free-algebra functors as coalgebraic signatures

151
Free-algebra functors as coalgebraic signatures H. Peter Gumm PALS Seminar Boulder 27.10.2020

Upload: others

Post on 03-Apr-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Free-algebra functors ascoalgebraic signatures

H. Peter Gumm

PALS Seminar Boulder 27.10.2020

IntroState based systemsFunctors and Coalgebras

Fuctor propertiesWeak Pullback PreservationFunctors parameterized by algebras

Free-algebra functorPreimage preservationWeak kernel preservation

Conclusion- and Breaking News

IntroState based systemsFunctors and Coalgebras

Functor propertiesWeak Pullback PreservationFunctors parameterized by algebras

Free-algebra functorPreimage preservationWeak kernel preservation

Conclusion- and Breaking News

Automata๐‘† set of states,

ฮฃ input alphabet

โ€ข Acceptor:

โ€ข ๐›ฟ: ๐‘† ร— ฮฃ โ†’ ๐‘†

โ€ข ๐‘‡ โŠ† ๐‘†

+,-

1

0

0,1

1

+,-,0,10

+,-

๐‘ 3

๐‘ 4๐‘ 0 ๐‘ 2

๐‘ 1

+,-

ฮฃ = {0,1, +, โˆ’}

+,-,0,1

e.g.-1011 accepted

+0110 not accepted

Automata๐‘† set of states,

ฮฃ input alphabet

โ€ข Acceptor:

โ€ข ๐›ฟ: ๐‘† ร— ฮฃ โ†’ ๐‘†

โ€ข ๐‘‡ โŠ† ๐‘†

+,-

1

0

0,1

1

+,-,0,10

+,-

๐‘ 3

๐‘ 4๐‘ 0 ๐‘ 2

๐‘ 1

๐‘†

๐‘†ฮฃ

+,-

ฮฃ = {0,1, +, โˆ’}

+,-,0,1

e.g.-1011 accepted

+0110 not accepted

Automata๐‘† set of states,

ฮฃ input alphabet

โ€ข Acceptor:

โ€ข ๐›ฟ: ๐‘† ร— ฮฃ โ†’ ๐‘†

โ€ข ๐‘‡ โŠ† ๐‘†

+,-

1

0

0,1

1

+,-,0,10

+,-

๐‘ 3

๐‘ 4๐‘ 0 ๐‘ 2

๐‘ 1

๐‘† ๐‘†

๐‘†ฮฃ 2

+,-

ฮฃ = {0,1, +, โˆ’}

+,-,0,1

e.g.-1011 accepted

+0110 not accepted

Automata๐‘† set of states,

ฮฃ input alphabet

โ€ข Acceptor:

โ€ข ๐›ฟ: ๐‘† ร— ฮฃ โ†’ ๐‘†

โ€ข ๐‘‡ โŠ† ๐‘†

+,-

1

0

0,1

1

+,-,0,10

+,-

๐‘ 3

๐‘ 4๐‘ 0 ๐‘ 2

๐‘ 1

๐‘†

๐‘†ฮฃ ร— 2

+,-

ฮฃ = {0,1, +, โˆ’}

+,-,0,1

e.g.-1011 accepted

+0110 not accepted

Nondeterminism

โ€ข NFAโ€ข ๐›ฟ: ๐‘† ร— ฮฃ โ†’ โ„™(๐‘†)

โ€ข ๐‘‡ โŠ† ๐‘†

a a

a, b

b b

ba

b

a

๐‘ 0

๐‘ 2

๐‘ 1 ๐‘ 5๐‘ 3 ๐‘ 4

Nondeterminism

โ€ข NFAโ€ข ๐›ฟ: ๐‘† ร— ฮฃ โ†’ โ„™(๐‘†)

โ€ข ๐‘‡ โŠ† ๐‘†

a a

a, b

b b

ba

b

a

๐‘†

โ„™(๐‘†)ฮฃ

๐‘ 0

๐‘ 2

๐‘ 1 ๐‘ 5๐‘ 3 ๐‘ 4

Nondeterminism

โ€ข NFAโ€ข ๐›ฟ: ๐‘† ร— ฮฃ โ†’ โ„™(๐‘†)

โ€ข ๐‘‡ โŠ† ๐‘†

a a

a, b

b b

ba

b

a

๐‘†

โ„™(๐‘†)ฮฃ ร— 2

๐‘ 0

๐‘ 2

๐‘ 1 ๐‘ 5๐‘ 3 ๐‘ 4

Nondeterminism

โ€ข NFAโ€ข ๐›ฟ: ๐‘† ร— ฮฃ โ†’ โ„™(๐‘†)

โ€ข ๐‘‡ โŠ† ๐‘†

โ€ข Kripke structureโ€ข ๐‘… โŠ† ๐‘† ร— ๐‘†

โ€ข ๐‘ฃ โˆถ ๐‘† โ†’ โ„™(๐ถ)

a a

a, b

b b

ba

b

a

๐‘†

โ„™(๐‘†)ฮฃ ร— 2

๐‘ 0

๐‘ 2

๐‘ 1 ๐‘ 5๐‘ 3 ๐‘ 4

๐‘Ÿ๐‘’๐‘‘๐‘๐‘™๐‘ข๐‘’

