH = CH2

4. H3CIHC(CH2)2C02CH2CH3+AgF ---> H3CFCH(CH2)2C02CH2CH3+AgI

5. (l6)BrCH2(CH2)4C02CH2CH3+AgF---> FCH2(CH2)4C02CH2CH3+AgBr

6. (l6)BrCH2(CH2)4C02CH2CH2F+AgF-->FCH2(CH2)4C02CH2CH2F+AgBr

7. (l6)ICH2(CH2)6C02CH2CH3+AgF-----> FCH2(CH2)6C02CH2CH3+AgI

8. (17)BrCH2C(CH3)2CH2C02CH2CH3+AgF-->

FCH2(CH3)2CH2C02CH2CH3+AgBr

9. (l6)ICH2(CH2)6C02CH2CH2F+AgF --> FCH2(CH2)6C02CH2CH2F+AgI

10. (l6)BrCH2(CH2)gC02CH2CH3+AgF--> FCH2(CH2)sC02CH2CH3+AgBr

11. (l6)BrCH2(CH2)gC02CH2CH2F+AgF->FCH2(CH2)sC02CH2CH2F+AgBr

12. (l6)BrCH2(CH2)9C02CH2CH3+AgF--> FCH2(CH2)9C02CH2CH3+AgBr

13. (l6)BrCH2(CH2)10C02CH2CH3+AgF->FCH2(CH2)10C02CH2CH3+AgBr

Page 17: Fluorinated esters : synthesis and identification

7

14. (17)BrCH2CH CHC02Me+AgF ---------> FCH2CH = CHC02CH3

15. (17)FCH2CH = CHC02CH3 (})

CHzF

+ I/ ~ ____,,. ~ COzCH3

( B)

B was hydrogenated at room temperature and at

atmospheric pressure in the presence of palladium as

· H3

c CHzF catalyst which yielded the reduced form of B. 0 16. (17)FCH2CH=CHC02CH3+CH2=C(CH3)C(CH3)=CH2 ----->I

H C COzCH3 3

( c) Hydrogenation was carried out according to the procedure

described previously, to make the reduced form of C.

In December 1951 Haszeldine reported the mechanism

involved in the synthesis of esters such as trifluoromethyl

trifluoroacetate and heptafluoropropyl heptafluorobutyrate

(note that unlike the esters discussed thus far these esters

are perfluorinated esters) and according to Haszeldine were

the first completely fluorinated esters to be reported(18).

According to his studies the esters were believed to arise

by a free radical mechanism such as the following:

CF3C02Ag + I2 -----------> CF3C02I + Ag!

CF3C02I heat> CF3COO + I

CF3C02I heat> CF3 + C02 + I

CF3COO + CF3 ------------> CF3C02CF3

Listed below are other esters along with references

which were prepared through similar methods discussed so

far:

1.(19)FCH2CH20H + ClCH2COCl 100°c> FCH2CH20COCH2Cl + HCl

Page 18: Fluorinated esters : synthesis and identification

2. FCH2CH20H + BrCH2COBr 100°c> 3 hrs FCH2CH20COCH2Br + HBr

3. FCH2CH20H + ICH2COCl > CFH2CH20COCH2I + HCl

4. FCH2CH20H + CH3COCl > CFH2CH20COCH3 + HCl

8

5. ICH2COCl + FCH2CH(CH3)0H > ICH2C02CH(CH3)CH2F + HI

6.

7.

8.

9.

KF ICH2C02CH(CH3)CH2F + HgF2 ~> FCH2C02CH(CH2F)CH3 + HgIF

ICH2COCl + (FCH2)2CHOH 4o-5o0

c> (FCH2)2CHOCOCH2I + HCl

"KF 2(FCH2)2CHOCOCH2I + HgF2 ~> 2(FCH2)2CHOCOCH2F + HgI2

CH3Cl (20)CF3C02H + CH3CH2CH2CH(CH3)CH20H >

CF3C02CH2CH(CH3)CH2CH2CH3

10. C3F7C02H + EtOH > C3F7C02CH2CH3

11. (21)C3F7CHO + (CH2CHC0)20 > C3F7CH(02CCHCH2)2

reaction conditions:

1. H2S04

2. Let stand overnight at 10°c

3. Wash with H20 + 10% NaHC03

4. Distill in presence of Cu(OAc)2

Pyridine 12. C3F7CH(OH)2+Ac20 > C3F7CH(OCOCH3)2+C3F7CH20Ac

H2S04 13. (22)P205 + C3F7C02H + HgO + C2H2 > C3F7C02CHCH2

0°c, 12 hr.

14. C4F9C02H + HgO + P205 + C2H2 > C4F9C02CHCH2

Other esters prepared through the same procedures are:

C5F11C02CHCH2, C9F19C02CHCH2, C6F11C02CHCH2

15. reflux for (23)C3F7CH20H+C3F7COCl 2 d > C3F7C02CH2C3F7+HCl ays

Page 19: Fluorinated esters : synthesis and identification

The mixture was washed with 10% K2co3 and dried with

Mgso4 , and the product was obtained through fractionation.

16. C7F15COCl + C3F7CH20H -----> C7F15C02CH2C3F7 + HCl

17. CF3CH20H + C3F7COCl reflux> C3F7C02CH2CF3 + HCl

18. 2C3F7COCl+CF2(CF2CH20H)2 150°c lO%K2C03>

(C3F7C02CH2CF2)2CF2

19. (CF2CF2CH20H)2 + 2C3F7COCl ---> (C3F7C02CH2CF2CF2)2

20. OC(CF2)3COO+C3F7CH20H 1so0 c> (C3F7CH202CCF2)2CF2

2 days

21. C3F7CH202C(CF2)3C02H+PCl5 (10%) --->

C3F7CH200C(CF2)3C(O)Cl

22. C3F7CH202C(CF2)3COCl QJE7CH20H>

C3F7CH200C(CF2)3C02CH2C3F7

23(24)2C3F7C02Ag+I(CH2)6I CCl2FCClF2> [C3F7C02(CH2)3]2

reflux, 2 hrs

(C3F7C02CH2)2CH2 and [C3F7C02(CH2)5]2 were prepared by

the same method.

24. 2C3F7C02H+HO(CH2)50H PhCH3+NaHS04>

[C3F7C02(CH2)2]2CH2

[C3F7C02(CH2)2J2 and [CF3C02(CH2)2]2CH2 were prepared

through the same technique.

9

25. C7F15COCl+HO(CH2)50H reflux 6 hrs> [C7F15C02(CH2)2]2CH2

[C5F11C02(CH2)2J2CH2 and [C9F19C02(CH2)2J2CH2 were

prepared through the same way.

26. [(CF2)2C02HJ2 + t-BuOH Q6li6> [t-Bu02C(CF2)2J2

NaHS04

This method was used to prepare the following esters:

Page 20: Fluorinated esters : synthesis and identification

10

[R02C(CF2)2J2 where R is:

C4H9, sec-C4H9, C6H13 1 (C4H9) (C2H5)CHCH2

27.(25) C3F7C02H + CH30H I:faS04> C3F7C02CH3

2C3F7CH20H+(CH2CH2COCl)2 reflux at 18°> (CH2CH2C02CH2C3F7)2

for 2 days

The following esters were prepared through the same

method:

(CH2CH2C02CH2CF3)2 1 CH2(CH2CH2C02CH2CH2C3F7)2 1

[(CH2)3C02CH2C3F7]2 1 CH2[(CH2)3C02CH2C3F7]2 1

[(CH2)4C02CH2C3F7]2 1 [(CH2)2C02CH(C2H5)C3F7]2 1 C3F7C02CH2CF3

28.(26) C2F5C02H + CH30H H2S04> C2F5C02CH3

29. C2F5C02H + CH3CH20H H2S04> C2F5C02CH2CH3

30. c2F5C02H + iso-PrOH H2S04> C2F5C02CH(CH3)2

31. (27) CH3(CH2)3CF2(CH2)4COOH+CH3CH20H Bezene>

CH3(CH2)3CF2(CH2)4COOCH2CH3

32. (28) CH3(CH2)3CH20H+CH2FC02CH2CH2CH3 H2S04>

CH2FC02CH2(CH2)3CH3 + CH3(CH2)20H

33.CH3(CH2)4CH20H+CH2FC02CH2CH3 H2S04>

34.CH3(CH2)5CH20H+CH2FC02CH2CH3 H2S04>

35.CH3(CH2)2CH20H+CH2FC02CH2CH3 H2S04>

CH2FC02CH2(CH2)4CH3

CH2FC02CH2(CH2)5CH3

CH2FC02CH2(CH2)2CH3

36.(CH3)3CHOH+CH2FC02CH2CH3 H2S04> CH2FC02CH(CH3)2

A series of fluoroformate esters were prepared by

Jensen(29)et al. These esters were then heated to eliminate

carbon dioxide and form the corresponding fluorinated alkyl

compounds. The fluoroformate esters were:

FC02R, where R is one of the following:

CH3CH2 1 (CH3)2CH, CH3CH2CH(CH3), C5H11 1 C5H9

Page 21: Fluorinated esters : synthesis and identification

11

The general equation for preparation of these esters

was:

ClC02C2H5 + TlF > FC02C2H5 + TlCl

A series of vinyl esters were reported by Bauery(30) et

al. These esters are listed below, also below is an example

of the equation which shows how they were prepared. The

carboxylic acids were first mixed with red mercuric oxide.

The reaction mixture was then heated to 30°C after addition

of the corresponding anhydride and acetylene:

CF3CF2CF2C02H > CF3CF2CF2C02CH=CH2

Reaction conditions:

1. HgO

2. [CF3(CF2)2C0]20

3. acetylene

4. 30°C

The product was finally obtained through distillation.

Unsaturated esters which were prepared through this method

are listed in Table I, along with the corresponding

carboxylic acid.

TABLE I

SYNTHESIS OF UNSATURATED ESTERS-PART I

ester

CF3C02CH = CH2

CF3CF2C02CH = CH2

CF3(CF2)2C02CH = CH2

CF3(CF2)3C02CH = CH2

carboxylic acid

CF3C02H

CF3CF2C02H

CF3(CF2)2C02H

CF3(CF2)3C02H

Page 22: Fluorinated esters : synthesis and identification

CF3(CF2)4C02CH = CH2

CF3(CF2)aC02CH = CH2

C6F11C02CH = CH2

CH3(CF2)4C02H

CF3(CF2)aC02H

C6F11C02H

Esters of dicarboxylic acids were prepared by

Shahask(Jl) in 1959; diethyl difluoromalonate was

synthesized as shown below:

acetamide CH3CH200CCBr2COOCH2CH3 2NaF > CH3CH200CCF2COOCH2CH3

Synthesis of pentafluorophenyl benzoate was done by

Haszeldine et al.(32) as shown below:

Pyridine C6F50H + C6H6COC1 > C6H6C02C6F5

Cohen(33), et al. reported in 1961, the synthesis of the

following esters:

Ether > CFH2C02CH2CH3 + CH3COCH2CH3 00C,H2S04

12

CH3CH2C(OH) (CH3)CFH2C(O)OCH2CH3 + CFH2C(O)CH2C(O)CH2CH3

Analogously, ethyl-2-methyl-2-hydroxyl-3-

fluorobutyrate was prepared through reaction of ethyl

fluoroacetate with acetone.

In 1964, McLaughlin et al.(34) were able to synthesize

fluoro-~-keto esters through the Claisen condensation of

two different esters. Ethyl-1,1,1-trifluoroacetoacetate

was obtained in a condenser charged with sodium wire. A

mixture of ethyl trifluoroacetate and ethyl acetate was

rapidly added to the sodium wire and produced an exothermic

Page 23: Fluorinated esters : synthesis and identification

13

reaction; after cooling the reaction mixture ether was added

and refluxed for 16 hours. Evaporation under vacuum left

behind a dark brown tar which was then washed in ether and

15% sulfuric acid; the final product ethyl

1,1,1-trifluoro-3-methyl acetoacetate was obtained through

distillation. Other esters obtained through this method

are: ethyl 1,1,1-trifluoro-3-methylacetoacetate which was

obtained through the reaction of ethyl trifluoroacetate with

ethyl propionate through the same procedure listed above.

Ethyl 4,4,5,5,6,6,6-heptafluorobutyrylacetate was obtained

through reaction of ethyl heptafluorobutyrate and ethyl

acetate.

In 1965, Inukai(35) reported the synthesis of a series

of esters of trifluoroacetate, which were prepared by mixing

trifluoroacetic anhydride with phenol derivatives in the

presence of benzene. The product was obtained after drying

the solution. The following list contains the esters and

the phenyl compounds from which the corresponding esters

were prepared:

Ester

~-nitrophenyl trifluoroacetate

Phenyl trifluoroacetate

R-chlorophenyl trifluoroacetate

2,4,5-trichlorophenyl trifluoroacetate

Pentachlorophenyl trifluoroacetate

f-methoxyphenyl trifluoroacetate

Phenol Compound

p-nitrophenol

phenol

p-chlorophenol

2,4,5-

trichlorophenol

Pentachlorophenol

E-methoxyphenol

Page 24: Fluorinated esters : synthesis and identification

14

In the same year, Ellingboe et al. (36) reported a

process for producing fluorine containing organic compounds

in which carbonyl fluoride COF2 is allowed to react with

carbonyl compounds such as ketones, aldehydes, esters etc.

The result was an organic compound containing CF2 groups.

However, esters of fluoroformic acid were produced as

intermediate products of reactions of aldehydes and ketones

with carbonyl fluoride and have the general formula

R'(R")CFO-C(O)F where R' and R" preferably contain up to 17

carbons and may be hydrogen, alkyl, aryl, haloalkyl,

haloaryl etc. Example of such reaction is:

yH2(CH2)4yO + COF2 + dimethylformamide> C6H10F02CF

The following list shows additional esters along with

the carbonyl compounds from which these esters were formed:

Ester

d-fluorocyclohexyl fluoroformate

a-fluoroethyl fluoroformate

2-fluoro-2-propyl fluoroformate

q-fluorocyclopentyl fluoroformate

a-fluorododecyl fluoroformate

~-fluorobenzyl fluorof ormate

~-fluoro- -phenylethyl fluoroformate

q-fluorooctadecyl fluoroformate

q.diphenyl fluoromethylfluoroformate

2-fluoro-2-butyl fluoroformate

Carbonyl Compound

C6H100

CH3COH

CH3COCH3

C5HgO

C10H1gO

C6H5COH

C6H5C(O)CH3

C13H350H

(C6H5)2CO

CH3COCH2CH3

Page 25: Fluorinated esters : synthesis and identification

15

In 1966, Dow Corning Corporation(38) reported the

synthesis of esters which were obtained through the reaction

of alcohols listed below with different carboxylic acids.

The esters shown below were obtained from reaction of

an alcohol with methacrylic acid in the presence of

trifluoroacetic anhydride:

Alcohol Product

C2F5yF(CF2)3CFHyFCH(CH3)0H, C2F5yF(CF2)3CFHTFCH(CH3)02C,CH2

CH3

CF2(CF2)3CFHCFCH(C2H5)0H, CF2(CF2)3CFHCFCH(C2H5)02CC(CH3)CH2 I I I I

CF3CF(CFH)3CFHCFCH20H, CF3CF(CFH)3CFHCFCH202CC(CH3)CH2

The esters shown below were the results of

esterification of the following alcohols with acrylic acid:

Alcohol Product

yF2CF2CHFyFC(CH3)20H, rF2CF2CHFyFC(CH3)202CCH=CH2

C9F19CFCF2CHFCFCH(C6H13)0H,C9F19CFCF2CHFCFCH(C6H13)02CCH=CH2

CF3yH(CF2)2CFH9FCH(CH(CH3)CH2CH3)0H,

CF3CH(CF2)2CFHCFCH(CH(CH3)CH2CH3)02CCH=CH2

The esters reported above were important because of

their ability to polymerize. Their polymers are plastic or

elastomer materials possessing "unusually good chemical and

thermal stability".

Metro(37) patented a procedure for synthesis of esters

of fluoroalcohols and aliphatic carboxylic acids. These

esters are important as they can be used as lubricating oil.

They include mono and di-esters of c6 to Cg alkanetrioic

acid and mono-, di and tri-esters of c6 to Cg alkanetetraoic

Page 26: Fluorinated esters : synthesis and identification

16

acids. The preferred acids are 1,2,3-tricarboxy propane;

1,2,4-tricarboxy butane and 1,2,3,4-tetracarboxy butane.

Fluorinated alcohols used have 3 to 20, preferably 5 to 13,

carbon atoms and with the formula X(CF2)nCH20H where X is

either a hydrogen or fluorine and n is an integer from 2-

19, examples of such alcohols are:

tetrafluoro 1-propanol (CHF2CF2CH20H), and pentafluoro

1-propanol CF3CF2CH20H.

The following is an example of one of the esters

prepared:

H2C - COOH I

HC - COOH (D) I

H2C - C02CH2(CF2CH2)3H

which was prepared by:

H(CF2)6CH20H + (CH2 ) 3 (COOH) 3 Heptane> (D)

A triester may be obtained for example by esterifying one

mole of 1,2,3,4-tetracarboxy butane with three moles of

alcohol (CF3CF2CH20H) through the procedure shown above.

In 1970(39), Toren et al. reported synthesis of

(CF3)3CC02CH3 and (CF3)3CC02CCF3 through the following

reaction:

1. (CF3)3COH + (CH3C0)20 2-methyl Pyridine> CH3C02C(CF3)3

2. (CF3)3COH + (CF3C0)20 2-methyl Pyridine> CF3C02C(CF3)3

The reaction was allowed to proceed at room temperature for

48 hours, with the product being obtained through

distillation.

Page 27: Fluorinated esters : synthesis and identification

17

In 1972, Shreeve et al.(40) reported isolation of

CF3C02C(NF2)2CF3 during a study of reaction of HNF2 - KF

adduct with perfluoroacyl fluorides at -7a0 c. And when the

reaction temperature was lowered to -1os0 c, CF3C02C2F5 (the

dimer of CF3COF) was obtained. These esters once isolated

were reported to be stable but in the presence of alkali

metal fluorides would undergo decomposition at temperatures

of -1a0 c or above.