๐‘ ๐‘ก๐‘Ÿ๐‘–๐‘๐‘’๐‘‘

๐‘†

โ„™(๐‘†) ร— โ„™(๐ถ)

Nondeterminism

โ€ข NFAโ€ข ๐›ฟ: ๐‘† ร— ฮฃ โ†’ โ„™(๐‘†)

โ€ข ๐‘‡ โŠ† ๐‘†

โ€ข Kripke structureโ€ข ๐‘… โŠ† ๐‘† ร— ๐‘†

โ€ข ๐‘ฃ โˆถ ๐‘† โ†’ โ„™(๐ถ)

a a

a, b

b b

ba

b

a

๐‘†

โ„™(๐‘†)ฮฃ ร— 2

๐‘ 0

๐‘ 2

๐‘ 1 ๐‘ 5๐‘ 3 ๐‘ 4

๐‘Ÿ๐‘’๐‘‘๐‘๐‘™๐‘ข๐‘’

๐‘ ๐‘ก๐‘Ÿ๐‘–๐‘๐‘’๐‘‘

Probabilistic

โ€ข Probabilistic systems

โ€ข ๐›ฟ: ๐‘† ร— ๐‘† โ†’ 0,1 โ„

โ€ข ฯƒ๐‘ฅโˆˆ๐‘† ๐›ฟ ๐‘ , ๐‘ฅ = 1

1/2

1/3

1/6

1/2 1/2

3/4

1/4

1/2

1/2

1๐‘ 0

๐‘ 1

๐‘ 2

๐‘ 3

๐‘ 4

๐‘ 5

Probabilistic

โ€ข Probabilistic systems

โ€ข ๐›ฟ: ๐‘† ร— ๐‘† โ†’ 0,1 โ„

โ€ข ฯƒ๐‘ฅโˆˆ๐‘† ๐›ฟ ๐‘ , ๐‘ฅ = 1

1/2

1/3

1/6

1/2 1/2

3/4

1/4

1/2

1/2

1

๐‘†

๐”ป(๐‘†)๐‘ 0

๐‘ 1

๐‘ 2

๐‘ 3

๐‘ 4

๐‘ 5

Higher order

โ€ข Neighbourhood structure

โ€ข ๐‘… โŠ† ๐‘† ร— 2๐‘†

โ€ข ๐‘: ๐‘† โ†’ โ„™(๐ถ)

Higher order

โ€ข Neighbourhood structure

โ€ข ๐‘… โŠ† ๐‘† ร— 2๐‘†

โ€ข ๐‘: ๐‘† โ†’ โ„™(๐ถ)

๐‘†

22๐‘†ร— โ„™(๐ถ)

Higher order

โ€ข Neighbourhood structure

โ€ข ๐‘… โŠ† ๐‘† ร— 2๐‘†

โ€ข ๐‘: ๐‘† โ†’ โ„™(๐ถ)

โ€ข Topological space

โ€ข ๐œ โŠ† โ„™ โ„™ ๐‘†โ€ข closed under

โ€ข unionsโ€ข finite intersections

๐‘†

22๐‘†ร— โ„™(๐ถ)

Higher order

โ€ข Neighbourhood structure

โ€ข ๐‘… โŠ† ๐‘† ร— 2๐‘†

โ€ข ๐‘: ๐‘† โ†’ โ„™(๐ถ)

โ€ข Topological space

โ€ข ๐œ โŠ† โ„™ โ„™ ๐‘†โ€ข closed under

โ€ข unionsโ€ข finite intersections

๐‘†

22๐‘†ร— โ„™(๐ถ)

๐‘†

๐”ฝ๐‘–๐‘™(๐‘†)

Coalgebras and Algebras

โ€ข Set functors fix the โ€žsignatureโ€œ of coalgebras

๐‘†

๐‘†ฮฃ ร— 2

๐‘†

โ„™(๐‘†)ฮฃ ร— 2

๐‘†

๐”ป(๐‘†)

๐‘†

22๐‘†ร— โ„™(๐ถ)

๐‘†

๐”ฝ๐‘–๐‘™(๐‘†)

๐‘†

๐น(๐‘†)

๐›ผ

Coalgebras and Algebras

โ€ข Set functors fix the โ€žsignatureโ€œ of coalgebras

โ€ข Algebras are upside-down coalgebras

๐‘†

๐น(๐‘†)

๐›ผ

๐น(๐ด)

๐ด

๐›ผ๐ด ร— ๐ด

๐ด

๐ด2 + ๐ด2

๐ด

๐ด2 + ๐ด + 1

๐ด

โ„™(๐ด)

๐ด

โ‹ฏ

๐‘†

๐‘†ฮฃ ร— 2

๐‘†

โ„™(๐‘†)ฮฃ ร— 2

๐‘†

๐”ป(๐‘†)

๐‘†

22๐‘†ร— โ„™(๐ถ)

๐‘†

๐”ฝ๐‘–๐‘™(๐‘†)

IntroState based systemsFunctors and Coalgebras

Fuctor propertiesWeak Pullback PreservationFunctors parameterized by algebras

Free-algebra functorPreimage preservationWeak kernel preservation

Conclusion- and Breaking News

Functors

โ€ข ๐น ๐‘‹ a โ€žnatural set theoretical constructionโ€œ

โ€ข ๐น should be a functor:โ€ข for each ๐‘‹ construct new set ๐น(๐‘‹)

โ€ข for each ๐‘“: ๐‘‹ โ†’ ๐‘Œ provide map ๐น๐‘“: ๐น ๐‘‹ โ†’ ๐น(๐‘Œ)

such that

โ€ข ๐น ๐‘” โˆ˜ ๐‘“ = ๐น๐‘” โˆ˜ ๐น๐‘“

โ€ข ๐น ๐œ„๐‘‘๐ด = ๐œ„๐‘‘๐น ๐ด

๐‘†

๐น(๐‘†)

๐›ผ

Functors and Coalgebras

โ€ข ๐น ๐‘‹ a โ€žnatural set theoretical constructionโ€œ

โ€ข ๐น should be a functor:โ€ข for each ๐‘‹ construct new set ๐น(๐‘‹)

โ€ข for each ๐‘“: ๐‘‹ โ†’ ๐‘Œ provide map ๐น๐‘“: ๐น ๐‘‹ โ†’ ๐น(๐‘Œ)

such that

โ€ข ๐น ๐‘” โˆ˜ ๐‘“ = ๐น๐‘” โˆ˜ ๐น๐‘“

โ€ข ๐น ๐œ„๐‘‘๐ด = ๐œ„๐‘‘๐น ๐ด

๐‘†

๐น(๐‘†)

๐›ผ

๐น-coalgebra

๐น-coalgebras

๐ด

๐น(๐ด)

๐›ผ

Homomorphism

๐น-coalgebras

๐ต๐ด

๐น(๐ด) ๐น(๐ต)

๐›ผ ๐›ฝ

Homomorphism

๐น-coalgebras and homomorphisms

๐ต๐ด

๐น(๐ด) ๐น(๐ต)

๐›ผ ๐›ฝ

๐œ‘

Homomorphism

๐น-coalgebras and homomorphisms

๐ต๐ด

๐น(๐ด) ๐น(๐ต)

๐›ผ ๐›ฝ

๐œ‘

๐น๐œ‘

Homomorphism

๐น-coalgebras and homomorphisms

๐ต ๐ถ๐ด

๐น(๐ด) ๐น(๐ต) ๐น(๐ถ)

๐›ผ ๐›ฝ ๐›พ

๐œ‘

๐น๐œ‘

Homomorphisms compose

๐น-coalgebras and homomorphisms

๐ต ๐ถ๐ด

๐น(๐ด) ๐น(๐ต) ๐น(๐ถ)

๐›ผ ๐›ฝ ๐›พ

๐œ‘ ๐œ“

๐น๐œ‘ ๐น๐œ“

Homomorphisms compose

๐น-coalgebras and homomorphisms

๐ต ๐ถ๐ด

๐น(๐ด) ๐น(๐ต) ๐น(๐ถ)

๐›ผ ๐›ฝ ๐›พ

๐œ‘ ๐œ“

๐œ“ โˆ˜ ๐œ‘

๐น๐œ‘ ๐น๐œ“

Homomorphisms compose

๐น-coalgebras and homomorphisms

๐ต ๐ถ๐ด

๐น(๐ด) ๐น(๐ต) ๐น(๐ถ)

๐›ผ ๐›ฝ ๐›พ

๐œ‘ ๐œ“

๐œ“ โˆ˜ ๐œ‘

๐น(๐œ“ โˆ˜ ๐œ‘)

๐น๐œ‘ ๐น๐œ“

Homomorphisms compose ๐น ๐œ“ โˆ˜ ๐œ‘ = ๐น๐œ“ โˆ˜ ๐น๐œ‘

๐‘†๐‘’๐‘ก๐น

โ€ข ๐น-coalgebras form a category ๐‘†๐‘’๐‘ก๐น

โ€ข Homomorphism theorems

โ€ข Substructures, quotients, congruences, โ€ฆ

โ€ข Co-equations, Co-Birkhoff

โ€ข Modal logic

โ€ข โ€ฆ

โ€ข Properties of ๐น determine structure of ๐‘†๐‘’๐‘ก๐น- weak pullback preservation

๐‘†

๐น(๐‘†)