In continuation of their studies, Shreeve et al.(41)

reported synthesis of fluorinated esters of the type

RfC02CF(CF3)2 which contain fluorine on the alkoxy-carbon.

These were reported to be unstable in the presence of

fluoride ion at -7a0 c or above. However esters which

contain substituents other than fluorine at this position

are very stable in the presence of fluoride ion even at

higher temperatures. This was explained as follows:

Rf is an electronegative group and as a result enhances

the electrophilicity of the carbonyl carbon atom which

promotes the addition to the carbonyl double bond. The

following mechanism shows how this happens:

0 F

A/J Rf 0

(R~)2 + +

Cs

F

- 0 Jf F rl l..j I

Rrc- O-C(Rf)2 IV F

(A) 0

Complex A ------~ Rf~F + (Rf)2CO + CsF

According to the diagram above, the nucleophilicity of

fluoride ion allows it to attack at the carbon of the

Page 28: Fluorinated esters : synthesis and identification

18

carbonyl group, which gives rise to complex A. Complex A

then undergoes further rearrangement to form acyl fluoride,

ketone and CsF.

Since F has a very strong inductive effect, its

departure as a F-, will be favored. The inductive effects

of CF3 and particularly of H and CH3 are very much less than

that of fluorine, therefore they are not very good leaving

groups. The esters which were prepared in this study were:

CF3C02Rf where Rf is

(CF3)3C, C2F5(CF3)2C 1 (CF3)2(CH3)C and (CF3)2CH

These esters were prepared from reaction of the

corresponding alcohols (e.g. CF3CH20H) with trifluoroacetyl

fluoride in the presence of CsF.

In 1975, another group(42), reported a method for the

synthesis of aliphatic fluorinated esters some of which were

reported by Shreeve(41). In their studies, esters were

prepared with reaction of KOC(CF3)3 with acyl fluorides.

This provides a "convenient method" for the synthesis of

these esters which are listed as follows:

Reactant

COF2

CF3COF

CH3COF 0 0 !.!. II

F3C-O-c-C-F

Product

FC02C(CF3)3

F3CC02C(CF3)3

H3CC02C(CF3)3

CF3COOC02C(CF3)3

In 1978, another(43) method was introduced which

involved reaction of a fluorinated acyl hypochlorite with a

fluorine containing alkene as shown below:

Page 29: Fluorinated esters : synthesis and identification

RfC02Cl + CF2 = CFCF3 -78°C> RfC02CF2CFClCF3

Rf = CF3, ClCF2

This procedure was used a year later by DesMarteau(44) to

synthesize the esters shown in Table II.

TABLE II

SYNTHESIS OF FLUOROESTERS-PART II

& Olefin Ester

1. CF3 CF2 = CF2 CF3C02(CF2)2Cl

2 . CF3 CF2 = CH2 CF3C02CF2CH2Cl

3. CF3 CF2 = CFCl CF3C02CFClCF2Cl

4. CF3 CF2 = CCl2 CF3C02CCl2CF2Cl

5. CF3 CH2 = CH2 CF3C02CH2CH2Cl

19

6. CF3 cis CFH = CFH erythroCF3C02CFHCFHCl

7. CF3 trans CFH = CFH threoCF3C02CFHCFHCl

8. C2F5 CF2 = CF2 C2F5C02CF2CF2Cl

9. C2F5 CF2 = CH2 C2F5C02CF2CH2Cl

10. n-C3F7 CF2 = CF2 n-C3F7C02CF2CF2Cl

11. n-C3F7 CF2 = CH2 n-C3F7C02CF2CH2Cl

12. ClCF2 CF2 = CF2 ClCF2C02CF2CF2Cl

13. ClCF2 CF2 = CH2 ClCF2C02CF2CH2Cl

14. HCF2 CF2 = CF2 HCF2C02CF2CF2Cl

15. HCF2 CF2 = CH2 HCF2C02CF2CH2Cl

In 1981 Brace(45) reported synthesis of esters shown

below:

1. CH3C02CH2CHICH2C6F13

Page 30: Fluorinated esters : synthesis and identification

2. CH3C02CH2CHICH2C7F15

3. CH3C02CH2CHICH2C4F9

20

these esters were prepared through reactions shown below:

C6F13I + CH3C02CH2CHCH2

C7F15I + CH3C02CH2CHCH2

C4F9I + CH3C02CH2CHCH2

Benzoyl Peroxide> (1)

Benzoyl Peroxide> (2)

azo-bis isobutyronitrile (3)

As part of our program to prepare fluorosulfonic acids we

became interested in finding ways to prepare precursors for

these acids. England et al.(48) found that the

B-fluorosultone yF2CF20y02 reacted with alcohols to yield

esters containing the S02F group (any compound containing

this group is a precursor to sulfonic acids). These esters

and the reactants from which they were prepared are listed

in Table v. We have extended the scope of this reaction to

include the sultone, CF3tFCF20902. Using this sultone, new

fluoroesters containing the S02F group were prepared and

characterized by NMR, IR and Mass Spectral techniques.

Page 31: Fluorinated esters : synthesis and identification

21

TABLE III

SYNTHESIS OF ESTERS-PART III

Reactant

Sodium Methoxide

Isopropyl alcohol

Octanol-1

2-Ethylhexanol

2-Ethylhexanol

2-Ethylhexanol

Sul tone

FF2CF20~02

<(F2CF20902

yF2CF20§02

CF2CF20?02

Cl~FCF2m~o2

i:F2CF(CF3)0~02

Octafluoroamyl alcohol ~F2CF20902 I

Ethylene glycol CF2CF20~02 I __ ,

Phenol CF2CF20~i;o2 +----- _,

Product

CH30C(O)CF2S02F

C3H70C(O)CF2S02F

CaH170C(O)CF2S02F

C4H9

"" CHCH20C(O)CF2S02F /

C2H5

C4H9

"' CHCH20C(O)CF2S02F /

C2H5

C4H9 I

CHCH20C(O)CF(CF3)S02F I

C2H5

H(CF2)4CH20C(O)CF2S02F

(CH20C(O)CF2S02F)2

C6H50C(O)CF2S02F

Page 32: Fluorinated esters : synthesis and identification

1.

2.

3.

4.

5.

22

The proposed mechanism for the reactions is as follows: F o-

CF3 - CF - CF2 + F --+ FS02

')~~ / s~

- C - C - F I I

CF3 F

F 0 F 0 I r I II

FS02 - C - C - F -----> (FS02 - C - C - F) + F I ! "-.:,, I

CF3 CF3

F 0 F o-I IJ I I

FS02 - C - C - F + R - 0 - H --~ FS02C - C - F I~·· I I

CF3 CF3 0 - H 1-+ R

F o- F 0 I I I II +

FS02 - C - C - F -----> I !

FS02C - C - 0 - R + F -I I

CF3 0 - H CF3 H I R

F 0 F 0 I II + - I fl

FS02 - C - C - 0 - R I I

-1:... FS02C - C - 0 - R + HF I

CF3 H CF3

Page 33: Fluorinated esters : synthesis and identification

23

CHAPTER II

EXPERIMENTAL METHODS

Vacuum System

The vacuum system used in this work was an all "Pyrex"

glass system which consisted of a manifold connected to a

"Welch Duo-Seal" rotary pump. The manifold consisted of 8

mm and 22 mm I.D. "Pyrex"-glass tubing which was connected

to a two leg mercury manometer and also had four taps for

attaching vessels. The taps were Eck and Krebs 2 mm high

vacuum stopcocks to which "Pyrex" 10/30 outer glass joints

were attached. A "Televac" gauge was used to monitor the

system and it usually attained a vacuum at 10-2 - 10-3 torr.

All joints were greased with "Apiezon-M" grease or "Kel-F"

grease. The system is illustrated in Figure-1.

Reaction Vessels

For all the reactions studied, "Pyrex" glass vessels

were used. The vessels were equipped with a stirrer, for

mixing the reactants and had 2 mm high-vacuum "Teflon"

stopcocks for an outlet. The connecting portion consisted

of 10/30 inner joints for attaching to the vacuum line.

Physical Methods

Vacuum Distillation. Products were purified by

Page 34: Fluorinated esters : synthesis and identification

24

distilling in a "Bantam-ware" (Kontes) distillation

apparatus. A heater and an oil bath were used to provide

heat, and the unit was connected to the vacuum line through

a trap cooled to -198°c.

The distillations which were done under atmospheric pressure

had the same set-up with the exception that the unit was

connected to the atmosphere via a trap was cooled to -7a0 c.

Infrared Spectra

Infrared spectra were obtained using a 20DX

Nicolet-FTIR spectrometer. Liquid samples were placed on

KBr windows. Gas samples were contained in a "Monel" cell

fitted with KBr windows. The cell was equipped with a Pyrex

glass 10/30 outer joint. The IR range was 4000-400 cm-1.

Nuclear Magnetic Resonance

Nuclear magnetic resonance spectra were taken on a

Varian Model EM-390 spectrometer operating at 90MHZ for

proton and 84.7 MHZ for pl9. This work was done by Dr.

Roger Sheets.

Mass Spectra

Mass spectra were taken on a CEC 21-llOB double focus

Mass Spectrometer with a 6KV ion accelator set at 70 volts.

The internal standard used was perfluorokerosine (PKF).

This work was done at the University of Idaho.

Chemical Analysis

Chemical analyses were performed by Beller

Page 35: Fluorinated esters : synthesis and identification

25

Microanalytical Laboratory in Gottingen, West Germany.

Reagents:

Ethanol. CH3CH20H was obtained from U.S. Industrial

Chemical Company and was used without further purification.

Allyl Alcohol. CH2 = CHCH20H was obtained from

Matheson Coleman and Bell, and was used without further

purification.

Trifluoroethanol. CF3CH20H was obtained from

Peninsular Chemical Research Inc. (PCR/SCM) and was used

without further purification.

Hexfluoroisopropanol. (CF3)2CHOH was obtained from

PCR/SCM Specialty Chemical and was used without further

purification.

Pentafluorophenol. C6F50H was obtained from PCR/SCM

Research Chemicals Inc. and distilled at atmospheric

pressure before it was used.

Ethylene Glycol. CH20HCH20H was obtained from

Mallinckrodt and was used without further purification.

Sodium Fluoride. NaF powder was obtained from Baker

Analyzed Reagent and was dried by heat under vacuum in the

reaction vessel.

2-hydroxy-1-trifluoromethyl-l,2,2-trifluoroethanesulfonic

Acid Sultone. CF3CFCF20S02 was prepared and distilled

by Javid Mohtasham. (Chem. Dept. Portland State University)

Potassium Persulfate. K2S204 was obtained from

Mallinckrodt and was used with further purification.

Sodium Lauryl Sulfate. (C12H250)S03Na was obtained

Page 36: Fluorinated esters : synthesis and identification

from Aldrich Chemical Company Inc. and was used without

further purification.

26

Benzoyl Peroxide. (C6H5C02)2 was obtained from Aldrich

Chemical Company Inc. and was used without further

purification.

Perfluoro-2-butyl-tetrahydrofuran

C4F70CF2CF2CF2CF3 was obtained from PCR/SCM Specialty

Chemicals and was used without further purification.

Page 37: Fluorinated esters : synthesis and identification

E

[ A

A

• a .....

c II

V

I V

I <:

Ill

n c 6 f .... Ht

0 .....

Clo

0 A

A

A

A

A

B

A.

Eck

an

d K

rebs

2 m

m h

lgh

va

cuu

m s

top

co

ck

B.

10

/30

I

Ou

ter

Join

t

C.

Tw

o-l

eg

Me

rcu

ry M

an

om

ete

r

D.

Th

erm

oco

up

le G

auge

E.

18/9

Bal

l Jo

ints

F.

Gla

ss T

rap

E

F

!\.)

-..J

Page 38: Fluorinated esters : synthesis and identification

CHAPTER III

SYNTHESIS OF FLUORINATED ESTERS

To prepare the new esters

2-hydroxy-1-trifluoromethyl-1,2,2-trifluoroethanesulfonic

acid sultone (CF3CFCF20S02) was allowed to react with the

following alcohols,

CF3CH20H, CH3CH20H, CH2=CHCH20H, CH20HCH20H, C6F50H,

and (CF3)2CHOH according to the following equations:

1. CF3tFCF20~02+CF3CH20H NaF> CF3(S02F)CFC02CH2CF3+NaHF2

4o 0 c, 3 days

28

2. CF3yFCF20902+CH2=CHCH20H NaF> CF3CF(S02F)C02CH2CH=CH2 +

r.t, 10 days NaHF2

3. 2CF3yFCF20?02+0HCH2CH20H NaF> (CF3CF(S02F)C02CH2)2 +

r.t, 10 days 2NaHF2

4. CF39FcF20~02+CH3CH20H NaF> CF3CF(S02F)C02CH2CH3 + NaHF2

r·t, 23 days

5. CF3CFCF20S02+C6F50H l I

NaF> CF3(S02F)CFC02C6F50H +

6ooc, 13 days NaHF2

6. CF3yFCF20r02+(CF3)2CHOH NaF> CF3CF(S02F)C02CH(CF3)2 +

r.t, 13 days NaHF2

All of the new products were clear, colorless liquids,

and some were distillable at atmospheric pressure. All

Page 39: Fluorinated esters : synthesis and identification

products have been identified by their mass spectra, nmr

spectra and infrared spectra.

(1) Reaction of CF3CH20H with the CF3-CF-CF20S02

Sodium fluoride (0.2534 moles) was dried in a 105-mL

"Pyrex" glass reaction vessel under vacuum.

29

Trifluoroethanol (0.0586 moles) was transferred to the

reaction vessel under vacuum followed by the vacuum transfer

of the CF3CFCF20S02 (0.0580 moles). The reaction was then

allowed to proceed for three days at 4o 0 c. The reaction

mixture was transferred to a 25-mL "Pyrex" glass round

bottom flask, through a by-pass line, under vacuum. The

product was distilled and a fraction was collected at

123-124°C (0.0418 moles) at atmospheric pressure, yield was

72%.

The infrared spectrum of the distilled product showed

the following absorptions (cm-1):

2994(VW), 1806(VS), 1461(VS), 1412(M), 1315(VS),

1281(VS), 1246(VS), 1187(VS), 1165(VS), 1128(M),

1059 (S), 1034 (M), 978 (S), 903 (VW), 875 (VW), 825 (S),

793 (M), 746 (MW), 690 (VW), 659 (MW), 603 (S), 559 (VW),

546(VW), 515(VW).

(2) Reaction of CH3CH20H with CF3tFCF20S02

Sodium fluoride (0.2216 moles) was transferred into a

70.1 mL "Pyrex" glass reaction vessel via a glove bag, then

dried under vacuum. Ethanol (0.0488 moles) was transferred

into the reaction vessel under vacuum followed by the vacuum

transfer of the sultone (0.0437 moles). The reaction was

Page 40: Fluorinated esters : synthesis and identification

30

allowed to proceed at room temperature for fourteen days.

The reaction mixture was then transferred into a 25 mL Pyrex

glass round bottom flask and distilled under reduced

presssure, boiling point 107.5 ± 2.5°C/522 mm. The product

was isolated in 66.4% yield (0.0290 moles).

The infrared spectrum of the distilled product showed

the following absorptions (cm-1):

2994(M), 1793(VS), 1459(VS), 1393(M), 1375(S),

1306(VS), 1246(VS), 1162(VS), llOO(M), 1034(VS),

1018(VS), 987(M), 853(S), 831(VS)M 806(VS),

746 (S), 690 (M), 606 (VS), 546 (W), 518 (VW).

(3) Reaction of CH2=CHCH20H with CF3tFCF20S02

Sodium fluoride (0.1783 moles) was transferred into a

70.1 mL "Pyrex" glass reaction vessel via a glove bag and

dried under vacuum. Allyl alcohol (0.0326 moles) was vacuum

transferred into the reaction vessel followed by the vacuum

transfer of the sultone (0.0323 moles). The reaction was

allowed to proceed at room temperature for ten days. The

solution was transferred to a 25 rnL "Pyrex" glass round

bottom flask. The product was distilled and a fraction was

collected at 142°-143°c. The yield was 64.1% (0.021 moles).

The infrared spectrum of the distilled product gave the

following absorptions (cm-1):

2966 (VW), 1792 (VS), 1775 (S), 1653 (VW), 1456 (VS),

1365 (W), 1303 (S), 1243 (VS), 1159 (S), 1084 (VW),

1025(M), 990(M), 940(M), 893(W), 82l(M), 790(M),

746(W), 690(VW), 603(S), 546(VW)

Page 41: Fluorinated esters : synthesis and identification

31

(4) Reaction of HOCH2CH20H with CF3CFCF20S02

Sodium fluoride (0.0680 moles) was transferred into a

105 mL Pyrex glass reaction vessel via a glove bag and then

dried under vacuum. Ethylene glycol (0.0097 moles) was

placed inside the vessel via a Pasteur pipet in the glove

bag. The sultone (0.0193 moles) was vacuum transferred into

the reaction vessel. The reaction was allowed to proceed at

room temperature for 23 days. The reaction mixture was

placed inside a 25 mL "Pyrex" glass round bottom flask.

Vacuum distillation was performed under pressure of 10-3 mm

and the product (0.0069 moles) was collected over the range

78-98°c, yield was 36.5%.

The infrared spectrum of the distilled product showed

the following absorptions (cm-1):

2980(VW), 1793(VS), 1459(VS), 1409(W), 1378(M),

1300(VS), 1250(VS), 1231(VS), 1162(VS), 1056(S),

102l(S), 984(M), 825(VS), 803(VS), 746(S),

687(M), 603(VS), 546(M)

(5) Reaction of C6E50H with CF3CFCF20S02

Sodium fluoride (0.4032 moles) was added to a 105 mL

"Pyrex" glass reaction vessel via a glove bag and dried

under vacuum. Freshly distilled pentafluorophenol (0.0311

moles) was transferred into the reaction vessel under vacuum

followed by vacuum transfer of the sultone (0.0296 moles).