IntroState based systemsFunctors and Coalgebras

Fuctor propertiesWeak Pullback PreservationFunctors parameterized by algebras

Free-algebra functorPreimage preservationWeak kernel preservation

Conclusion- and Breaking News

F weakly preserves pullbacks

โ€ข (Weak) pullback

A C

P B

f

g

๐‘ƒ = { ๐‘Ž, ๐‘ โˆˆ ๐ด ร— ๐ต โˆฃ ๐‘“ ๐‘Ž = ๐‘” ๐‘ }

F weakly preserves pullbacks

โ€ข (Weak) pullback

A C

P B

f

g๐œ‹1

๐œ‹2๐‘ƒ = { ๐‘Ž, ๐‘ โˆˆ ๐ด ร— ๐ต โˆฃ ๐‘“ ๐‘Ž = ๐‘” ๐‘ }

F weakly preserves pullbacks

โ€ข (Weak) pullback

A C

P B

f

g

Q

๐œ‹1

๐œ‹2๐‘‘ ๐‘ƒ = { ๐‘Ž, ๐‘ โˆˆ ๐ด ร— ๐ต โˆฃ ๐‘“ ๐‘Ž = ๐‘” ๐‘ }

F weakly preserves pullbacks

โ€ข (Weak) pullback

A C

P B

f

g

Q

๐œ‹1

๐œ‹2

๐‘ž1

๐‘ž1

๐‘ƒ = { ๐‘Ž, ๐‘ โˆˆ ๐ด ร— ๐ต โˆฃ ๐‘“ ๐‘Ž = ๐‘” ๐‘ }

F weakly preserves pullbacks

โ€ข (Weak) pullback

A C

P B

f

g

Q

๐œ‹1

๐œ‹2

๐‘ž1

๐‘ž1

๐‘‘ ๐‘ƒ = { ๐‘Ž, ๐‘ โˆˆ ๐ด ร— ๐ต โˆฃ ๐‘“ ๐‘Ž = ๐‘” ๐‘ }

F weakly preserves pullbacks

โ€ข (Weak) pullback

โ€ข apply ๐น

A C

P B

F(A) F(C)

F(P) F(B)

f

g

Ff

Fg

๐‘ƒ = { ๐‘Ž, ๐‘ โˆˆ ๐ด ร— ๐ต โˆฃ ๐‘“ ๐‘Ž = ๐‘” ๐‘ }

F weakly preserves pullbacks

โ€ข (Weak) pullback

โ€ข apply ๐น

Is this a weak pullback diagram?

A C

P B

F(A) F(C)

F(P) F(B)

f

g

Ff

Fg

๐‘ƒ = { ๐‘Ž, ๐‘ โˆˆ ๐ด ร— ๐ต โˆฃ ๐‘“ ๐‘Ž = ๐‘” ๐‘ }

Observational equivalence

๐ต ๐ถ

๐น(๐ต) ๐น(๐ถ)

๐œ“

Observational equivalence

๐œ‘๐ต ๐ถ

๐น(๐ด)

๐น(๐ต)

๐ด

๐น(๐ถ)

๐œ“

Observational equivalence

๐œ‘๐ต ๐ถ

๐น(๐ด)

๐น(๐ต)

๐‘ƒ ๐ด

๐น(๐ถ)

๐œ“Observationalequivalence โ€ฆ

๐น(๐‘ƒ)

Observational equivalence

๐œ‘๐ต ๐ถ

๐น(๐ด)

๐น(๐ต)

๐‘ƒ ๐ด

๐น(๐ถ)

๐œ“Observationalequivalence โ€ฆ

๐น(๐‘ƒ)

F weakly preserves pullbacks

๐œ‘๐ต ๐ถ

๐น(๐ด)

๐น(๐ต)

๐‘ƒ ๐ด

๐น(๐ถ)

๐œ“Observationalequivalence โ€ฆ

๐น(๐‘ƒ)

Bisimilarity

๐œ‘๐ต ๐ถ

๐น(๐ด)

๐น(๐ต)

๐‘ƒ ๐ด

๐น(๐ถ)

๐œ“Observationalequivalence โ€ฆ

โ€ฆ is bisimilarity

Weak pullback preservation

โ€ข ๐น weakly preserves pullbacks, iff ๐น preservesโ€ข kernel pairsโ€ข and preimages

โ€ข ๐น weakly preserves kernel pairs, โ€ข iff congruences are bisimulationsโ€ข iff observational equivalence = bisimilarity

๐‘‹ ๐‘Œ

ker(๐‘“) ๐‘‹

๐‘“

๐‘“

Weak pullback preservation

โ€ข ๐น weakly preserves pullbacks, iff ๐น preservesโ€ข kernel pairsโ€ข and preimages

โ€ข ๐น weakly preserves kernel pairs, โ€ข iff congruences are bisimulationsโ€ข iff observational equivalence = bisimilarity

โ€ข ๐น weakly preserves preimagesโ€ข iff homomorphisms ๐œ‘: ๐ด โ†’ ๐ต + ๐ถ split domainโ€ข iff ๐ป๐‘†(๐”Ž) = ๐‘†๐ป(๐”Ž), for any class ๐”Ž

(provided |๐น 1 | > 1 )

๐‘‹ ๐‘Œ

ker(๐‘“) ๐‘‹

๐‘“

๐‘“

๐‘‹ ๐‘Œ

๐‘“โˆ’1 ๐‘‰ ๐‘‰

๐‘“

๐œ„

Weak pullback preservation

โ€ข ๐น weakly preserves pullbacks, iff ๐น preservesโ€ข kernel pairsโ€ข and preimages

โ€ข ๐น weakly preserves kernel pairs, โ€ข iff ๐น preserves pullbacks of episโ€ข iff observational equivalence = bisimilarity

๐‘‹ ๐‘Œ

ker(๐‘“) ๐‘‹

๐‘“

๐‘“

Weak pullback preservation

โ€ข ๐น weakly preserves pullbacks, iff ๐น preservesโ€ข kernel pairsโ€ข and preimages

โ€ข ๐น weakly preserves kernel pairs, โ€ข iff ๐น preserves pullbacks of episโ€ข iff observational equivalence = bisimilarity

โ€ข ๐น weakly preserves preimagesโ€ข iff ๐ป๐‘†(๐”Ž) = ๐‘†๐ป(๐”Ž), for any class ๐”Ž

(provided |๐น 1 | > 1 )

๐‘‹ ๐‘Œ

ker(๐‘“) ๐‘‹

๐‘“

๐‘“

๐‘‹ ๐‘Œ

๐‘“โˆ’1 ๐‘‰ ๐‘‰

๐‘“

๐œ„

Functors weakly preserving special pullbacks

โ€ข all pullbacksโ€ข ๐น ๐‘‹ = โ€ฆ ๐‘‹, ๐‘‹๐‘›, ฮฃ๐‘–โˆˆ๐ผ๐‘‹

๐‘›๐‘– , โ„™ ๐‘‹ , โ„™๐œ” ๐‘‹ , ๐”ฝ(๐‘‹), ๐ท๐‘‹ , โ€ฆ

Functors weakly preserving special pullbacks

โ€ข all pullbacksโ€ข ๐น ๐‘‹ = โ€ฆ ๐‘‹, ๐‘‹๐‘›, ฮฃ๐‘–โˆˆ๐ผ๐‘‹

๐‘›๐‘– , โ„™ ๐‘‹ , โ„™๐œ” ๐‘‹ , ๐”ฝ(๐‘‹), ๐ท๐‘‹ , โ€ฆ

โ€ข preimagesโ€ข ๐น ๐‘‹ = โ€ฆ โ„™<๐‘› ๐‘‹ , ๐‘‹2

3 , ๐ฟ๐‘‹ , โ€ฆ

โ€ข kernel pairs

โ€ข ๐น ๐‘‹ = โ€ฆ 22๐‘‹, ๐‘‹2 โˆ’ ๐‘‹ + 1, ๐‘‚๐‘‘๐‘‘(๐‘‹),โ€ฆ

๐‘‹ ๐‘Œ

๐‘“โˆ’1 ๐‘‰ ๐‘‰

๐‘“

๐œ„

Functors weakly preserving special pullbacks

โ€ข all pullbacksโ€ข ๐น ๐‘‹ = โ€ฆ ๐‘‹, ๐‘‹๐‘›, ฮฃ๐‘–โˆˆ๐ผ๐‘‹

๐‘›๐‘– , โ„™ ๐‘‹ , โ„™๐œ” ๐‘‹ , ๐”ฝ(๐‘‹), ๐ท๐‘‹ , โ€ฆ

โ€ข preimagesโ€ข ๐น ๐‘‹ = โ€ฆ โ„™<๐‘› ๐‘‹ , ๐‘‹2

3 , ๐ฟ๐‘‹ , โ€ฆ

โ€ข kernel pairs

โ€ข ๐น ๐‘‹ = โ€ฆ 22๐‘‹, ๐‘‹2 โˆ’ ๐‘‹ + 1, ๐‘‚๐‘‘๐‘‘ ๐‘‹ ,โ€ฆ ๐‘‹ ๐‘Œ

ker(๐‘“) ๐‘‹

๐‘“

๐‘“

๐‘‹ ๐‘Œ

๐‘“โˆ’1 ๐‘‰ ๐‘‰

๐‘“

๐œ„

IntroState based systemsFunctors and Coalgebras

Functor propertiesWeak Pullback PreservationFunctors parameterized by algebras

Free-algebra functorPreimage preservationWeak kernel preservation

Conclusion- and Breaking News

Parameterizing functors by algebras

โ€ข Let ๐น๐’œ depend on some algebra ๐’œ

โ€ข Choose ๐’œ so that ๐น๐’œ has desirable properties, e.g. (weakly) preserves

โ€ข kernel pairs

โ€ข preimages

โ€ข pullbacks

๐ฟ-fuzzy functor

1. Generalize โ„™ ๐‘‹ = 2๐‘‹

โ€ข Replace 2 = {0,1} by a complete lattice ๐ฟ

โ€ข on objects: ๐ฟ๐‘‹

โ€ข on maps ๐‘“: ๐‘‹ โ†’ ๐‘Œ:

๐ฟ๐‘“ ๐œŽ (๐‘ฆ):= แˆง

๐‘“ ๐‘ฅ =๐‘ฆ

๐œŽ(๐‘ฅ)

For ๐‘ˆ โŠ† ๐‘‹ put ๐œ’๐‘ˆ ๐‘ฅ = แ‰Š1, ๐‘ฅ โˆˆ ๐‘ˆ0, ๐‘ฅ โˆ‰ ๐‘ˆ

๐ฟ-fuzzy functor

1. Generalize โ„™ ๐‘‹ = ๐Ÿ๐‘‹

โ€ข Replace 2 = {0,1} by a complete lattice ๐ฟ

โ€ข on objects: ๐ฟ๐‘‹

โ€ข on maps ๐‘“: ๐‘‹ โ†’ ๐‘Œ:

๐ฟ๐‘“ ๐œŽ (๐‘ฆ):= แˆง

๐‘“ ๐‘ฅ =๐‘ฆ

๐œŽ(๐‘ฅ)