The reaction was allowed to proceed at 6o 0 c for thirteen

days. The reaction mixture was then transferred into a 25

mL Pyrex glass round bottom flask. The product was

Page 42: Fluorinated esters : synthesis and identification

32

distilled under reduced pressure (5 mm) and a fraction was

collected at 87-89oc and the yield was 42.8% (0.0126 moles).

The infrared spectrum of the distilled product showed

the following absorptions (cm-1):

2685(VW), 2474(VW), 1820(VS), 1653(W), 1521(VS),

1462(VS), 521(VS), 1462(VS), 1365(W), 132l(W),

1284(S), 1240(VS), 1165(VS), 1131(S), 1015(VS),

1003(VS), 943(W), 846(M), 812(S), 750(M), 715(W),

678 (VW) , 637 (W) , 625 (W) , 600 (VS), 568 (W), 546 (W)

(6) Reaction of (CF3l2CHOH with CF3CFCF20S02

Sodium fluoride (0.1288 moles) was transferred into a

106 mL "Pyrex" glass reaction vessel via a glove bag, then

dried under vacuum. Hexafluoroisopropanol (0.0371 moles)

was transferred into the reaction vessel under vacuum,

followed by vacuum transfer of the sultone (0.0326 moles).

The reaction was allowed to proceed at room temperature for

thirteen days. The solution was then transferred into a 25

mL "Pyrex" glass round bottom flask. The product was

distilled at atmospheric pressure and a fraction was

collected at 109-110°c and the yield was 53.6% (0.0173

moles) .

The infrared spectrum of the distilled product showed

the following absorptions (cm-1):

2987 (VW), 1820 (VS), 1468 (VS), 1384 (VS), 1368 (S),

1284(VS), 1246(VS), 1212(VS), 1165(VS), 1118(VS),

1078 (S), 1059 (M), 1009 (VW), 987 (W), 912 (M),

900 (M), 828 (S), 793 (S), 750 (W), 725 (M), 693 (M),

Page 43: Fluorinated esters : synthesis and identification

675(W), 600(VS), 550(VW).

(7) Attempted Polymerization of CH2=CHCH20CCF(S02F)CF3

Two attempts were made to polymerize this ester. The

reactions were carried out in a 6 mL "Pyrex" glass ampule.

First Trial:

Benzoyl peroxide (0.0001238 moles) was placed inside

the ampule. Perfluoro-2-butylteterahydrofuran (0.0086

moles) was added followed by the addition of the ester

(0.0069 moles). The ampule was sealed under vacuum, then

heated at 6o 0 c for seventeen hours (with occasionally

shaking), the temperature was then increased to 85°c for

twenty hours, followed by fifteen days of heating at 93oc.

No change in the viscosity of the solution was observed,

unlike what was expected(30).

The infrared spectrum of the solution in the ampule

showed the following absorptions (cm-1):

3100 (VW), 2966 (VW) , 1792 (S) , 1653 (W) , 1456 (VS),

1365(M), 1303(VS), 1243(VS), 1159(VS), 1084(S),

1025(8), 990(M), 690(W), 603(S), 546(W)

Second Trial:

33

Sodium lauryl sulfate (0.06g) was placed in a 6 mL

"Pyrex" glass ampule. Sodium persulfate (0.02g) was added

followed by addition of distilled water (3.59g). The ester

CH2=CHCH202CCF(S02F)CF3 (1.02g) was then added to the

mixture. The ampule was then sealed under vacuum and heated

at 45°c for three hours. The temperature was then increased

to 75°c for 24 hours. The ampule was occasionally shaken

Page 44: Fluorinated esters : synthesis and identification

34

during this time. After heating the ampule at 10°c for four

days, it was opened, the aqueous layer was removed from the

organic layer. The infrared spectrum of the organic layer

showed the following absorptions (cm-1):

3437 (VS), 2931 (S), 2860 (S}, 1771 (S), 1714 (W),

1651 (M}, 1454 (S), 1363 (M), 1243 (VS), 1159 (S},

1025 (M), 990 (M), 941 (M), 821 (VS), 793 (VS},

793 (VS}, 744 (S), 603 (VS}, 546 (M)

(8) Attempted Decarboxylation of CF3CH2Q2CCF(CF3)S02E

CF3CH202CCF(CF3)S02F (0.00126 moles) was vacuum

transferred to a 70.6 mL "Pyrex" glass reaction vessel. The

reaction vessel was heated in a furnace at 30o0 c for an

hour. A black precipitate was formed, and some of the

starting liquid had remained in the vessel.

The infrared spectrum of the liquid showed the

following absorptions (cm-1):

2987(VW), 1820(W), 1468(M), 1418(W), 1371(VS),

1359(VS), 1350(VS), 1290(S}, 1240(S}, 1190(VS},

1153 (VS), 1059 (M), 1028 (S}, 975 (W), 909 (VW),

821 (W), 796 (VW), 668 (W), 606 (W), 534 (M)

(9) Attempted Decarbonoxylation of (CF3l2CH02CCF(CF3)S02E

The ester (CF3}2CH02CCF(CF3}S02F (0.0007 moles) was

added to a 105 mL "Pyrex" glass reaction vessel under

vacuum. The reaction vessel was placed in a furnace and

heated at 3oo0 c for one hour. The presence of black

precipitate was observed and some of the starting liquid was

Page 45: Fluorinated esters : synthesis and identification

also present. The infrared spectrum of the liquid showed

the following absorptions (cm-1):

2987(VW), 1828(W), 1809(M), 1471(VW), 1375(8),

1340(V8), 1275(V8), 1250(V8), 1218(V8), 1153(8),

1128(M), 1028(V8), 97l(V8), 918(W), 840(VW), 778(VW),

718(M), 668(W), 531(W)

35

Page 46: Fluorinated esters : synthesis and identification

36

CHAPTER IV

ANALYTICAL RESULTS

Infrared Spectra

The infrared spectra absorption peaks for the new

compounds are listed in Figures 2-10 followed by the

spectrum of each ester in Tables VIII-XIII. The absorption

bands in the region 2966 cm-1 to 2994 cm-1 are assigned to

the C-H stretching frequency. This band is very weak in

some cases, and many times this absorption in fluorinated

compounds may easily be missed.

The band which is most indicative of the presence of an

ester is the carbonyl stretching vibration and is the most

reliable region for diagnostic purposes.

Brown and Morgan have assigned the 1850-1600 cm-1

region to the carbonyl stretching vibration. The

fluorinated esters discussed here, show a strong to very

strong absorption within the range of 1790-1820 cm-1 which

is due to C=O.

This is in close agreement with those values reported

by Shreeve et al. (40). They assigned for fluorinated esters

the region 1840-1850 cm-1 to the carbonyl stretching

frequency of their esters. As expected, the absorption

frequencies of carbonyl groups is affected by the

Page 47: Fluorinated esters : synthesis and identification

37

surrounding groups; as the electron withdrawing character of

the group on the single bonded oxygen increases the carbonyl

stretching frequency increases(50). See Table VI.

The very strong band in the region 1454-1468 cm-1 is

assigned to S=O antisymmetric (asymmetric) stretching

frequency(49). Robinson(51), assigned the 1401-1463 cm-1

region to S=O antisymmetric stretching vibration. However,

the presence of .fluorine in the sulfonyl fluoride group and

fluorines on the attached carbon atom cause this band to

shift to higher frequencies. As Robinson explains, groups

having a greater effective electronegativity, shift the S=O

absorption to a higher frequency. Robinson(51) assigns S=O

symmetric stretching frequencies to the 1203-1210 cm-1

region; the exact assignment of this frequency for these

esters is very difficult because of complex pattern in this

region caused by the fluorinated portion of the molecules.

If one is allowed to make an assignment, the absorption

bands at 1250 cm-1 to 1240 cm-1 may be assigned to s-o

symmetrical stretching frequency.

c-o single bond stretching vibration is reported(64) to

occur between 1300 cm-1 and 1000 cm-1 and is of little

diagnostic value, especially in these esters because it

overlaps with the C-F and CF3 complex absorption pattern in

this region(41). Christe(43) assigns the region 1093-1120

cm-1 to this frequency and all the esters discussed here

show absorption in this region.

The band at 1653 cm-1 in the spectrum of

Page 48: Fluorinated esters : synthesis and identification

CH2=CHCH20CCF{CF3)S02F is assigned to C=C stretching

frequency(64).

The series of strong bands between 1212 cm-1 and

38

1375 cm-1 are assigned to C-F stretching vibration, which is

in good agreement with those reported by Temple{53) (Part

III) and those reported by other investigators{43,54,55).

The very strong bands observed between 1153-1165 cm-1

is assigned to CF3 symmetrical stretching frequency, which

is in close agreement with what is reported by Temple{56);

and the antisymmetric stretching is reported to be at 1230

cm-1 frequency{56). The same investigator reports that the

presence of bands at 968 cm-1 and 540 cm-1 to be due to cF3

rocking deformation and CF3 symm. deformation frequencies,

while the skeleton deformation is assigned to 606 cm-1 which

is in agreement with the 693-781 cm-1 range reported by

Christe{43). Therefore, for esters reported in this thesis

the bands between 600-693 may be assigned to the CF3

deformation mode in addition to the bands at 546 cm-1; these

assignments are in good agreement with the values reported by

Christe(43) and Temple(56).

Christe{43) assigned the 844 cm-1 band to c-c

stretching vibration, and Temple{56) assigned the 828 cm-1

absorbance frequency to this bond. For the esters reported

here, the c-c frequency is assigned to the bands found

between 793 cm-1 - 903 cm-1 which is in good agreement with

those reported by other investigators(43,56).

Page 49: Fluorinated esters : synthesis and identification

39

The S-F stretching frequency is reported to appear

between 815-755 cm-1 as a strong intensity infrared band.

For these esters this band is assigned to the region between

746 cm-1 -831 cm-1.

The region, 705 cm-l-570 cm-1 is assigned to c-s

stretching frequency(58-59), which for the esters reported

here applies to the bands between 546 cm-l-593 cm-1. In the

case of C5F50C(O)CF(CF3)S02F the strong bands between 1651

cm-l-1525 cm-1 are assigned to the C5F5 ring-skeletal

stretching frequencies.

Due to the presence of many groups with overlapping

absorption frequencies, the carbonyl frequency remains the

best group for diagnostic purposes. Table X summarizes the

frequencies at which C=O stretching occurs for different

esters. From this table one may derive the following

conclusion:

As the electron withdrawing character of the group

attached to c-o single bond increases, the C=O stretching

vibration frequency increases. This is due to the increase

in the multiple bond character of C=O, and the absorption is

shifted to higher frequencies(50). The same reasoning may

be used to explain the increase in the absorption frequency

of S=O.

Page 50: Fluorinated esters : synthesis and identification

40

TABLE IV

SUMMARY OF IR SPECTRA OF NEW ESTERS

Ester C=O stretching S=O stretching

CH2=CHCH20C(O)CF(CF3)S02F 1792 cm-1 1456 cm-1

(CH20C(O)CF(CF3)S02F)2 1793 cm-1 1459 cm-1

CH3CH20C(O)CF(CF3)S02F 1793 cm-1 1461 cm-1

CF3CH20C(O)CF(CF3)S02F 1806 cm-1 1461 cm-1

(CF3)2CHOC(O)CF(CF3)S02F 1820 cm-1 1462 cm-1

C6F50C(O)CF(CF3)S02F 1820 cm-1 1468 cm-1

Page 51: Fluorinated esters : synthesis and identification

TABLE V

INFRARED SPECTRUM OF CF3CH20C(O)CF(CF3)S02F

Band (cm-1)

1. 2994

2. 1806

3. 1461

4. 1412

5. 1315

6. 1281

7. 1246

8. 1187

9. 1165

10. 1128

11. 1059

12. 1034

13. 978

14. 903

15. 875

16. 825

17. 793

18. 746

19. 690

20. 659

21. 603

22. 559

23. 546

Intensity

vw

vs

vs

M

vs

vs

vs

vs

vs

M

s

M

s

vw

vw

s

M

MW

vw

MW

s

vw

vw

41

Page 52: Fluorinated esters : synthesis and identification

TABLE VI

INFRARED SPECTRA OF CH3CH20C(O)CF(CF3)S02F

Band Ccm-1)

1. 2994

2. 1793

3. 1459

4. 1393

5. 1375

6. 1306

7. 1246

8. 1162

9. 1100

10. 1034

11. 1018

12. 987

13. 853

14. 831

15. 806

16. 746

17. 690

18. 606

19. 546

20. 518

Intensity

M

vs

vs

M

s

VS

VS

vs

M

VS

vs

M

s

vs

VS

s

M

vs

w

vw

42

Page 53: Fluorinated esters : synthesis and identification

TABLE VII

INFRARED SPECTRUM OF CH2=CHCH20C(O)CF(CF3)S02F

Band (cm-1)

1. 2966

2. 1792

3. 177 5

4. 1653

5. 1456

6. 1365

7. 1303

8. 1243

9. 1159

10. 1084

11. 1025

12. 990

13. 940

14. 893

15. 821

16. 790

17. 746

18. 690

19. 603

20. 546

Intensity

vw

vs

s

vw

vs

w

s

vs

s

vw

M

M

M

w

M

M

w

vw

s

vw

43

Page 54: Fluorinated esters : synthesis and identification

44

TABLE VIII

INFRARED SPECTRA OF (CH20C(O)CF(CF3)S02F)2

Band (cm-1) Intensity

1. 2980 vw

2. 1793 vs

3. 1459 vs

4. 1409 w

5. 1378 M

6. 1300 vs

7. 1250 vs

8. 1231 vs

9. 1162 vs

10. 1056 s

11. 1021 s

12. 984 M

13. 825 vs

14. 803 vs

15. 746 s

16. 687 M

17. 603 vs

18. 546 M

Page 55: Fluorinated esters : synthesis and identification

45

TABLE IX

INFRARED SPECTRUM OF C6F50C(O)CF(CF3)S02F

Band (cm-1) Intensity

1. 2685 vw 2 . 2474 vw 3. 1820 vs 4. 1653 w 5. 1521 vs

6. 1462 vs 7. 1365 w 8. 1321 w 9. 1284 s 10. 1240 vs

11. 1160 vs 12. 1131 s 13. 1015 vs 14. 1003 vs 15. 943 w

16. 846 M 17. 812 s 18. 750 M 19. 715 w 20. 678 vw

21. 637 w 22. 625 w 23. 600 vs 24. 568 w 25. 546 w

Page 56: Fluorinated esters : synthesis and identification

TABLE X

INFRARED SPECTRUM OF (CF3)2CHOC(O)CF(CF3)S02F

Band (cm-1)

1. 2987 2. 1820 3. 1468 4. 1384 5. 1368

6. 1284 7. 1246 8. 1212 9. 1165 10. 1118

11. 1078 12. 1059 13. 1009 14. 987 15. 912

16. 900 17. 828 18. 793 19. 750 20. 725

21. 693 22. 675 23. 600 24. 550

Intensity

vw vs vs vs

s

vs vs vs vs vs

s M

vw w M

M s s w M

M w

vs vw

46

Page 57: Fluorinated esters : synthesis and identification

• • • "' " ... .. 0 . "' u • z c t- ....

..

0

I"'

z .;

: "

... M

• "' " . .. • • • "' d "' 0 8 Ii

2987

t lt

l20 '11

06

14fJ

a

+-~~~~-+~~~~-~~~~---t---

•OO

O.

D

32

90

.0

29

00

.0

19

79

. D

lf

tOO

.O

Ill!

( 1111

~,. 91

'7

900

91'z

--

-"2

93

,693

IC

J59

' 028 70

36A

u

1115

111:1

12

12

00

-..

_.-

-_

__

_ ..

__

_._

__

_

-----4

12

29

,D

9~9.DD

73

7.9

0

•DD

.DO

W

AV

r.N

UM

AE

R9

<C

M-I

>

Fig

ure

2

. In

frare

d

spectr

um

o

f (C

F3

) 2C

HO

C(O

)CF

(CF

3)s

o2

F.

------

----

----

----

----

---

-------

~

-...J

Page 58: Fluorinated esters : synthesis and identification

" .. • .. .. N • •

..

t y

N

< •· ....

.. .

:l

t-.

• •

;:

Q

< N

" .. M

• .. • .. .. .. " =

ti a § d

I ZC

JCJ4

•on

o.o

•a

!'9

tl,

D

:i>!ln

o. o

3'7

10

77'J

14

'1

V\

/ IU

Z

1·1 fl

u dt

:r'a z

4'

•• .,9.

:1 1

enn

.o

I 2

2'9

. D

'lf"''f'.NUMno·~"I

<C

M·I

>

98

7

8

1018

806

8;1

!5.

no

Fig

ure

3

. In

frare

d

spectr

um

o

f C

H3

cH2o

c(O

)CF

(CF

3)s

o2

F.

690

746

06

7•7

.SD

48 4bZ

•ao

.on

""' 00

Page 59: Fluorinated esters : synthesis and identification

" .. • .c .. N • •

I 29

94

Ill t

y

iYvm

.. < ... ....

.. . a '

:. ;

2 ~ .. • ... • "' ...

~.J J

112d

Ul

O ~7

H

.b~S

I ..

1059

.. Il

l • • .J06

II

I. I

13

n ll u

12

01

V\'

16

s 14

61 12

46

1187

d

•oo

o.o

~290.0

Z!!

llD

O.D

1

11

7'1

. 0

19

00

.C

';r;

z3

. 0

82

'5.

OD

WAVl:•~UMBI .

. .,

ccM

.' I)

Fig

ure

4

. In

frare

d

spectr

um

o

f C

F3

cH2

oc(

O)C

F(C

F3

)so

2F

.

~ ~I

~.:"

SS~

490

690

• 74E

6'59

93

603

..&.._

____

_ _

t

7':

17

. !!

IC

.aoo

.on

tr:>.

l.O

Page 60: Fluorinated esters : synthesis and identification

i =

---

--

. .

. . .. -

·· ..

. 69

0 ..

. • ~

t 11

1J

f_l6!J

I 11

1 11

1 I

I I

\ I

11

46

I •

" II

\ 11

1102

V¥9

9094

0 .. .. .. . u • z

I It

• II

I Ill

v .,

90

t: •

82

... "

I -: ~ "

~ M

u J""

II

II I

l1so

\I 13

0

" .

1792

• l'I . I 0 I

14

5.

Ul2

43

8 .. " T-~

. •o

oo

.a

92

90

.D

29

00

.0

18

79

.D

18

00

. 0

t2Z

9.D

8

29

.00

7

97

.!IO

WA

VE

NU

MB

EA

9 <

CM

-t>

Fig

ure

5

. In

frare

d

spectr

um

o

f CH

2=C

HC

H2

0C

(O)C

F(C

F3

)S0

2F

.

6113

•DO

01

0

Page 61: Fluorinated esters : synthesis and identification

I ... d .. I

11

16

53

' I

D :J6

• Q ... I

I U

J II

I

111

I •

I ....

u

• II

11

11

I I

I I

I •

~ I

.. .. ..

I um

I J

,, I

I TS

O

i ~ I

II

I rll

c J

~ " 4 " .. . .. "

' r 12

8~" II

812

·192

0

u 14~2

I :: ~~~l

ll

40

'

g I

1521

8 " .ao

oa.

a 9

29

0.D

2

90

0.D

1

•7

9.0

te

no

. o

12

29

.0

82

9.0

0

73

t7.

90

W

AV

•NU

MB

EA

9 C

CM

-1>

Fig

ure

6

. In

frare

d

spectr

um

o

f c

6F

5o

c(O

)CF

(CF

3)s

o2

F.

------

----------

----

---------

600

.aoo

.

Ul

I-'

Page 62: Fluorinated esters : synthesis and identification

I .. .. N " • " • "'

Ill

.i u

" z <

.. .. . .... %

..

1111

• 'Z

..

<

..

K ... .. " II tl

l ,: N • t'I • . " .. D a a 0

1793

d •o

oo

.o

WZ

!!IO

. D

2

90

0.D

••7

!!1. n

4"' ]7

1:14

l021

10

1'15

18

00

.D

I <

?29

. D

WA

VE

NU

MO

aA9

CC

M-1

>

'59

546

66

7

I I

4'10

iJO

l az

s

46

llZ

!!.0

0

73

7.

!!10

603

Fig

ure

7

. In

frare

d

spectr

um

o

f (C

H2o

c(O

)CF

(CF

3)s

o2F

)2

.

.eoo

.

01

!\)

Page 63: Fluorinated esters : synthesis and identification

... u ~

~ • ~ • = .. •

• a

...

D

..

0

ii

z ~ .. ,. tf

• • i • • • • N a 8 d .. .. ao

o.a

8

29

0.D

a~DD.o

1653

5

l10

2

1025

ll

1456

11

59

1243

18

79

. a

1eo

o.o

l :1

29

. 0

WAVENUMB~AB

CC

M-l

>

893

40

82

82

9.

DD

746

f 93

690

., •

.,. 9

0 60

3

Fig

ure

8

. In

frare

d

spectr

um

o

f th

e fir

st

po

lym

eri

zati

on

tr

ial

of

CH2

=CH

CH

20

C(O

)CF

(CF

3)S

02

.. aa •

01

w

Page 64: Fluorinated esters : synthesis and identification

I ~ 0 D

D 8 = ls

t-D

...

s

.. . .. I c ..

a ..

0 D

Ii 8 Ii .. a D

0 a d A

OO

O.O

:1

1290

, D

2

90

0.D

1

87

9.D

1

80

0.

0 1

22

:9.D

8

29

.00

7

37

.90

WA

VE

NU

MB

ER

9 C

CM

-l>

Fig

ure

9

. In

frare

d

spectr

um

o

f th

e

seco

nd

p

oly

meri

zati

on

tr

ial

of

CH

2=

CH

CH

20

C(O

)CF

(CF

3)S

02

.coo

.

Ul ~

Page 65: Fluorinated esters : synthesis and identification

55

Mass Spectra

The major peaks in the mass spectra for the new

fluorinated esters are listed in Tables XI-XV. The peaks

for these esters are listed, although not all fragments are

identified, there is strong evidence for the presence of

these esters for the following reasons:

1. Two of the esters (CH2=CHCH20C(O)CF(S02F)CF3 and

C6F50C(O)CF(S02F)CF3) show parent peaks at 268 (5.1%) and

394 (29.0%) respectively. The rest of the esters which do

not have a parent peak show peaks such as (M-H)+ for

CH3CH20C(O)CF(S02F)CF3 at 255 (3.5%) (M-F)+ for

(CF3)2CHOC(O)CF(S02F)CF3 at 359 (1.1%) and (M-F)+ for

CF3CH20C(O)CF(S02F)CF3 at 291 (0.5%).

2. For three of these esters the most intense peak is

due to (SOF)+ at 67 with 100% base for esters:

CH3CH20C(O)CF(S02F)CF3, CH2=CHCH20C(O)CF(S02F)CF3 and

C6F50C(O)CF(S02F)CF3. However for the other esters which do

not show 100% base for SOF, they still show high percentage

at this peak namely:

for (CF3CH20C(O)CF(S02F)CF3)+ 67 (20.1%)

and ((CF3)2CHOC(O)CF(S02F)CF3)+ 67 (33.7%)

3. All esters show relatively intense peaks due to the

CF3 group. For example (CF3)+ peak (69) shows 100% base for

(CF3)2CHOC(O)CF(S02F)CF3 and lower percent base for the rest

of the esters.

Page 66: Fluorinated esters : synthesis and identification

56

4. For all the esters one observes a peak due to

(S02F), ranging from 100% base for CF3CH20C(O)CF(S02F)CF3 to

a 0.4% base for C6F50C(O)CF(S02F)CF3.

5. All the esters also show a peak due to the

(OCCF(S02F)CF3)+ portion of the esters (211 peak). They all

show the presence of peaks due to the (M-CF(CF3)S02F)+

portion of the esters which are:

for (CH3CH20C(O)CF(S02F)CF3)+ 73 at 0.4% base

(CH2=CHCH20C(O)CF(S02F)CF3)+ 85 at 3.9% base

(C6F50C(O)CF(S02F)CF3)+ 211 at 37.6% base

(CF3CH20C(O)CF(S02F)CF3)+ 127 at 17.6% base

((CF3)2CHOC(O)CF(S02F)CF3)+ 195 at 19.6% base

6. Two other peaks common with these esters are (C02) 1

(M/e=44) and (CFCF3)+, (M/e=lOO)

In brief, all these esters show fragments corresponding

to:

RfOC, M-Rf, C02 1 CF(CF3), S02F 1 SOF, etc.

All of which are indicative of the presence of the

ester as the initial compound.

Page 67: Fluorinated esters : synthesis and identification

57

TABLE XI

MASS SPECTRUM FOR CH2=CHCH20C(O)CF(S02F)CF3

M/e %Rel. Int. Fragment Assignment

1. 268 5.1 C6H504F5S M+ 2. 211 9.8 C6H504FS (CCCF(CFi)S02F)+ 3. 186 2.4 C6H502F4 (M-S02F) 4. 185 45.6 C6H402F4 (M-HS02F)+ 5. 184 13.0 C6H302F4 (M-H2S02F)+

6. 165 1. 3 C6HOF4 (CCCHOCCFCFi)+ 7. 164 5.4 C60F4 (CCCOCCFCF3) CF2CFS02F 8. 156 8.0 C6H02FS (CCCHOC(O)CFCS)+ 9. 147 5.1 C5HOF2S (CCHOCC(CF2)i)+

10. 145 1.5 C60F3 (CCCO-CCCF3)

11. 137 2.2 C6H02S (HCCCOC(O)C(C)s)+ 12. 129 1. 5 C5H20FS (CCH20CCF(C)S)+ 13. 128 34.1 C5HOFS (CCHOCCF(C)s)+ 14. 121 18.7 C6HOS (CCCHOCC(C)S)+ 15. 119 37.1 C302FS (OC(O)CF(C)s)+

16. 117 1. 9 C4H20FS (CH20CCF(C)S)+ 17. 109 9.9 C5HOS (CHC-0-C-C(C)S)+ 18. 108 3.2 C50S (CCOCC(C)s)+ 19. 102 1.5 C4H302F (CHCH20C(O)CF)+ 20. 101 31.3 C4H202F (CCH20C(O)CF)+

21. 100 19.0 C4H02F (CCHOC(O)CF)+ 22. 97 2.0 C5H20F (CCCH20C(O)CF)+ 23. 95 5.0 C50F (CCCOC(O)CF)+ 24. 91 1. 6 C6H30 (CCHCH20CCC)+ 25. 90 1. 0 C6H20 (CCCH20CCC)+

26. 89 2.8 C6HO,C3H202F (CH20C(O)CF)+ 27. 87 19.4 C302F (COC(O)CF)+ 28. 85 3.9 C4H502 (CH2CHCH20C(O))+ 29. 83 1. 6 S02F -------30. 81 5.4 C4H02 (CCCHO-c)+

31. 77 3.7 C5HO (CCCHO-C-c)+ 32. 70 1. 9 C3H202 (CCH20CO)+ 33. 69 25.4 CF3 ------34. 68 1. 7 C4H40 (HCCHCH20c)+ 35. 67 100.0 SOF ------36. 65 2.2 C4HO (CCCHOC)+ 37. 64 5.1 C40 (cccoc)+ 38. 63 1. 2 CSF (C-SF)+ 39. 59 7.9 C2FO (C(O)CF)+

Page 68: Fluorinated esters : synthesis and identification

58

TABLE XI

MASS SPECTRUM FOR CH2=CHCH20C(O)CF(S02F)CF3 (Continued)

M/e %Rel. Int. Fragment Assignment

40. 58 1. 9 C2H202 (CH20C(O))+ 41. 57 19.5 C2H02 (CHOC(O))+ 42. 56 8.7 C202 (COC(O))+ 43. 55 17.0 C3H30 (CCHCH20)+ 44. 51 4.3 SF -------

45. 50 2.7 CF2 -------46. 48 5.8 so -------47. 47 1.9 COF coF+ 48. 45 6.5 ? 49. 44 12.3 C02 (C02)+

50. 43 6.8 C2F (CCF)+ 51. 42 13.5 C2H20 (CCH20)+

Page 69: Fluorinated esters : synthesis and identification

59

TABLE XII

MASS SPECTRUM FOR CH3CH20CCF(S02F)CF3

M/e % Rel. Int. Fragment Assignment

1. 255 3.5 C5H404F5S ~M - Hk+ 2. 241 6.8 C4H204F5S M - C 3) + 3. 229 1.2 ? 4. 213 3.3 C504F3S (CCOC(O)C(CF3)S02)+ 5. 212 2.8 ?

6. 211 70.8 C304F5S (OCCF(CF3)S02F)+ 7. 173 2.3 C5H502F4 (M - S02F)+ 8. 165 1.5 C4H204F3 (CCH20C(O)CFS02)+ 9. 164 3.9 C4H04FS (CCHOC(O)CFS02)+(CF2CFS02F)+

10. 147 8.3 H402FS (CH2CH20C(O)CF(C)S)+

11. 145 1. 0 C5H202FS (CCH20C(O)CF(C)S)+ 12. 144 2.6 C5H02FS (CCHOC(O)CF(C)S)+ 13. 128 22.9 C5H40FS (CCHOCCF(C)S)+ 14. 127 2.2 C5H302S (CCOCCF(C)s)+ 15. 119 33.3 C302FS (CCF(C)S02)+

16. 109 8.3 C5HOS (CCHOCCCS)+ 17. 106 1. 0 C302F2 (02CC(CF2))+ 18. 105 2.9 C3H20FS (CH20CCFS)+ 19. 101 1. 0 C4H202F (CCH202CCF)+ 20. 100 22.7 C4H02F,C2F4 (CFCF3)+

21. 97 4.8 C5H502 (CH3CH20C(O)CC)+ 22. 90 1.1 C30F2 (OCCCF2)+ 23. 89 3.2 C3H202F (H2C02CCF)+ 24. 83 2.2 S02F ------25. 81 7.5 C4H02 (CCHOC(O)C)+

26. 73 0.4 C3H5 (CH3CH20CO)+ 27. 71 1.5 C3H302 (CHCH202c)+ 28. 69 35.2 CF3 ------29. 68 1. 3 C302 (CC02C)+ 30. 67 100 SOF -----31. 65 1.8 C4HO (CCHOCC)+ 32. 63 1. 7 CFS -----33. 59 1. 6 C20F (C(O)CF)+ 34. 51 6.5 SF ------35. 50 3.6 CF2 ------36. 48 7.3 so ------37. 47 2.6 cop+ cop+ 38. 45 16.9 C2H50 (CH3CH20)+ 39. 44 7.7 C02 (C02)+

Page 70: Fluorinated esters : synthesis and identification

M/e

40. 43 41. 42

TABLE XII

MASS SPECTRUM FOR CH3CH20CCF(S02F)CF3 (Continued)

% Rel. Int.

23.7 3.8

Fragment

C2F C2H20

Assignment

(CCF)+ (CCH20)+

60

Page 71: Fluorinated esters : synthesis and identification

61

TABLE XIII

MASS SPECTRUM FOR (CF3)2CHOCCF(S02F)CF3

M/e % Rel. Int. Fragment Assignment

1. 359 1.1 C6H04F11S M+ 2. 339 2.5 C604F9S (M-HF2)+ 3. 276 5.0 C502F8S ((CF3)COC(O)CFSF)+ 4. 275 4.7 C602F9 (CF2)2COC(O)C(CF3))+ 5. 256 1.1 C602F8 (CF3)2COC(O)CF(CF))+

6. 211 13.4 C303F5S (OCCF(CF3)SO*F)+ 7. 195 19.6 C302F5S,C4H02F6 ((CF3)2CHOC) 8. 152 1.4 C50F4 (CCOCCF(CF~))+ 9. 151 45.2 C3HF6 ((CF3)2CH)

10. 147 4.5 C403FS (CC-O-C-C-S02F)+

11. 128 8.8 C403S (CCO-C-C-S02)+ 12. 119 14.6 C302FS (C-C-(C)S02F)+ 13. 113 1. 3 C2F3S (C(CF3)S)+ 14. 109 2.7 C5HOS (CCHO-C-C-(C)S)+ 15. 101 1.3 ? ?

16. 100 6.9 C4H02F (CHOC(O)CF(C))+ 17. 97 1.2 C4HOS (CHOC(O)C(C)S)+ 18. 82 1.3 C2HF3 (CF3)CH)+ 19. 81 1.8 C2F3 ((CF3)c)+ 2 0. 70 1.1 ? ?

21. 69 100 (CF3)+ -------22. 67 33.7 (SOF) + -------23. 64 1. 0 (S02)+ -------24. 51 8.4 (SF)+ ------25. 50 1.5 (CF2)+ ------

26. 48 1. 7 (SO)+ ------27. 44 1. 4 (C02)+ ------

Page 72: Fluorinated esters : synthesis and identification

62

TABLE XIV

MASS SPECTRUM FOR CF3CH20CCF(S02F)CF3

M/e % Rel. Int. Fragment Assignment

1. 291 0.5 C5H204F7S (M-F)+

2. 241 2.7 C4H204F5S (MCF3)+

3. 211 7.8 C303F5S (OCCF(S02F)CF3)+

4. 208 45 C304F4S (02CCF(S02F)CF3)+

5. 149 1. 3 C4H203FS (CH20CCF(S02)C)+

6. 147 2.1 C403FS (COCCF(S02)c)+

7. 128 5.2 C403S (COCC(S02)C)+

8. 127 17.6 C3H202F3 (CF3CH20C0)+

9. 119 7.3 C4H02F2 (CF2CHOCOC)

10. 109 1. 8 C30F3 (CF3COC)+

11. 100 5.1 C2F4 (CFCF3)+

12. 84 2.1 C4HOF (CCHOCCF)+

13. 83 100.0 S02F (S02F)+

14. 81 1.4 C2F3 (CF3C)

15. 69 10.9 CF3 (CF3)+

16. 67 20.1 SOF (SOF)+

17. 64 1.3 S02 (S02) +

18. 63 2.4 C2HF2 (CF2CH)+

19. 51 2.2 SF (SF)+

20. 50 1.0 CF2 (CF)+

21. 48 1. 3 so (So)+

22. 44 1. 5 C02 (C02)+

Page 73: Fluorinated esters : synthesis and identification

63

TABLE XV

MASS SPECTRUM FOR C6F50C(O)CF(S02F)CF3

M/e % Rel. Int. Fragment Assignment

1. 396 1. 5 ? M+ (S=34) 2. 395 3.1 ? ? 3. 394 29.0 C904F10S (M)+ 4. 292 1. 6 C902F8 (C6F50COCCF3)+ 5. 233 1. 5 C803F3S (C6F30C-C(S02))+

6. 213 1.8 ? ? 7. 212 1.5 C602F4S (C3F3-0C-CF-s)+ 8. 211 37.6 C303F5S(C6F50C)+ (OCCF(S02F)CF3)+ 9. 184 3.6 C50F4S (C3F3-0C-CF-s)+

10. 183 32.1 C202F5S (CF(CF3)S02F)+c6F50

11. 156 1.9 C402F4 (C-OC-CF(CF3))+ 12. 155 35.2 C602FS (C4-0CCF(S))+ 13. 147 9.0 C403FS (C20-CCF-SO*)+ 14. 136 2.7 C602S (C40-C-C-S) 15. 128 14.3 C403S (C2-0C-C-S02)+

16. 124 1. 6 C4F4 (C4F4)+ 17. 119 37.0 C302FS (C-C-(S02F)C)+ 18. 117 12.9 C5F4 (C5F4)+ 19. 109 8.3 C3F30 (C3F3-o)+ 20. 105 6.6 C4F3 (C4F3)

21. 100 11. 0 C2F4 (CFCF3)+ 22. 98 1.9 c5F2 (C5F2)+ 23. 97 1.5 CF2COF CF2COF 24. 93 6.5 C3F2 (C3F3)+ 25. 86 3.0 C4F2 (C4F2)+

26. 83 0.4 S02F (S02F)+ 27. 81 3.3 C2F3 (CCF3)+ 28. 74 1.9 C3F2 (CCCF*) 29. 69 27 CF3 (CF3) 30. 67 100 SOF (SOF)+

31. 64 2.2 S02 (S02)+ 32. 57 ? ? ? 33. 55 1.3 C3F (CCCF)+ 34. 50 1. 3 CF2 (CF2)+ 35. 48 1. 9 so (SO)+

36. 47 1. 0 COF COF 37. 44 4.2 C02 (C02)+ 38. 43 1.2 C2F (CCF)+

Page 74: Fluorinated esters : synthesis and identification

64

Nuclear Magnetic Resonance Spectra

The proton and F19 NMR spectra were recorded for

CH3CH20C(O)CF(CF3)S02F 1 (CH20C(O)CF(CF3)S02F)2 1

CF3CH20C(O)CF(CF3)S02F, CH2=CHCH20C(O)CF(CF3)S02F 1

C6FsOC(O)CF(CF3)S02F 1 and (CF3)2CHOC(O)CF(CF3)S02F. Tables

XX-XXV show the data obtained from these spectra.