โ€ข ๐ฟ(โˆ’) always preserves preimages

For ๐‘ˆ โŠ† ๐‘‹ put ๐œ’๐‘ˆ ๐‘ฅ = แ‰Š1, ๐‘ฅ โˆˆ ๐‘ˆ0, ๐‘ฅ โˆ‰ ๐‘ˆ

๐ฟ-fuzzy functor

1. Generalize โ„™ ๐‘‹ = ๐Ÿ๐‘‹

โ€ข Replace 2 = {0,1} by a complete lattice ๐ฟ

โ€ข on objects: ๐ฟ๐‘‹

โ€ข on maps ๐‘“: ๐‘‹ โ†’ ๐‘Œ:

๐ฟ๐‘“ ๐œŽ (๐‘ฆ):= แˆง

๐‘“ ๐‘ฅ =๐‘ฆ

๐œŽ(๐‘ฅ)

โ€ข ๐ฟ(โˆ’) always preserves preimages

โ€ข ๐ฟ(โˆ’) weakly preserves kernel pairs iff ๐ฟ is JID

๐‘ฅ โˆง โ‹ ๐‘ฅ๐‘– ๐‘– โˆˆ ๐ผ = โ‹{๐‘ฅ โˆง ๐‘ฅ๐‘– โˆฃ ๐‘– โˆˆ ๐ผ}

โ‹ฏ๐‘ฅ๐‘– ๐‘ฅ๐‘—

๐‘ฅ

For ๐‘ˆ โŠ† ๐‘‹ put ๐œ’๐‘ˆ ๐‘ฅ = แ‰Š1, ๐‘ฅ โˆˆ ๐‘ˆ0, ๐‘ฅ โˆ‰ ๐‘ˆ

๐ฟ-fuzzy functor

1. Generalize โ„™ ๐‘‹ = ๐Ÿ๐‘‹

โ€ข Replace 2 = {0,1} by a complete lattice ๐ฟ

โ€ข on objects: ๐ฟ๐‘‹

โ€ข on maps ๐‘“: ๐‘‹ โ†’ ๐‘Œ:

๐ฟ๐‘“ ๐œŽ (๐‘ฆ):= แˆง

๐‘“ ๐‘ฅ =๐‘ฆ

๐œŽ(๐‘ฅ)

โ€ข ๐ฟ(โˆ’) always preserves preimages

โ€ข ๐ฟ(โˆ’) weakly preserves kernel pairs iff ๐ฟ is JID

๐‘ฅ โˆง โ‹ ๐‘ฅ๐‘– ๐‘– โˆˆ ๐ผ = โ‹{๐‘ฅ โˆง ๐‘ฅ๐‘– โˆฃ ๐‘– โˆˆ ๐ผ}

โ‹ฏ๐‘ฅ๐‘– ๐‘ฅ๐‘—

๐‘ฅ

For ๐‘ˆ โŠ† ๐‘‹ put ๐œ’๐‘ˆ ๐‘ฅ = แ‰Š1, ๐‘ฅ โˆˆ ๐‘ˆ0, ๐‘ฅ โˆ‰ ๐‘ˆ

๐ฟ-fuzzy functor

1. Generalize โ„™ ๐‘‹ = ๐Ÿ๐‘‹

โ€ข Replace 2 = {0,1} by a complete lattice ๐ฟ

โ€ข on objects: ๐ฟ๐‘‹

โ€ข on maps ๐‘“: ๐‘‹ โ†’ ๐‘Œ:

๐ฟ๐‘“ ๐œŽ (๐‘ฆ):= แˆง

๐‘“ ๐‘ฅ =๐‘ฆ

๐œŽ(๐‘ฅ)

โ€ข ๐ฟ(โˆ’) always preserves preimages

โ€ข ๐ฟ(โˆ’) weakly preserves kernel pairs iff ๐ฟ is JID

๐‘ฅ โˆง โ‹ ๐‘ฅ๐‘– ๐‘– โˆˆ ๐ผ = โ‹{๐‘ฅ โˆง ๐‘ฅ๐‘– โˆฃ ๐‘– โˆˆ ๐ผ}

โ‹ฏ๐‘ฅ๐‘– ๐‘ฅ๐‘—

๐‘ฅ

โ‹ฏ

For ๐‘ˆ โŠ† ๐‘‹ put ๐œ’๐‘ˆ ๐‘ฅ = แ‰Š1, ๐‘ฅ โˆˆ ๐‘ˆ0, ๐‘ฅ โˆ‰ ๐‘ˆ

๐ฟ-fuzzy functor

1. Generalize โ„™ ๐‘‹ = ๐Ÿ๐‘‹

โ€ข Replace 2 = {0,1} by a complete lattice ๐ฟ

โ€ข on objects: ๐ฟ๐‘‹

โ€ข on maps ๐‘“: ๐‘‹ โ†’ ๐‘Œ:

๐ฟ๐‘“ ๐œŽ (๐‘ฆ):= แˆง

๐‘“ ๐‘ฅ =๐‘ฆ

๐œŽ(๐‘ฅ)