The spectra of CH2=CHCH20C(O)CF(CF3)S02F shows a

doublet of a doublet for CF3 which may be explained by the

fact that it is coupled to the CF and SF groups; the two

fluorine atoms have different coupling constants to the

CF3 group. The spectrum for the SF group appears as a

quartet of doublets which is what one would expect consid­

ering the presence of the CF3 group which forms the quartet;

each part of the quartet is split into a doublet due to the

presence of the neighboring CF group. The same splitting

pattern is observed for CF which again may be explained by a

similar interpretation as given above. The proton NMR of the

allyl ester gives rise to a complex splitting pattern with

very low resolution. However the assignment of the chemical

shifts to each proton is justified as follows: CH2 4 protons

appear at the higher field chemical shift compared to CHS and

CH6 or CH7 (see Table XVIII protons) because protons of CHS,

CH6 and CH7 are being deshielded due to the circulation of

the electrons around the axis of the bond. The CHS proton

appears at the lowest shift because in addition to the

deshielding explained above, it is experiencing an additional

electron withdrawing effect caused by the oxygen atom. The

Page 75: Fluorinated esters : synthesis and identification

65

integration of these protons is in good agreement with with

was expected CH24:cH5:cH6:cH7 = 2.2:1.0:1.0:1.0 compared to

the theoretical ratio 2:1:1:1.

The integration of CF:SF and CF3 results in the ratio of

1:0:1.0:2.7 compared to the theoretical ratio or 1:1:3. For

(CH20C(O)CF(CF3)S02F)2 one observes the same patterns for

CH3 , SF and CF as that discussed for the ally! ester. The

integration of CF:SF and CF3 peak areas results in the ratio

of l.O:l.0:3.1 which is in close agreement with the

calculated ratio of 1:1:3. A singlet is observed for CH2 as

was expected.

For (CF3)2CHOC(O)CF(CF3)S02F one observes the same

doublet of a doublet pattern for CF3, however, the CF3 groups

in the alkoxide portion of the ester give rise to an

unresolved (broad singlet) peak at a chemical shift slightly

higher than that of acyl CF3. The integration of the peaks

proves this assignment to be a correct one as it gives a

ratio of 2.7:5.9 between CF3 and CF3 which is in good agree­

ment with 1:2 theoretical ratio. The splitting pattern for

CF and SF is as explained for previous esters and the inte­

gration of the peaks for CF:SF:CF3:CF3 shows a ratio of

1.0:1.0:2.7:5.9. The CH group shows a septet splitting

pattern due to the effect of six fluorine atoms on the

adjacent CF3 groups.

The assignment of chemical shifts and coupling

constants to the phenyl portion of C6F50C(O)CF(CF3)S02F is

made very difficult as a result of the complex splitting

Page 76: Fluorinated esters : synthesis and identification

66

pattern between ortho, meta and para fluorine atoms. The

chemical shifts, however, are assigned as explained below.

As a result of conjugation between oxygen atom and the

~ ring structures such as O ~ and O ~e -0 more

deshielding of the ortho and para atoms will occur. There-

fore, ortho fluorine atoms are expected to have the lowest

field chemical shift and meta fluorines are in turn going to

have the highest field chemical shift; and indeed this is

what is seen; the para fluorine has a chemical shift between

these two values. The coupling constant values calculated

for the fluorines on the benzene ring agree well with those

reported for similar compounds(63). From the resolution of

the bands, calculations of J114

and J115

were not possible.

However, these values are reported to be 4.4 Hz and 2.8 Hz,

respectively for pentafluorophenol. However, for another

compound such as pentafluoroanisol, the values are 4.6 Hz for

J 1 4 and 0.8 Hz for J 1 5 . Therefore, various substitutes I I

seem to have some effect on these values.

The rest of the molecule shows the same pattern as the

previous esters. The integration results show ratios of

2.1:1.1:2.1 for ortho, para and meta respectively; the

theoretical values are 2:1:2. The integration for CF3:SF and

CF groups results in the ratio 2.9:1.1:1.0; the theoretical

values are 3:1:1.

The NMR spectrum of CH3CH20C(O)CF(CF3)S02F gives rise to

a pattern which is in complete agreement with what was

expected. The same splitting pattern is observed for CF, SF

Page 77: Fluorinated esters : synthesis and identification

67

and CF3 groups as discussed earlier. The CH3 group shows a

triplet due to the neighboring CH2 group, while a quartet is

observed for the CH2 group as one would expect. The

integration ratio for CF3, SF and CF group is 3.1:1.0:l.O

compared to the theoretical ratio of 3:1:1.

The 1H and 19F spectra of CF3CH20C(O)CF(CF3)S02F gave

the expected patterns. The alkyl CF3 group is split into a

triplet due to the presence of the adjacent CH2 group; the

CH2 group is in turn split into a quartet by the CF3 group.

The integration ratio of CF3:CF:SF:CF3 is 3.3:1.1:1.0:3.1;

the theoretical values are 3:1:1:3.

Page 78: Fluorinated esters : synthesis and identification

68

TABLE XVI

SUMMARY OF CHEMICAL SHIFTS FOR VARIOUS MOLECULAR GROUPS

other

Ester S-F C-F CF3 CF3 CH CH2

allyl ester 50.2 -161.8 -74.4 - 6.1 5.1

ethylene

glycol ester 50.9 -163.5 -75.2 - - 4.98

hexafluoro

propanol ester 50.6 -167.6 -74.4 -75.1 4.9

pentafluoro-

phenol 50.1 -162.7 -74.9

meta -164.1

para -157.1

ortho -155.1

ethanol-

ester 50.5 -162.6 -75.0 - - 4.55

CF3CH2 ester 49.6 -162.9 -74.4 -76.0

Page 79: Fluorinated esters : synthesis and identification

69

Among the CH2 chemical shifts listed in Table XVI,

CH3CH20C(O)CF(CF3)S02F shows the lowest chemical shift; it

is at a slightly lower field than that reported by

Shreeve(41) et al. for CF3C02CH2CH3. This may be due to

the deshielding effect created through an so2F electron

withdrawing effect. As the electron withdrawing character

of the neighboring groups increases, the chemical shift is

shifted to a lower field as seen for (CH20C(O)CF(CF3)S02F) 2 •

The CH group chemical shifts move to lower field as the

CH group is deshielded by the adjacent groups. In the case

of (CF3)2CHOC(O)CF(CF3)S02F, the chemical shift is in very

good agreement with that reported by Shreeve(41) et al. for

CF3C02CH(CF3)2i a slight shift to a lower field may be due

to the presence of the electron withdrawing groups on the

carbonyl side of the molecule. The CH group in

CH2=CHCH20C(O)CF(CF3)S02F appears at a yet lower field.

The CF3 groups on the alkoxyl portions of

CF3CH20C(O)CF(CF3)S02F and (CF3)2CHOC(O)CF(CF3)S02F appear

at -76.0 ppm and -75.1 ppm. The relative position of these

chemical shifts is as expected(41). The chemical shifts of

CF3 groups on the carbonyl portions of these esters seem to

appear at a very narrow range of ~ = -74.4 to ~ = -75.2.

The presence of other electron withdrawing groups on the

alkoxy portion of these esters may be responsible for changes

in their chemical shifts; for example, the presence of two

CF3 groups in (CF3)2CHOC(O)CF(CF3)S02F creates shielding for

Page 80: Fluorinated esters : synthesis and identification

the CF group. Shreeve(42) et al. reported through space

interactions which may be responsible for this shift to

higher field.

70

The S-F chemical shift in (CH20C(O)CF(CF3)S02F)2 appears

at the lowest field compared to all other esters reported

here.

Page 81: Fluorinated esters : synthesis and identification

7i

TABLE XVII

4 3 2 i SUMMARY OF NMR SPECTRUM OF (CH20C(O)CF(CF3)S02F)2

Chemical Coupling Integration Shift Constant

Oi = 50.9 Ji 2 = 9.9 1. 0 , 02 = -75.2 J2 3 = 7.8 3.i ,

03 = -i63.2 J3 i = 3.5 i.o , 04 = 4.98 * * Broadened singlet.

TABLE XVIII

H6 5 4 3 2 i SUMMARY OF NMR SPECTRUM OF'C-CH-CH2-0C(O)CF(CF3)S02F

I Chemical coupling H7

Integration Shift Constant

Oi = 50.2 Ji 2 = 9.9 1. 0 , 02 = -73.4 J2 3 = 7.8 2.7 , 03 = -i61. 8 J3 i = 3.5 1. 0 , 04 = 5.i J4,5 = 7.0 2.2

05 = 6.i J5 6 = io.i 1. 0 , 06 = 5.5 J6 7 = 2.i 1. 0 , 07 = 5.8 J1 5 = i7.0 1. 0 ,

Page 82: Fluorinated esters : synthesis and identification

TABLE XIX

5 4 3 2 1 SUMMARY OF NMR SPECTRUM OF (CF3)2CHOC(O)CF(CF3)S02F

Chemical Coupling Integration Shift Constant

J'1 = 50.6 J1,2 = 9.9 1.0

J'2 = -74.4 J2 3 = 7.8 2.7 I

J'3 = -166.6 J3 1 = 3.5 1.0 I

J'4 = 5.9 J4 5 = 5.4 1.0 I

J's = -1s.1 5.9

TABLE XX

3 2

SUMMARY OF NMR SPECTRUM OF 4~0-C(O)CFlCF~)S02F1

5 6

Chemical Coupling Integration Shift Constant

J'1 = 50.1 J1,2 = 9.9 1.1

J'2 = -74.0 J2 3 = 7.8 2.9 I

J'3 = -162.7 J3 1 = 3.5 1.0 I

J' th = -155.1 or o 2.1

J'para = -157.1 1.1

J'meta = -164.1 2.1

72

Page 83: Fluorinated esters : synthesis and identification

73

TABLE XXI

5 4 3 2 1 SUMMARY OF NMR SPECTRUM OF CH3CH20C(O)CF(CF3)S02F

Chemical Coupling Integration Shift Constant

~1 = 50.5 Jl 2 = 9.9 1.0 , ~2 = -75.0 J2 3 = 7.8 3.1 , ~3 = -162.6 J3,1 = 3.5 1.0

~4 = 4.55 J4,5 = 7.5

~5 = 1.5

TABLE XXII

5 4 3 2 1 SUMMARY OF NMR SPECTRUM OF CF3CH20C(O)CF(CF3)S02F

Chemical Coupling Integration Shift Constant

~1 = 49.6 Jl,2 = 9.9 1.0

~2 = -74.4 J2,3 = 7.8 3.1

~3 = -162.9 J3 1 = 3.5 1.1 , ~4 = 4.82 J4 5 = 7.5 , ~5 = -76.0

Page 84: Fluorinated esters : synthesis and identification

vL

.... 0

. . ..,, .... c 0

""' ...... :s ID

:s a ""' m

"O ID (') ~

""' c a 0 1'11

-....,

(') :c 0 (')

-0

(')

"' -rn 0 ....,

"' (')

"' ""' ID

IQ ...... 0 ::s

! : I I .. ; ' ~ . ': ~ .. I g' ~; : I '~

; '. i .! I 1 ~ . I • I . , . I • . : I . I . ; i I .

_, .; I ·: : I: I (\ ... lt I I : I I

i I I I I l I : I io:,tc!g ,a c; . ., . ; l

1, • I t,.J

•. o• I ""' c ' I I 0 I 0

.j... I . I

Page 85: Fluorinated esters : synthesis and identification

c ... CD

..... .....

'ti ... 0 cT 0 :s :s 51

'"' m 'tJ CD n cT ... c 51

0

""" -(') "IJ

w N

(') :c 0 (')

0

(') "IJ

(') "IJ

w

en 0

N "IJ

I.;~_: .. ; I ~.

t I I • . I I I .

I

I =· .. !

·~

I

I I

... :

I I I

. ' '

I N .... ; '

· I i ; i I I

I -. . •.• . I

-.. •) ..

l I . ; : I:

i I : .

I I .

.• · I i

Page 86: Fluorinated esters : synthesis and identification

• J-.

... ,,.

r \.

.,

., .

.. !

1:

.~c

--).

•:.~

:··;.,

' .

ltO

----

--·-

· ·--·

----

----

--1

-··

•t

f:

.. :i

A

---1

· --

. --

----

-"--

· --

----

--

... ft

..

. !

----1~-

' d=

~~~

~---:_

_---~~

~·-~--

J:~ :-

Fl-1--

.~ --

----

---.

..-.

a..-

----

----

----

~

J_ -;

. -,·

1

. __

_ J

··--

·--·

-+-·

•I

. J

·.',

, I

.-t

____

_ ... _~_

-~-·-··---

. ...., ..

. --·

. !

I --~:-:-

-4--

-:--

. ~ -

I .

! .:

J

--~

-·.-.~

·t·-:-

··~--

-=-~ -

t--,

r-·;::;

-_

__

; -'-

-.

----

-,

J. Ii

.

_;

' •

I I

. =.

1,.

l :

· .

I t

---~•··

..

-'-

--.,

.--i

i-'

I

I !

• -

! i

l I

.:...

----

--·

-r--

----

---·

-

-·:

--1--,-~.--

.. ·---

:···;

-,-o-

::: ~·:

-:.-

:, -· .

. -·-

l.

. ~ -

· ---

-. --~----· -

· I

.....

:--·

. ·--

·---

---'

----·

" t.

··-

I •t

,

i

·-----·;

~ .

. ;.

• • 1'

1 .

·-·· 1

-·-

' ~---

"j

-.

·-+·

. ''

1 ·-" '.

... ~-

-+ . .

;

Fig

ure

1

2.

Flu

ori

ne

nm

r sp

ectr

um

o

f (C

F3

) 2C

HO

C(O

)CF

(cF

3)s

02

F,

CF

3 re

gio

n.

...J °'

Page 87: Fluorinated esters : synthesis and identification

... :

• !'

1•;·

o:

! •

••

----

----

----

·---

----

----

-· -

-··--

·-g

, ·'

·'

~

,: .

: ~(

.a~ .

:rr

lt:

, ~:

!!

.... -

1i-

t H

.L

1a

.. t

-3~

.. ·-

----

----

----

----

-·--

---

. ___

__ _..

~-------

-I

f •·

-,----

---,

--_-

---·-

---

.---

----

-.

. ·-

----

----

----

----

· ·--~-------

--·-

----

----

----

----

----

----

----

----

----

I

-... ---

----

--

! --

----

·--,

1---_

-:

______

___ _. -

----

---

! i

! ;':,_

:_,

---

---

·-

I .. ..

---·

----

----

.. ---

. r--

---·

---

----

----

---

-:

. i

---

----

---"

----

----

----

--

-.

I

' I

·-. -

·-·--

---·

--+

---.

----

----

-. .

-

----

~ : .. _

__ _

.

---

--·-

---

----

---

·----

--~----'

::-;--

___

---

__ ::_~:=

----'

-:--~;

~-:~-=-'

:· ~ ... :

1:--

• t

' t

------------...

!'

• •

,. . =

-1

Fig

ure

1

3.

Flu

ori

ne

nmr

spec

tru

m o

f (C

f 3) 2

cHO

C(O

)CF

(CF

3)s

o2

F,

SF

reg

ion

.

'1

'1

Page 88: Fluorinated esters : synthesis and identification

8l

s: ,., C1>

.... A

. t!J t­s: 0 ,., .... :s C1>

:s a ,., CD

'g n ("I" ,., s: a 0 HI

() :c N II () :c () :c N 0 ()

-0 -() t!J

--en 0

N l'z:I

() t!J ,., CD

IQ ...... 0 :s .

• I ·I . '

I ' . I I

-., -i-

i I ! I

I I i I ., ' I '

-1 ! I ! · 1 l I !

: I I i -4 -• : • :9. . g: ~: ~ I~

' '.. .! . , ..

'

I I

: I , I .. I ... ; • ... II' I .... . ! a . .,.:"'

:•

.~ . -~-I t -= ~-~ ---l 1-J . I

I

' . ....... . ~·

... 1 •. -· . I

;-~-· .... . ' .· 1 ,,

.. i ~p~ '.: · : ··· . I i i

··, . ' ;;-_ fr r-~-l .f i

.. I ~~11. I-, ____ J . '. ' I . .. .. ·I I I I

~. .: :-!' --···.· ... ·r·· :.::i: ij .... ::t, .. ";.1,. • f:... I '. : ... " ·-~. --{· • -·-~~: H•..;. •••• -•• • _,.H• •j g . i ' ! I ... / . . . . ·i • 1·: ., : ; I

w .., I . -. -. . --. • ... . .. .. .. . . . .

..... ·· 1 ··, 1' . -' ~. . ' . : . . : '"· ! i l ;. 1 l

·"' I 1 . , · 1 1 i I( I .. ' I I .. -, ·r .. , .... 1. ... ~ .. . ,. . . T .• .. : .. , . • i ,; I '

~ -·· ~I . _ ··-____ -·--~---·1 .: I ~ ~ : : ~ ; .. I '

r;' •.. --1 .. I : I

,.i I. •·:;-... ··-··;·~.""-'. .:i.·.·.··: .. 1',· ·1'··;. ..... :·. ··. ·. ! •I:·•

. ... ·~ i I

. ...

.,. -

.. ,.: •..

!

I j . I I 11 ' ,, ' A I I

. i g : :~' 0 + . I :

i:~ ·o ·-···

0

T" .• Cl I 0 I 0

. ·t.. •I • ~ : i

Page 89: Fluorinated esters : synthesis and identification

6l

c: 11 C1)

..... U1

"ti 11 0 ("t'

0 :s :s 51 11

m 'O

C1) n ("t' 11 c: 51

0

'"" (") ::c N II

(") ::c (") ::c N 0 (")

0

--C/l 0

N '-z:I

I r

... ~ ~ .:

~· L i: .

l I

I ~

·•-1t

•.. ~·­ . -

: i

.•. ..... . L -., ·==:

' i. I ...

!

-I I

•. .i ; I T':-1 --:-7--. I i 1·

0

" l; ~· --1 • ~: . . f · :. j o -· J I ', . ~ . :---.. . .._ ··---......... ..;... .•. r ... ·-· ·-.. -·--·. ---' I ; . I . I ~ •'J .. .-..... ..•. -;.. -J ... ' .• •

-~·-•1:· ... -.~~··r:.~. ··~;--·: ~·, . -.. ----1-·--:r --........ _..;. _. __ ~ -· 1 ·~ .. I

···j· ,_ -1. !--·I ·1

; ,. -~:~~~~~--:~ . .1~_..:::_j ·-_j __ ..: _____ -

. , ... -.. .. . ' .. I ., . ' I ! ~~ ;~.--j . " '.

1• • •• •• ~ I ' i

~._...._....... .. ··~ --··-•···· t I ....... . . ,.

. ·..'.:! ...... __ ;_ I ...,. ·~Ff-~·-~···~·····.:· ... ---+-:·-~-·-·-··-· -. : ... ::-. 'e:.,· ·;~.a~.· .... ' ::. ,, ., .. r I ,.,.. ..... ,. . ·-. '"' •.J . .. ; I ~ ~ -····"""--r--:?--· ..... --·· --.,

. . • ...... ·-· ·-~ -.1 -.. ~·

, ..

•" ..

"

. )

~ ; .

..

u

. ...

a

.. .

... I

.. ..

u

I

I

.,J I o

j

I : I •,.. I

,o ....

Page 90: Fluorinated esters : synthesis and identification

.••

., ...

.. ,:.

!• __

__

__

__

__

__

__

__

__

_ _

_ _ _.

-~F-

.:.=

:--.

:.-­

~ ~r~

. . .

.. ;,~

-'

----

---

-r--

90, .. ,

·~ :>

o

j)(I

0

0

-·--

•.a.

·o

::"!

.

' -

• •

19\:

·:

)

·~o

;ao

" .i{

, ·.,

-n

-(1~---

---··-·.

-;

t, _1' _

__

__

_ _

··-·

-·-

----

· -~-

--·-·

-__

:;.~ ;:

-----

! -

....

·---~

--..

·-·

ct

: '

I 1·

' I

~

•··-·

---·------

,'

. ::

·:

t-----

-· --

--1

\ -

--

-.

' -·

-.

' .

• •.

I .

-,,~

. ...

--. .,.

__ ...

,. "

----

--·-

----

--·-

----

-

-!N

C J'

~ •!.

------

------

··--L

.. -

-~n:

::

;tr:

~--~-.

··-

~~~--=-~~

--·;· -[

... -·11··

1·~i·. ·--

-;_/3-~~--

r .. '/'

----

;, .

----

~----.

.. --

--

--I

---

--

--"~

----

---

--.

1"

---

--

-·,

· ·I

. ~-

r--· ·

--~~

-+--

--·-

-·--

:~; ,-

.. -

----

-·--

·--

----

1: I

I. ;·

I .

( 1-

----

---·

. --

. -----

---

__ ; __

__ _,

__._:

_· J

' .

·-·1 1

I

___

:___-~:---

---

· ~..c:L~i_---:-

iJ·1

-·-

····

----

-I

. '

·i·

I .

·-·

..

•j

-___ --.

I . --,-

---

~~~~~i

--·:__

~ ~y

;

_ _ , __

=-:~-~ -

~__:--~~ ~ -_

~ :c:::

_:L~t ::-

~7 -_;_

-~r,· ~-:_,

_-_ ... ,

-----,-

--I

.. .l~

. -

~...!-

-L-~1

·-

...

' ,

. i-

-·-

:---1~-=

-; --~

_:1

r_.

. -'

. .-J.

!"" ~--

: ~

:::.--

,, .. ...

,... -.

~--·

··-'

I I

..

-

·-

----

----

--·

-·--

10

• •

, •

s •. ~!---

Fig

ure

1

6.

Flu

ori

ne

nm

r sp

ectr

um

o

f C

H2

=CH

CH

2o

c(O

)CF

(CF

3)s

o2

F,

CF

3 re

gio

n.

00

0

Page 91: Fluorinated esters : synthesis and identification

18

'i:I

'""" c: 0 .., ..... :s ID

:s a .., 02

"O ID 0 c1' .., c: a 0 Ht

("') :c N II

("') :c ("') :c

N 0 (')

-0

-("') 'i:I

("') 'i:I

VJ

-en 0

N 'i:I

en 'i:I .., ID l.Q ..... 0 :s

-. . . j . I

-I ·•

.;,; . i~ ••• '• , .. .. .. I

~ .. --:. 3 ... ~ . g .. ' I I : ·:--r·: : I. . I

. I

.. I

. !

~ I

. : .., J u : •.J

I

.... z

.a

·· .. > :; .. ...

Page 92: Fluorinated esters : synthesis and identification

"IJ .... s:: 0

"' ..... ::s II)

::s a "' OJ

'O II) 0 ~

"' s:: a 0 Hi

(") :c w (") :c N 0 (")

-0

--C/l 0

N "IJ

' '

~-~ ~ .; l I I ! . , .;) , ::, I , I I I I

Page 93: Fluorinated esters : synthesis and identification

£8

c: .., ID

"t1 .., 0 rt' 0 ::s ::s a .., m

"O ID 0 rt' .., c: a 0 1'11

("'} :i::

w ("'} :i::

N 0 ("'}

0

("'} "ll

("'} "ll

w

en 0

N "ll

.:-L '1 I

I I I I

i

'i i i ! I I I r .. _; __ ~

.i I .. '

r I I ' .. •! • I

I ~ ..... : j i ' I

i I-.. ;

• I '.~-; "'I

I - I

i I

. - '

I

I

"j 1- t-·. .. I · l i • I .

".I ..

+ · I

. . L " I

j

,! ,.

1. I I

•f"':'

'I

... I

.. i

., t I

i

i.

I t I

. j

' I ·t-·• r-· .. I

l.. I I

I

' I. I j '' I I

I

I i I I j

I. I

l I I

.. -...-.-------- I

I

I I

I

I I

1

... :r • I

I

. I -~ _. ,., - f. ~· .. : .~

~. . ..;~

L,...I

r '·· 6

i I

,\I •I I .

t I~ •

l

I I . I

I !

I i ~ ; 1 i I

I I I

Page 94: Fluorinated esters : synthesis and identification

va

N 0

l"IJ .... c: 0

'"' .... :s Cl)

:s a '"' ID

'tS Cl) n C1'

'"' c: a 0

""" () :c w () :c N 0 ()

-0

() l"IJ

-() ...,

w -en 0

N l"IJ

() ...,

w

"" ID l.Q .... 0 :s

i I· ...

. i

~ · • •I i•C : .. g: ;·; .. : I . '!

•• I~ '.!

' . -:.1 -• •• -~• ' a.J • t ~ • I

I Q • ,., t: t

· i ! I i ! ! i

; I

:~it:~-~j . ·:,I. i I .... ~ ... -.

! r ; r '+ I

Page 95: Fluorinated esters : synthesis and identification

N .....

"IJ ..... c= 0 11 .... :s ID

:s a 11

m 'tJ ID n ("t'

11 c= a 0 HI

(") :c w (") :c N 0 (")

-0 -(") "IJ

-(") "IJ

w

-en 0

N "IJ

en "IJ

11 ID IQ .... 0 :s

. I -·I I I

I . !

. I I

I . l

' : ~ -· I . ~

:.• ,. , ..

I .. -· 1

I

i : i .: .. ~ . •J ;, . ~ ... I ;! I s.

I

. . ;

. ·~ . ) ·.·

. I

' I

· ~ I ! I .. : ~ :· ': ' j 1

! -''I , ...

Is ~ 3 I i

! : 11

I .. ,-_I

I~ ,,., I c: ( . ,, I ;..:t ... ! ..

....... -..------~-------~.....i...~~~~~~~~~~~~~~~~._.

Page 96: Fluorinated esters : synthesis and identification

98

c .., C1)

N N

"ll ..... c 0 .., .... ::s C1)

::s 51 .., m 'O

C1) n C" .., c 51

0 HI

C") ::i::

N 0 C")

0

C") "ll

C") "ll

VJ

-Ul 0

N "ll

-N

C") "ll .., l'D

IQ .... 0 ::s

l '1 I

•·•• i : I I

I

i I

: ... :;. t '0' 0 .

j/

I

I I

• I ..

j; ~ ! ·; I

I

I I

I . . ,. ·~·~

.. I j ! _-';I I•

I I

!• ... ~ ' T . ;

-i , .. i. -~ II· ::~ ... !.. I I ·f '. .. _t· . ~ I . I I I

.. '. i u (I I I

I I • ; I . 1 · I ,1 ~ ~ • I ., •O ~

II -~ .. · 1-~ ~:~ ;~ .. }:-: ... ·::f. ~f' -~ f .-... r -~ •· ... ..... ·-~+ .. . . ' .... ,. .1 ... '1 -·. .., .... i.

:·· t . ' :; I i· .,. I I : . -· -t--.,...._ ---~ -i ' . ~-. ·r·. -r,· ·---· ....

I , ..... ,! i . ,, I I I .. ,

l' : .I I ; ··,·.· l' I .. . .. -.i-.;.· . -I ! .. ., ! I ' I ,. ' I

I I I I . t . : ! ' : ' ·; •··:J -· -~r-:-:-.. !·• .•. : ·•I--l .. _I. . .i

! I . .. i tf-· .. -! ~H;·· .'! . ·· :.~· ; .. l . ~-~" I . 1i ... 1 ! I I . : . I '' • ' I . . i . " : ' . . • I i I ' .. .f .. -~ ...... -··...__ .. .,. .. _ 1-. ~-·----' 1·• t·· I

: I • '. 1

1 ~ ;~ • -.Ir .• ~; .. ~' ~ ·' .l..i•-t'~ .. ~· :. ~-"~I. f ! t " I : • -· ' I . . I I . ' '

rl r .. . ." i . .., I

I

1.:. ,.. ' " : I -I ! :; : ~.: 01· . : i . . . . I

I i l ! ': I ·" I : .p j-1 :-;

... l o I

.. u \;J

--· ---

Page 97: Fluorinated esters : synthesis and identification

LS

N w

.,, "' 0 ('I'

0 ::s ::s a "' m 'tS ~ n ('I'

"' c: a 0 HI

-(') :c N 0 (')

-0

-(') "21

-en 0

IV "21

-

H i . i ·1·. ~: ; , · · 1-, •• , I .. : .. , . l .. ; ~,, '.1

:• 'j,J .. J I :ii . itl• 1 : ... f ~ • Jr I : 7. : •. ::

. I . • I I I · .. 1·. : i I } ' · : ;.ij! ;~---!~--L.i~., .: I !· •· I

,,It>., I ·.,___.......,

. • 1' ~ ,_ i ~ I ·-! .: .I. .. -! .. r' . . ...... ! ' .. ; . I ! . I I I I ~ . . ! . ' I

I I . .~· : . I I . ........._,_ --·--t .. . .. ·---~--· : . ·1 . .;. I '"; : I ! ! ; . I ' • ' I I • • i c ··' ,1 I

;.·1! I ....... <~ h .. ·t···! t --~--·-: li···-1 -i r···J I J :! {· -; :.~ . I. ·I .. -~. , -i ... I . . I I I · 1 -:-• ~ ! I . ' . : . · ! : I ;--~-.. _ -······t-···1-· .... I Jo. •••. i '.

I: i i. : i I I ·t·· j 1 .• ·11

: I I

··rl j .j ·t [ ~-~1~l·.p .. ~-!-+l :H&·~I: ; d ; -t li--·-l· .. hi.-! ..... 1-~·:.t· -~r .:_:~. ·1 .• 1. I . ; '. -i , , i· -. -. .. ... ·-L..,,. ·. t . -r . -··.· r· --1 , -1· I I ; I .· i 'I. I .. -. . " . . : . .· I I I I I ':· ' • . -f ' .. t· . . I . I

i r· . :r.~ r -· ~··~~··-.. ·.~:;.~~ -~ ~-.j.. • .J., .

I• : • tr ~ ~ _;;•+·: ... :t.·! .~ ·1· .. ~,·:' ... :I. I: .. ; : l I

I •• _,(; I ' ' 1 I ,..,, • '1 '. • ! I I

""1 -r·-: .. --t . • r· . -;---:-, ..

! r·.,--:f !' ', ... -1-~::.1 ·-t-· ·+ :r. ! .. i ;::-.n: ·· ·_ 1 : : -r 1 •

::. I . ':"'+· . I ·,.-.~ ·1, 1-· I I " . • . I ' I • • ' ~ &

. : i .. ··: . : . -r .. , , . , .. . . I

• I

' I I I • ft a,. • .... j ...

• o ; • . ei I ., I I I I I

I .... I • • l. j f • 11 1.· I I L ·.. .. • ·t · , ~· ·--1 · 1 . > ... 1 · .. { ~7 · ·• • • ··r i-r · r [

. . .l .. rt-l ... ~r ---:-.. r-·r·· -·1' ~ :--r., .. ~+"7=' .. --t. -·jli: . t 6 . " 6

I : ~ r -r -;· . • i .. -· ~ . -• ·-: I ···· ·-i ... · 1· . .

, .. 4 :.~ ~ . ~ .. ~ ~·i:; .;~: •; 1 '--1 .. -1~ -I 1 ·· ~ I·· i I ! .. i""f:! :l!t !~ ~ r '. • r·~··· "":' .:r.··r· ~· ~ .. r.· 1' .. ~: """;" .. [.'."" :·' -· 1';, t .· i I " ' .•· l . L . . ' I ,. . . I . : ' . . I

...... r --. -i ··-i-· 71"""'.". ~-··-T-·i--·-r-~; J ~

.~: l'' ! -··:··1·· f;;_·~·--·: .. t·1·; I.' 11 ! j' ! .1 . · .· . : . ~ . . . ·-r I .

1, r· 1 ;.~ 1 _ ! J :~.J;:: +::-: L .. : . . '-----· 1

.. ,i i ·· . I r .. ··~ · . i : · ·

1 i

' I ~ .. . ~ ·-I .. . I ' 1--'1

I ' ' '. '' . I i : . I ;::· ! I . ., t · 1-·-·..+ ,....., .... _ .. ....i.._ ., .. -1 -· -~ · • r· .. --

1. I . I~ r 1 -"l: ·1 t'· . • 1 • ~ · · '"''' t' · 1 ..... 1 ! ·. · 1 , ' . ·. . ~ . . , •. r. ·: .. •I I ' I

I I . I

. i ! ·. i I I' : C • IW • ~·,

.. ·r • ·:

Page 98: Fluorinated esters : synthesis and identification

88

c ,., CD

'TJ .... c 0 ,., .... :s CD

:s a ,., ID 'ti ID n cT ,., c a 0 l1t

-(') :c N 0 (')

-0 -

-(/) 0 N

'TJ

N

.., CD

i,Q ..... 0 :s

1_1j t. ; i ; I :+'--1 ,- q r: ." ~~:~~~~~ 1~:~rJ ,-I -1 -1 jl . .::.!: i .t._.i . j-1-l. ~ ---~ ! j ; : -• i--~:..4-~-... ;. ·t ·1

1 -1 ' I

t I I : I i : • I 1

r --J · -, .. · : ·· · •· -! -;· ·-I -i ~ ' . ;. I . i I I I

t .. ·--r--1--:--· i__:._1 . I:..... ~--.J.,: ~ 1 ----; .. I ! . . . : .... ' I :--; 1 ~ r: .. · ... ·; · ; l. . '. ; 1

,

, It ; ~-:~~ 1~r+ ··1 .. -· -·r---~ ··-! · -... 1 ... !

. I I .. •• -t ·-+-.... -. I . I . ,.... . I

I I I I ·I . . I I ,: I 4-.. ; ·-•. i .. ;_ .. l-.. : . . j. . :. • . . l

.. . ~· ") ..

i t ;. I \J 0 I

•• ; u I

• I

~i I ·• ' ..

111' i"tr·' ;tt': . ' ,. ·,~.Ii 1 · ~-~l: :-: . r--r. :1. rt..; r · -, ··: ~-. :·; -.. j ~-·' -.1 . ..L·:·l:·:1 . I 1

1 ;·~·.11~ -~~-,~ti·-~ t· .. :i :.: I-. i'" I 1 ·

".~· .............,~ .. ,.~=···=·•· i ....... ' ' I I ., I t ;·-c····: '.L -t~·,i...·-~·. t . r ~ I . L' I

: ... 1 ~---:_:~~-~::.;. ~: .. \::t'.f.:;. j . : ~ ... ! .... ~---·--~-....... t·· : I i-.. ~:-~~ r? ... ·E;::s~;;;;;;~-: L..

8 .•. .. . .•

.. I : I ~ l ; I

I : ;·

I ! ·r ~.... ~ _: ' i ! ' . :~u ;~·::~; -!-~ · .... , 1~: -~. i . i

! :· ' ;-~ ... ~· ..... . ··1 ·-~.. . : .. ; 1 I ! I ' I ~ . -~ -. ,.-: I. -. I ... I t

:. I .... I I L I I :'\' I ~ : • I ! i t • I· : . ' . .. I ·-

-~ . ~ ,. 1"'-1-r -: --·-: -i."··~r ·r ., · · , ---r · r -: 0 o,) s i ;._ I ···j"-·~~ ;:.j -~ ~~~· F .+. .~ ~ .. l..;.~j '""\i ·-! .. i . 1 1 •

I } ; • ' : ' • I •. · . I t i ' I . ~ -l -r i ...

I. -~~·r' ~-r ~ .. --1·: ~i~-.. 1,·-~_:· ;~~~,!··_: ~· -~+. ~1' ~ .. :· i. ; . ,. . ;

'

.••. :1··· ·i.. . . . I' .·•· I I

... :~; 'jr;·i·; : .. :,r·~ .. ~~-':'·-t~,-. .... 1.·;~!. ···41·······1~· t ., .... , ·· .. j•· .:· •. • ·· : ' f w I .. , ~

·~t ,·--:-,··-t--, r.----· ~i· r··1-··ur ... ~c;-

f: t.-.l. -j i _J -; : ! .. , _: . .:. .! .,:.'1 ·~' . . .. • . I I ·· l . ; ; & ; ~ . . • . . I • . . ' :

. . ' r ' .. j ' • i • , : "~ . ' · 1:. -, ·,: t:. ,. ' . ~ ~: I .. .. rl· .

'1 f. '' ·i':: I .' .'. ~ /.,:··:l~': ;~~t ·:-·-;-· -i--· I· t. i ' . -~·'-1'•::;-_,....J..:.J...r.-.~:, .. •7.-·1··1·-i-·-:-1 '· . . • 1 r ., . .. . . .. ' ~ . -'. '--~--'.-\-:·-· .. ; ' . . .... -~-.. :. . ·-

'

... z '" ; ' .. :·•r '·L.

-------------------------------

Page 99: Fluorinated esters : synthesis and identification

68

c 11 l'D

N U1

"lj ~ c 0 11 .... :s l'D

:s a 11

m 'O

111 n cT 11 c a 0 HI

C"l ::i::

N 0 C"l

-0 -C"l "lj

C"l "lj

w -CJl 0

N "lj

N

CJl "lj

.., l'D IQ ..... 0 :s

I I ,. I i I • ~ .. : ~ I~ I • ' II I., I

•>:fj': ~-:1 L,I -: -·· ! -L -. L. J_ ~\ J ·-i' _ !_J~ L ! ... ! -· t : ~ I I I ... . I I : I , 1 . •. . --:r ... 1· .. , .. 1 ....... .; ·-1 -·-i __ .: ..

! I ! , r ; ; : i ! : ! ! ; I I •• I ::1 '

I ...

LI I 1 · • : 1. -! ~ . t I . • . ' ' ,-1' ; ; I I : I I I '1 1' ,.

JI t' .·r·, ' .:·-r·; r· r-'. I I ... I • I I l J • :: .......... ' --• • • r. ·-. -.•• -1 . ·1 ·--·-.. ·-·· .. . . ; . I i I I . ., I 1111 ;;

-: I •.. I ·~ : I .l ,, I

I ; : ·· I ~ · i i ; : . i r-; -~ .. r1·-i · r·· i ·-, ·-·1.. . i"' l ""1'

f i i +. -., .. , . -+· . I . I I i . -i ; !

... ! ... : --1-'·I· t··f-~ ·.·~.· .. t I. ! I , .. . ~.. I I . l. l .: I . I . , I . . : .. . •. ,. ~-; -+, ·--.JI--·,-, :. ·-·t:-~·-1-:· _:j .. ~ :-~-,.. I:; I~. i ~-·-l ·-·1.-~-''. · ·l ·· · ·i :. :·-i I ::I I .. ;· l ~~~ -~:~·(: f: :.::1L~-;,.·1; ··~ ! .· 1 ·! ! : j

I .l .• -1 .... :L--.. -·-L-i.;;,' -~-.. i--::L: .;..:. ~ . I