โ€ข ๐ฟ(โˆ’) always preserves preimages

โ€ข ๐ฟ(โˆ’) weakly preserves kernel pairs iff ๐ฟ is JID

๐‘ฅ โˆง โ‹ ๐‘ฅ๐‘– ๐‘– โˆˆ ๐ผ = โ‹{๐‘ฅ โˆง ๐‘ฅ๐‘– โˆฃ ๐‘– โˆˆ ๐ผ}

โ‹ฏ๐‘ฅ๐‘– ๐‘ฅ๐‘—

๐‘ฅ

โ‹ฏ

For ๐‘ˆ โŠ† ๐‘‹ put ๐œ’๐‘ˆ ๐‘ฅ = แ‰Š1, ๐‘ฅ โˆˆ ๐‘ˆ0, ๐‘ฅ โˆ‰ ๐‘ˆ

Finite ๐•„-bags

2. Generalize โ„™๐œ”(๐‘‹)

โ€ข Replace boolean algebra ๐Ÿ by a commutative monoid๐•„ = (๐‘€,+, 0)

Finite ๐•„-bags

2. Generalize โ„™๐œ”(๐‘‹)

โ€ข Replace boolean algebra ๐Ÿ by a commutative monoid๐•„ = (๐‘€,+, 0)

โ€ข on objects: ๐•„๐œ”๐‘‹ = {๐‘š1๐‘ฅ1 +โ‹ฏ๐‘š๐‘›๐‘ฅ๐‘› โˆฃ ๐‘› โˆˆ โ„•,๐‘š๐‘– โˆˆ ๐‘€. ๐‘ฅ๐‘– โˆˆ ๐‘‹}

Finite ๐•„-bags

2. Generalize โ„™๐œ”(๐‘‹)

โ€ข Replace boolean algebra ๐Ÿ by a commutative monoid๐•„ = (๐‘€,+, 0)

โ€ข on objects: ๐•„๐œ”๐‘‹ = {๐‘š1๐‘ฅ1 +โ‹ฏ๐‘š๐‘›๐‘ฅ๐‘› โˆฃ ๐‘› โˆˆ โ„•,๐‘š๐‘– โˆˆ ๐•„. ๐‘ฅ๐‘– โˆˆ ๐‘‹}

โ€ข on maps ๐‘“: ๐‘‹ โ†’ ๐‘Œ: ๐•„๐œ”๐‘“๐‘š1๐‘ฅ1 +โ‹ฏ๐‘š๐‘›๐‘ฅ๐‘› โˆถ= ๐‘š1๐‘“๐‘ฅ1 +โ‹ฏ๐‘š๐‘›๐‘“๐‘ฅ๐‘›

Finite ๐•„-bags

2. Generalize โ„™๐œ”(๐‘‹)

โ€ข Replace boolean algebra ๐Ÿ by a commutative monoid๐•„ = (๐‘€,+, 0)

โ€ข on objects: ๐•„๐œ”๐‘‹ = {๐‘š1๐‘ฅ1 +โ‹ฏ๐‘š๐‘›๐‘ฅ๐‘› โˆฃ ๐‘› โˆˆ โ„•,๐‘š๐‘– โˆˆ ๐•„. ๐‘ฅ๐‘– โˆˆ ๐‘‹}

โ€ข on maps ๐‘“: ๐‘‹ โ†’ ๐‘Œ: ๐•„๐œ”๐‘“๐‘š1๐‘ฅ1 +โ‹ฏ๐‘š๐‘›๐‘ฅ๐‘› โˆถ= ๐‘š1๐‘“๐‘ฅ1 +โ‹ฏ๐‘š๐‘›๐‘“๐‘ฅ๐‘›

โ€ข The functor ๐•„๐œ”(โˆ’)

(weakly) preserves

Finite ๐•„-bags

2. Generalize โ„™๐œ”(๐‘‹)

โ€ข Replace boolean algebra ๐Ÿ by a commutative monoid๐•„ = (๐‘€,+, 0)

โ€ข on objects: ๐•„๐œ”๐‘‹ = {๐‘š1๐‘ฅ1 +โ‹ฏ๐‘š๐‘›๐‘ฅ๐‘› โˆฃ ๐‘› โˆˆ โ„•,๐‘š๐‘– โˆˆ ๐•„. ๐‘ฅ๐‘– โˆˆ ๐‘‹}

โ€ข on maps ๐‘“: ๐‘‹ โ†’ ๐‘Œ: ๐•„๐œ”๐‘“๐‘š1๐‘ฅ1 +โ‹ฏ๐‘š๐‘›๐‘ฅ๐‘› โˆถ= ๐‘š1๐‘“๐‘ฅ1 +โ‹ฏ๐‘š๐‘›๐‘“๐‘ฅ๐‘›

โ€ข The functor ๐•„๐œ”(โˆ’)

(weakly) preserves

โ€ข preimages iff ๐•„ is positive

Finite ๐•„-bags

2. Generalize โ„™๐œ”(๐‘‹)

โ€ข Replace boolean algebra ๐Ÿ by a commutative monoid๐•„ = (๐‘€,+, 0)

โ€ข on objects: ๐•„๐œ”๐‘‹ = {๐‘š1๐‘ฅ1 +โ‹ฏ๐‘š๐‘›๐‘ฅ๐‘› โˆฃ ๐‘› โˆˆ โ„•,๐‘š๐‘– โˆˆ ๐•„. ๐‘ฅ๐‘– โˆˆ ๐‘‹}