t:.i.....·r.r.1 ··1·;:~· ...rh:;;;~::-; .. ·: ;44· ·-~·::r: .. :·. ,:,:I, i· ,.. I ' ! . ' r· ! " ... -•i~ ::ii, ... · •.. ..... · ~ · ··•• ·· 1 1 t ! : . , I • j f :"11 ·:.i~~.J. / .. · -:i:t< "I . -,· ··,· I "711' --:.--;-g i:. i ~ 1*' : 1 t .. ~f . FT .!--1--, 1. ·. -r. :~· .. ~ ... ~: : ... l . . ; . ~ i r . I • ' .. . 1' .. : .,. I_ . "r-. r . l ':--: L ; .. ., ! 1 r · • · 1 1 .. ~· i · · 1 ui. I· , 1

, . . •. :1 ::-:i .!_ r : : · ~ · 1 ,. ~ • J , . ! ~

I : -f~~· -~ '. -;_f . ::.~1~1'.f;: _ /t' ~l. _· "'J s; ~ ~ ! . w I .. -1 , r _ . . -~·r;r-t-.1• _ ... -~·' ..... . .. 1-__ ."7. ""; . r ... : : -~.. ; -. ~-.... : :~: ... 2 L.~~ _: ___ ·.: .. j!~ ': :L..;. ·~ . .:.l.:.. ,.~. ~ .. "' 1' ,. Ii

! i i I ' ,;q I . ~ ·::-, ·:._ ,. ··f: ..... 1 ·: . . 'I;:

.. j J -~ '. .1 ~ . -.. -T>fr: ~ ,~~-fft~ -~r.. .·:· -:·~r' ·~: .. :.: .· ;· .. ·::.: .·: I : .

i I ·~1 I I !

! ' I • • i' . . .. , :::. "-~ :~: I . t .;. ~ i - . . ·-·-.•. ..+----·----· . ·-· . .. ... ··• ··o .. ;J . "", •. I f t ' •

. . : ....) .... ...... .:.. ·t. .. .. __ _ __ •. •.. . ~. r.. ... , · 1

! ~ 1 · . 1' I • . . ~ I ' I I . ; .. : ·:; . t . ·r . 1-. . ,... r-· i . :.": .. I : , . . .. ,I !

I ' ' ). :' ' I -:-·: I"· -' I I: ' I

. . . --' . ~ I ~ .. ~ "~ :r :· · · , .. · 1. _ !. . i : .). .. L t I . . : .~ . I o I ' ... • ______ __... _______ ...._, _________ _

Page 100: Fluorinated esters : synthesis and identification

06

"12 ,_. c 0 "1 ..... ::3 (1)

::3 a "1

m 'O (I) n ~ "1 c a 0 111

(') "12

w (') :r: "' 0

(')

0

-(')

"12

-en 0

"' "12

I

.j

i

i

...

: . I I

'. ~ I la It ' I ... ; .. I ·1 I '' I ,. i t ; ..

I •• I.-I I

I ' I . j

. I 1 i . I ' '

! :;. '. ' • : t) • t I

-... .. . . 0 ..

I . I I

' I ; . .

I 11

i i I I I ; I I ' ..

! i ; 11 . ~ i · I

-~ :s I r. ! ~ ! ~ . : .... 01 1+

-I ' •

I i I ; . I I •Ir: .1 ......

• ·O i !'t t ,.

i ! I

I '. I ' , I·· : i . i ' I : I ; i I I . ! . .. ~··I~~~~ I I

i

Page 101: Fluorinated esters : synthesis and identification

16

c: .., ID

'tJ .., 0 & 0 ::s ::s 51 .., OJ

"' ID n & .., c: 51

0 1'11

n "'Sj w n ::r: N 0 n -0

---en 0

N "'Sj

1~·:~,· -~ ··i, .~ :,. iJ ·Ii ·1'·-~-Ht I~ '.-..i +1 i j: i l i I~ . ! ·' • I I I I I : : . 1.: ! ., . ; : . ,, . i 11 : . iij :~~ll ! .~ ~ ~: l .. 1 ! '. I

.!... ~-:. ---·--' I· --·... !·-.. \~:. -1·-· ' i ; . I . i I I . " . I I ' . i

& '. ~. 6'1 I I . I I I I ' . I l ' . I

.• -. ··1.-I . . ! ; I '1 . . .. . ~-~. t :~ I I I

~ ~-~~1·. . Tf ---~: ... ' . . ! . . 1---I ; I : . ~=--i~. .. , .. ~ . : -I ! : : : .,! : ... ! : I i .. ;-~-}' -~-r-; ··: t· ·,.+-:. I! :-·iL',· 11 l i .. ! .. : • : I~ : ! .. -.... t-.... t •· • --'--t---·-·-+-----· · -~ .. · <• · •·• I . : . • I ' I I : 0 u " .

; 1··-· 1· : . ..-i ····~t ·~ ! --.. -r: :.:_LI_ . :~. . -1 : ... i · __ :r. ! . ' 1 I • . ··r . ir-:.• . . . .. .... -i. ~---:-.. · . . . . . , . 1 · ·1 · . : : I ..... ,. :· :: .. i I . . . ; ' I •. ~:..,. • ·~~... -·~ ,,:..;· -;:! ,.-:-:':. :-·+---+-. -.l .• -I -I . I • ..... ~ · -~ •·+-....-·· ..... I. I .... . -.r;;:rt~: · .. -} :· .-·i 14... .. '1 ·,· ; . I · · •.•l'::~t 't· I· ,.,. I

• ----•--·-·--L--:1 · -·· ... •·No l·<I' I , .. ....., .... ,.. 0 •• • 0 • •• 0 I

·' .. ~. ~ ; ~· . ' i f ' r : , , ., . l -: _11;,.~. , .;.-. J ·J -r· · ..... .. .. , · ·· t· · .. ·· . · • .. : • · I i .. ' I ... • t· I I : ' ' I : I • : I • . ~ .• I . I • 't I I

j t· ~· --r-1 ~ :~ ! .. : .. r-: -· t .. , •• · i .. l .... 1 '. -+, · .: . , .. I ·1 T · r 1 -: -· '. : 1 ~ r · · -: .... _ t:_ · '1. · ·: : ·i · I -· -~-~ . •

.•• , _.1.-.a.,.,. '~r··-"'-. , .· .. ,. . ... , .. ·1" .. .1 ··-r

w,1 1· :~f ·ft~; ±-r1' -lt~ . .~-. ;:fr11

·i: ·i~;f rr [ ~ i ~ ; ~ , . . •11 · r ; . t -!· , •. . , .;·· :· , . " • I ~ • I , .. , I .. .. . I -. '. I . . ' .. I I'. I I -··· I '.' ... , :1·:···· I ... . ·~. ·I. I

l'··~.t !:.;: l·-n·t·:, .. ~ .. 'L·-:r·j; -.r·.··: i . ; : .. . :p . ··l .. . 1 · ·'t ·---·1 ·-.. --i ........ ~., .... ... . • . t .. I I l·•i:. .. j .• : I : ~r · , ~: • " · · • •. . · · •. . • : r · · I · · I r,_ 'i~r-~:: 1-t--r-;,'. ~ -,I .I .• T:-;--· T. -, . :· 11'' i-~ ~,;: ~ ~ I I .. ~ ~ , · . -1. l i • 1' 'I • ! . I

.. ,' I ;_, I ! ! . i. ' : . I '1 !.

r ' ., I I : , , I .

1

1 I t .. I i· i ;. ' I

t ;. : I. ~ ... :. l' -. ~· fl . -I ; 1'. . ;'. .i I: I . I . ., I l ; ! :'. .... r -r-·r.-· ....... ·-1 : n . ,, ' ~ : ~. l . t I· ~I .. .: ·t'" •. ~ ~ ! ''·· I . . I~ i. -J :. .. .. • •••I .. '•I ... ' "i i ~ f I i ! • I I ' ••

~---------_.__-~--------' _._. __ -! ,.,__

Page 102: Fluorinated esters : synthesis and identification

2:6

N CD

"IJ .... c: 0 .., ...... :s ID

:s 51 .., m 'O ID n cT .., c: 51

0

'"" (") "IJ

w (') ::c N 0 (')

-0 -(') "IJ

(') "IJ

w -en 0

N "IJ ... (') "IJ

w .., CD

IQ ...... 0 :s

: i I ~ ~ 1,-I, ! i I I l I f -~ 1 ! ll i: I I ii I ! !, ·-i 1 • I.; i I . : f , t •. , I I I I •.• : u .•

a

-H 1-T 1

: ! t . I :·1 ! -i ~ i ·'; g

. -1J _J_ ! = . L ! I I + , I i I I • I I

I -I I ~. -tNr~.u -i ··-· -I I I . . i c . I) • ,,

·I . I .. 1·· I i . . ! • • ~ •.. • . ~ I

t. I . -1 · ;: :. ·1 I I • . . .. .. -"· . I . . I

·.~. ~-~+.·~ ~ ..... :.....: "'\· k".... . .1" I I· .. , . I ; ; .

f

i .... I .....•.. , .• '··_: ···1' . '1· . I ; 1 I_. :_ '····H· 1;· :'' ... •.,: . ' . I I

... -_ _i; ~·· --... ~+---r-· 1---·-I -; · 11

. -

: ··-·1· -. : . I . : i i '

t . .'. . i l·· ··!· ! "j •I I : I • .. i ·, ,-~-.:._. ·----·---~~·-" ~l-~.J_ i ~ -----'--··-· . ~ ' ' ;

·-1· -.. : -·1. ,..,.T I T' I . i l

w ! 1. · I · 1 ·· l I · 1 1 l

I

i ' I I j I I : • I '

__ ;.:::.~ I 0 ' 1a' ,, : I . I

. ; ... ~--~;:!~

, .., . o I o I t '

I I

[

--· 1 . -~. :· i --. I. ·1' ; i . ~-~ r-I I i -1

'. : ! i I ! ! ; . i I I ! I . ... ,iii; I ; ... : .... 1. . I ·I : . I I . . I ,· I · H_ ·--; -· --t---· 1.-----,

1

--! 1-i .... 1--·r· i·~ '. .. ; ~-I

! · I · ··!.. .. · I . l i 1

• .. . ~. i I I '.·: -1 . : . . I : I ' I

• i I I . t.;,L ~ ~. I : I I i 0

1 ~+-~ !·: ~f H " : ! :r-· 1 .1 • i ., . ! .. · " ; ..

• It ,•1 ' I

Ii : 1... i 1·::

•• z .,

~· i ... : . • . I i I I I ! _........, ______ -'-.._...i-~-----'-----------_j_-~---------. ,

Page 103: Fluorinated esters : synthesis and identification

£6

N ID . ..., ..... c: 0 .., m ...... :s :s 51 .., m "O m 0 ('t' .., c: 51

0

'"" n ..., w n :: N 0 n -0

n ..., n ...,

w -en 0

N ..., ...

en ..., .., (!)

l.Q ...... 0 :s

I : -I . ' I i . I ' I . t. ! . I 1· r ; ~ 1.~ fa. -,-!.!-1-· ~-r··r--r 1-·r-· ;-1

1-, -··!i;1!i ti

~ ~ i,-T [ . ··rti :+JL-r .. ·1111·1,···· l. ·!-~·I: :· 1, j ;I, : .. I''

• -·, -; • : . . ~· . -1.· I i ---. i . : -1 ; ·I . t . I . ··-1 ·-. . .. i • .., • .j.. I ' I

I l J .. : ·~---'-i ·r -t +··-·1 'I. -+ .. : ._ __ ,; ! ~: .!

• . . ~ .. 1 I · -:-j I i ·.'. j : l ! . : : ~~j . I 0

j -· : 0

. . I ' I . I . l I I

-r.· i ... r· ~ .T'""' -.. t ... "":" ... l : .. -:~I .. : ... ·"41-·· . : .. 1 ;

-!'-+··,:-----1·· Pr-··· I·· .. ·-1··11 1: .. ---~ ·-· r I ~-·

1 ·, · · . · · r ... . 1 : . t· · .. i 1 : : , '

!J:. + --r--· t -+ -·--;-~r· ----r--. --: -· -: ~: ~ ~: . .. -· . :. _'. .. :·.1-· ... : l J ... .. . ..'' L. L1. -! : I I • -. ... ~ J-. ~ :.. '"" --.1 :·: 3·' -~:\~: ........ f : .... l'--·r . I l ! .. ~ l,· • ... .. , .. •.. . r . -.,. · ... ' . ! •

.. • ;~ J .... ~·· • ~ _:..;-t,:'t·· ..-;. t' ~1:k •. ~·.:·· , .. j i . ,•::~ ... 4~. ..i .:;ia ..• : i~::;:--. :·:· .... j. rr: :-. ~ -.. ~ .. --t_ . i 1' . j • ·""'-~ ·f:•· .. • J:. · ... , ·~ "1, : '; "• ' • .1 .•. 't. 1 ••I ,. f,

.. • _.,1· -J.;... _,r' -' .. -·• . ·•·· •· .... -•---+----••! J, •J I .... ... • .• • ,. . •• ' 0 ..,

~ ~-<·,~ -f ~ I -. I . : ~ ·., :.. . t~. ~-'I ; !-l I t ;~ , . . . -I . I • I t"-4 -r-·i r ' I,,-···1 ···1_ : ·-· ...... 1.~-'T-.i .·: · :"°

... ! ~i --r . ., .. l -.. it 'i. ... i 1... ~· .,.,. : . ~1~ J.. -· . i. t : ~ · .. ~ i·---~·~·-·-... !·"-'!'·-:"' · · · -cl-··"': f"'"'1 ..

:! ~ I L. 1 .. ; ...... , I . I 1-' !I:! ! r. i-. ~--. -1 . g s . Ci

.... ' .... . . i l .. -1 .... , t: i. '•i •... ' l I I I ... t ' I . :· ' I ""-t . .. '. ' ... , -~ ~ ' . -··~ ... . . ..--· . t' ' j

' . ·; ~r.~-. ·-i~:1. ~·.: r-~: .. ~<I;:·_._,:;~ .·· .... ,. · l ..... : , ... : . : • • • ~ ,· ., ... , • ·'I I I I

~ : f ' ..... .C , ~. f'~ ';,:.,: •-:.-I '· ··:-:.:.: "." .. ':"'· •--'• ·~·~ ~ ', i . I ... ! i ':t-·· t ~r:--·· :.~ .. 1l ; . . . .· .J ---~L.:. i-... ' .: \... .. . j

'·: -'j·--Ft+--"··~ .. '-+· -~-r·:_i, .. ~ ..... ~~'.~ ~-~: ~- . ! I • -1 · -.. J" ~ ~ .. ~ '"':' .. . ' . :•I .. : . I II ! . '. :. ~· .: I I ~· I . • . t. ., I I I ' I ' I

-r~ : -.. ,i : --1, •• ·1 . ·1 .. ' • . . i . ~ : i

I I .. ; I t . 1-. --. : ... ;· . ;-:-· . ·,, ,. . ~ ' : I ... I i . ; -. f I . ! ,,. , ·i . I •

.. 1, ~-·: · 1:· i~·~ ·_: .1,. +. ! ~ .. ll , .. -~ ·_.

)

: : •• I •. . I . ·I .. I ·i : ' I ! ...

I I . " I ~ .. I ., ,.

•• . - I i . i , I • i ' ' I tf•, _____ __._.__

Page 104: Fluorinated esters : synthesis and identification

v6

c .., ID

w 0

"IJ .... c 0 .., .... ::s ID

::s a .., QI 'O ID n ~ .., c a 0

""' (") 0\

"IJ U1 0 (")

-0

-(") ti}

-(") ti} w -en 0

N ti}

(") ti}

.., ID

IQ .... 0 ::s

----------· --·--··

Page 105: Fluorinated esters : synthesis and identification

-en 0

N "l'l ' () "l'l

w .., C1) l.Q ..... 0 :s I"' '~ ! •

I -; I I te . II

Page 106: Fluorinated esters : synthesis and identification

• 4.~

s•!!

W --~

.· .

-------~-~--~

·---

·---

----

· --

----

----

----

90C

lt:

·~"'

~.;..c

•~c

·~r

•5C

3·~

3al

::.:

~:

1IO

15

C

1IO

l:

J(

-·--

··--

·-· --

-·-

--. -,-

.. -.. -

. ___

__...

._ __

____

_ ~

____ _

J_, _

_ ---

--·-

-~--

_: _j

___

_ ·-

. .l

I-, ,.

·; i

I'

. .

. ;~--

· :--~·---:-·---: --

-'--

:--~

-~ ..;.-

r-· ---

--··-

------

----·--

---·-

-.

. '-

. I

. .

I ,.

I. .

. .

. __

___.

__

. --

-·-

·-·-

----

-···--~-

t -~----'-....:....~--------

': -' .

. '

1 · .

. . :

~ .. ~ 1·

; ~

..

; -

t. •

t·. .

i ..

-------

. ·-

--t

·---

----

· ·--"'1'~---·-~;a;____...

·: i

i :

_, 1

-~,

·:; · .r·

· ·.·

1 : '

· .• ,

, _..,

1 --

----

--+

--+

--·

. ...

-+

----.-

. -..

.-n--

-··---~--, __

. •

· I

I ·

· 1

i ·

•:.

I .

i 1

-a

·­~ •·

. i

' ,T

-r

--1

-lfy

f I_

-·-

-·-, -~------·--'---

... -·--·-

1 • ~ 1

' :

I I

. I

' j

I,, 'j )

I

t •

r.

: .

1 :.

• ..

.. _

f

I '

. --

----

-.r·

----

----

t---

·---··

-_..:_

_ ___

~-:.--

-~-' .J

:. I

. I

' l

' .

-....

...... _

t-·~--r-"T-;-""'":--

. t •

1 .• ·o

t •. r

t

1 '·

, •

-·--

-,.-

-~--

-· ---

1 I

! +

-. ..

.

·I

. I

.

. I"'

I . \.-­

i .

: i ~

...

t '

' I

---a

.---

--.:

:._

.

.. ...

:.:-. ··

-~· -

----~=: . t

. ..

~

..........

·-~-

:~-:.it--L:

~ •r-

-·-

_ ~-

-~;~-:--.~::'--!-:-;

. • .

·l

· ·J:·

.

. I

-.

. ..

... :::ii.

. I

.. .

. .

. ~

-""

l "!'

.

" .i

:._

---~

----

--....

. --r

l-·-

--·

-··

--_

_: ~ __ ·

____

1~ .

.. -~

-~--._

.!_~~

rf ..

~·I

----

--

----

-·-·

----

·---

----

----

----

-.,

. -

Fig

ure

3

2.

Flu

ori

ne

nm

r sp

ectr

um

o

f c

6F

5o

c(O

)CF

(cF

3)s

o2

F,

SF

re

gio

n.

-I I •

\0 °'

Page 107: Fluorinated esters : synthesis and identification

97

Elemental Analysis

The esters were analyzed by Beller Microanalytical

Laboratory for c, H, s and F. There was good agreement

between the calculated and experimental values as shown in

the Table XXV.

TABLE XXV

ELEMENTAL ANALYSIS OF FLUORINATED ESTERS:

(THEORETICAL/EXPERIMENTAL)

c H s F 1. CF3CH20C(O)CF(CF3)S02F 19.36 0.65 10.34 49.0

19.49 0.67 10.37 49.2

2. (CF3)2CHOC(O)CF(CF3)S02F 19.06 0.27 8.48 55.3 19.19 0.38 8.68 55.6

3. CH3CH20C(O)CF(CF3)S02F 23.44 1.97 12.52 37.1 23.54 1.99 12.61 37.4

4. CH2=CHCH20C(O)CF(CF3)S02F 26.87 1.88 11.96 48.2 26.71 1.96 12.17 47.9

5. C6F50C(O)CF(CF3)S02F 27.42 ---- 8.13 48.2 27.53 7.89 47.9

6. CH2CH2[0-C(O)CF(CF3)S02FJ2 19.93 0.84 13.30 39.40 20.17 0.91 13.34 38.9

Page 108: Fluorinated esters : synthesis and identification

98

CHAPTER V

CONCLUSION

The methods discussed in the introduction part of this

report, were a compilation of different methods of

preparation of fluorinated esters. As was mentioned

earlier, these esters have a wide range of applicability.

The esters reported here have proven to be important in the

synthesis of fluorinated esters. The conversion of these

esters to ethers was studied by DePasquale(60). The

reaction involves: HF

RfC(O)-ORf+SF4 -----> RfC-0-Rf

The esters which were used in preparing the

corresponding ethers were:

C7F15C02CH2C2F5

C7F15C02CH(CF3)2

C7F15C02C(CF3)3

(CF3)2CHOC(O) (CF2)4C02CH(CF3)2

C2F50(CF2CF20)2CF2C02CH2C2F5

The toxicity properties of some fluorinated esters was

studied in detail by Saunders et al(13,14,15,16,17). They

studied the toxicity of esters such as methyl fluoroacetate

both as inhalant and direct injection into the blood stream

of animals such as mice, rats, rabbits etc.

Page 109: Fluorinated esters : synthesis and identification

99

The investigators were actually so curious about the

toxicity of these esters that they decided to test it

themselves:

When four of us were exposed to a concentration of 1:1,000,000 in a 10 M3 chamber, we were unable to detect the compound. Even at 1:100,000 (30 seconds for reasons of safety) the compound was found to possess only a faint fruit like odor indistinguishable from that of many harmless esters not containing fluorine(17). The thermal stability of three fluorinated esters was

studied by Shraydih et al.(32), which resulted in the

followings:

1. Ethyl Trifluoroacetate decomposes between 311-413°C at

pressures from 25 to 100 Torr.

2. Isopropyl trifluoroacetate decomposes between 278-352°C

at pressures from 20 to 100 Torr.

3. ~-butyl trifluoroacetate decomposes at lll-l8l°C, the

mechanism of this decomposition is proposed to be:

CF3C02CH2CH3 -------> CF3C02H+C2H4

CF3C02H ------------> HF+CF2C02

CF2C02 -------------> CF2+C02

4HF+Si02 -----------> SiF4+2H20

Other reactions which may take place:

CF3C02 -------------> CF3H+C02

CF2C02 -------------> CF20+CO

Due to the characteristics of these esters they are of

interest in different fields; fluorinated hydrocarbons with

a sulfonyl fluoride group are being studied as potential

blood substitutes(47). Therefore the esters which have been

Page 110: Fluorinated esters : synthesis and identification

100

prepared through this research have been shown to be

important in their ability to be converted by SF4 to form

ethers(60). These esters are also potential intermediates

from which sulfonic acids could be prepared.

In brief, the main goal of this research, synthesis

and identification of fluorinated esters containing the

unique so2F group, was achieved. As a result of which some

questions were answered and some new questions are raised

which may be the subject of future studies.

The subject of some future studies may be conversion

of these esters to a hydrocarbon chain without affecting the

sulfonyl fluoride group.

Since the completion of this project the following

papers have been published on the synthesis of new

fluorinated esters(65):

(66)

CF2CF20S02 + RfOH + NaF --->

FS02CF2C(O)ORf + NaHF2

Rf= CF3CH2 1 (CF3)3C,C6F5

FS02CF2C(O)OAg + RBr ----> FS02CF2C(O)OR + AgBr

R = BrCH2CH2 1 CH3CH20C(O)CH2 1 CH2 = CHCH2

FS02CF2(0)0Ag +RI ---> FS02CF2C(O)OR +Ag!

R = CH3, CH3CH2CH2 1 (CH3)3Si

Page 111: Fluorinated esters : synthesis and identification

101

Also Robin J. Terjeson et al.(67) reported successful

polymerization of CH2 = CHCH20C(O)CF(CF3)S02F and

CH2=CHCH20C(O)CX(SF5)S02F as shown below:

CH2 = CHCH20C(O)CF(CF3)S02F uv> (CH-CH20C(O)CF(CF3)S02F)n

CFCl3

CH2 = CHCH20C(O)CX(SF5)S02F uv>

CFCl3

where x = F, H.

CH2

(CH-CH20C(O)CX(SF)S02F)n

CH2

Page 112: Fluorinated esters : synthesis and identification

REFERENCES CITED

1. F. Swartz. 1896. Bulletin de la Societe' Chimique, 1134-1135.

2. Ciba Foundation Symposium. 1972. "Carbon Fluorine Compounds".

3. A.F. Holleman and J.H. Slothauwer. 1911. Chemical Abstracts, 1905.

4. Hans Meuer and Alfred Huh. 1911. Chemical Abstracts, 1772.

5. Fred Swartz. 1914. Journal of Chemical Society of London, I, 475.

6. P.C. Ray. 1933. Nature, 173, 749-750.

7. Ray, P.C. and Anil c. Ray. 1936. Chemical Abstracts, 30, 8144.

8. Wm. E. Hanford. 1947. Chemical Abstracts, 985.

9. Albert L. Henne, Melvin s. Newman, Laurence L. Quill and Robert A. Staniforth. 1947. Journal of American Chemical Society, 69, 1819-1820.

10. Albert L. Henne and Robert P. Ruh. 1947. Journal of American Chemical Society, 69, 279-283.

11. William T. Miller, Jr. and Maurice Prober. 1948. Journal of American Chemical Society, 70, 2602.

12. Imperial Chemical Industries Ltd. British Patent no. 601,807 1948. Chemical Abstracts, 42, 7575.

13. B.C. Saunders and G.J. Stacey. 1948. Journal of Chemical Society, 1773-1779.

14. B.C. Saunders, G.J. Stacey and I.G.E. Wilding. 1949. Journal of Chemical Society, 773-777.

15. B.C. Saunders and G.J. Stacey. 1949. Journal of Chemical Society, 916-919.

16. F.J. Buckle, F.L.M. Pattison and B.C. Saunders. 1949. Journal of Chemical Society, 1471-1479.

102

Page 113: Fluorinated esters : synthesis and identification

17. F.L.M. Pattison and B.C. Saunders. 1949. Journal of Chemical Society, 2745-2749.

18. R.N. Haszeldine. 1951. Nature, 168, 1028-1031.

19. J.L. Krunyants, O.V. Kil'dishena and I.P. Petrov. 1949. Chemical Abstracts, 43, 6163-6164.

20. Edward E. Burgoyne and Francis E. Condon. 1950. Chemical Abstracts, 41, 10655.

21. Donald R. Husted and Arthur H. Ahlbrecht. 1952. Chemical Abstracts, 4561.

22. Thomas S. Reid. 1952. Chemical Abstracts, 11230-11231.

23. Murray Hauptschein, Joseph F. O'Brien, Charles S. stokes and Robert Filler. 1953. Chemical Abstracts, 47, 12232.

24. Robert Filler, Joseph F. O'Brien, Jack V. Fenner and Murray Hauptschein. 1954. Chemical Abstracts, 48, 1255-1256.

25. Robert Filler, Jack V. Fenner, Charles S. Stokes, Joseph F. O'Brien and Murray Hauptschein. 1954. Chemical Abstracts, 48, 7551-7552.

26. Donald R. Husted and Arthur H. Ahlbrecht. 1954. Chemical Abstracts, 48, 3894-3895.

103

27. Melvin s. Newman, Mary w. Renell and Irving Auerbach. 1948. Journal of American Chemical Society, 70, 1023-1024.

28. Ernest D. Bergmann and I. Blank. 1953. Journal of Chemical Society, 3786-3788.

29. Susumu Nakanishi, Terrell C. Myers and Elwood v. Jensen. 1955. Journal of American Chemical Society, 3099-3100.

30. Thomas S. Reid, Donald w. Cadding and Frank A. Bauey. 1955. Journal of Polymer Science, XVIII, 417-421.

31. Ernest D. Bergmann, Sasson Cohen and Israel Shahak. 1959. Journal of Chemical Society, 3286-3289.

32. J.M. Birchall and R.N. Haszeldine. 1959. Journal of Chemical Society, 13-17.

Page 114: Fluorinated esters : synthesis and identification

33. Ernest D. Bergmann and s. Cohen. 1961. Journal of Chemical Society, 3537-3538.

34. J. Burdon and V.C.R. McLaughlin. 1964. Tetrahedron, 20, 2163-2166.

35. Shumpei Sakakibara and Noriyoshi Inukai. 1965. Chemical Society of Japan Bulletin, 38, 1979-1984.

36. Ellsworth K. Ellingboe, Frank S. Fawcett and Charles

104

W. Tullock. 1965. United States Patent 3,213,062.

37. Stephen J. Metro. Scotch Pines 1965. United States Patent 3,223,726.

38. British Patent 1,015,798.

39. F.J. Paulik and P.E. Toren. 1970. Journal of Organic Chemistry, 35, 2054-2056.

40. Ronald A. DeMarco, David A. Couch and Jeanne M. Shreeve. 1972. Journal of Organic Chemistry, 37, 3332-3334.

41. A. Majd and Jeanne M. Shreeve. 1973. Journal of Organic Chemistry, 38, 4028-4030.

42. Nyal s. Walker and Darryl D. DesMarteau. 1975. Journal of Fluorine Chemistry, 5, 135-139.

43. Carl J. Schack and Karl o. Christe. 1978. Journal of Fluorine Chemistry, 12, 325-330.

44. Isao Tari and Darryl D. DesMarteau. 1980. Journal of Organic Chemistry, 45, 1214-1217.

45. Neal o. Brace. 1982. Journal of Fluorine Chemistry, 20, 313-327.

46. P.G. Blake and B.F. Shraydeh. 1981. International Journal of Chemical Kinetics, 13, 463-471.

47. N. Napoli, C. Fraccaro, A. Scipioni and R. Armelli. 1984. Journal of Fluorine Chemistry, 24, 377-385.

48. D.C. England, M.A. Dietrich and R.V. Lindsey Jr. 1960. Journal of American Chemical Society, 82, 6181-6188.

Page 115: Fluorinated esters : synthesis and identification

49. M. Stacey, J.C. Tatlow, A.G. Sharpe. 1965. "Advances in Fluorine Chemistry" Butterworth and Co. Publishers LTD.

50. N.B. Calthup, L.H. Daby and S.E. Wiberely. 1975. "Introduction to Infrared and Raman Spectroscopy", 2nd edition, Academic Press.

51. E.A. Robinson. 1961. Canadian Journal of Chemistry, 39, 247-255.

52. H.W. Thompson and R.B. Temple. 1948. Journal of Chemical Society, 1422-1428.

53. H.W. Thompson and R.B. Temple. 1948. Journal of Chemical Society, 1432-1436.

105

54. Richard L. Redington. 1975. Spectrochimica Acta, 31A, 1699-1705.

55. A.D. Berry, R.A. DeMarco and W.B. Fon. 1979. Journal of American Chemical Society, 101:3, 737-738.

56. H.W. Thompson and R.B. Temple. 1948. Journal of Chemical Society, 1428-1432.

57. JoAnn M. Canich, Maria M. Ludwig, William W. Paudler and Gary L. Gard. 1985. Inorganic Chemistry, 24, 3668-3670.

58. Bentley, Smithson, Rozek 1968. "The Infrared Spectra and Characteristic Frequencies 700-300 cm-1 11 , Wiley Interscience.

59. N. Sheppard. 1950. Transactions Faraday Society, 46, 429-439.

60. Ralph J. DePasquale. 1973. Journal of Organic Chemistry, 38, 3025-3030.

61. G.A. Webb. 1983. "Annual Reports on NMR Spectroscopy", 14, 348, Academic Press.

62. Emsley, Feeney and Sutcliffe 1966. "High Resolution NMR Spectroscopy", Vol. 2, 727-730.

63. J.W. Emsley, L. Phillips and v. Wray. 1977. "Fluorine Coupling Constants", 10.2, 536.

64. Donald L. Pavia, Gary M. Lampman, George S Kriz, Jr. 1979. Introduction to Spectroscopy, 13-57.

Page 116: Fluorinated esters : synthesis and identification

65. Jilla Khalilolahi, Javid Mohtasham, Megan E. Lerchen, Roger M. Sheets, and Gary L. Gard. Inorganic Chemistry, 26, 2307-2309, (1987).

106

66. Robin J. Terjeson, Javid Mahtasham, David L. Payton and Gary L. Gard. Journal of Fluorine Chemistry, in press.