โ€ข on maps ๐‘“: ๐‘‹ โ†’ ๐‘Œ: ๐•„๐œ”๐‘“๐‘š1๐‘ฅ1 +โ‹ฏ๐‘š๐‘›๐‘ฅ๐‘› โˆถ= ๐‘š1๐‘“๐‘ฅ1 +โ‹ฏ๐‘š๐‘›๐‘“๐‘ฅ๐‘›

โ€ข The functor ๐•„๐œ”(โˆ’)

(weakly) preserves

โ€ข preimages iff ๐•„ is positive

positive: ๐‘ฅ + ๐‘ฆ = 0 โ‡’ ๐‘ฅ = 0

Finite ๐•„-bags

2. Generalize โ„™๐œ”(๐‘‹)

โ€ข Replace boolean algebra ๐Ÿ by a commutative monoid๐•„ = (๐‘€,+, 0)

โ€ข on objects: ๐•„๐œ”๐‘‹ = {๐‘š1๐‘ฅ1 +โ‹ฏ๐‘š๐‘›๐‘ฅ๐‘› โˆฃ ๐‘› โˆˆ โ„•,๐‘š๐‘– โˆˆ ๐•„. ๐‘ฅ๐‘– โˆˆ ๐‘‹}

โ€ข on maps ๐‘“: ๐‘‹ โ†’ ๐‘Œ: ๐•„๐œ”๐‘“๐‘š1๐‘ฅ1 +โ‹ฏ๐‘š๐‘›๐‘ฅ๐‘› โˆถ= ๐‘š1๐‘“๐‘ฅ1 +โ‹ฏ๐‘š๐‘›๐‘“๐‘ฅ๐‘›

โ€ข The functor ๐•„๐œ”(โˆ’)

(weakly) preserves

โ€ข preimages iff ๐•„ is positive

โ€ข kernel pairs iff ๐•„ is refinable

positive: ๐‘ฅ + ๐‘ฆ = 0 โ‡’ ๐‘ฅ = 0

Finite ๐•„-bags

2. Generalize โ„™๐œ”(๐‘‹)

โ€ข Replace boolean algebra ๐Ÿ by a commutative monoid๐•„ = (๐‘€,+, 0)

โ€ข on objects: ๐•„๐œ”๐‘‹ = {๐‘š1๐‘ฅ1 +โ‹ฏ๐‘š๐‘›๐‘ฅ๐‘› โˆฃ ๐‘› โˆˆ โ„•,๐‘š๐‘– โˆˆ ๐•„. ๐‘ฅ๐‘– โˆˆ ๐‘‹}

โ€ข on maps ๐‘“: ๐‘‹ โ†’ ๐‘Œ: ๐•„๐œ”๐‘“๐‘š1๐‘ฅ1 +โ‹ฏ๐‘š๐‘›๐‘ฅ๐‘› โˆถ= ๐‘š1๐‘“๐‘ฅ1 +โ‹ฏ๐‘š๐‘›๐‘“๐‘ฅ๐‘›

โ€ข The functor ๐•„๐œ”(โˆ’)

(weakly) preserves

โ€ข preimages iff ๐•„ is positive

โ€ข kernel pairs iff ๐•„ is refinable

refinable:๐‘ฅ1 + ๐‘ฅ2 = ๐‘ฆ1 + ๐‘ฆ2 โ‡’

๐‘ฅ1๐‘ฅ2

๐‘ฆ1 ๐‘ฆ2 =

positive: ๐‘ฅ + ๐‘ฆ = 0 โ‡’ ๐‘ฅ = 0

Finite ๐•„-bags

2. Generalize โ„™๐œ”(๐‘‹)

โ€ข Replace boolean algebra ๐Ÿ by a commutative monoid๐•„ = (๐‘€,+, 0)

โ€ข on objects: ๐•„๐œ”๐‘‹ = {๐‘š1๐‘ฅ1 +โ‹ฏ๐‘š๐‘›๐‘ฅ๐‘› โˆฃ ๐‘› โˆˆ โ„•,๐‘š๐‘– โˆˆ ๐•„. ๐‘ฅ๐‘– โˆˆ ๐‘‹}

โ€ข on maps ๐‘“: ๐‘‹ โ†’ ๐‘Œ: ๐•„๐œ”๐‘“๐‘š1๐‘ฅ1 +โ‹ฏ๐‘š๐‘›๐‘ฅ๐‘› โˆถ= ๐‘š1๐‘“๐‘ฅ1 +โ‹ฏ๐‘š๐‘›๐‘“๐‘ฅ๐‘›

โ€ข The functor ๐•„๐œ”(โˆ’)

(weakly) preserves

โ€ข preimages iff ๐•„ is positive

โ€ข kernel pairs iff ๐•„ is refinable

positive: ๐‘ฅ + ๐‘ฆ = 0 โ‡’ ๐‘ฅ = 0

refinable:๐‘ฅ1 + ๐‘ฅ2 = ๐‘ฆ1 + ๐‘ฆ2 โ‡’

๐‘Ž ๐‘ ๐‘ฅ1๐‘ ๐‘‘ ๐‘ฅ2๐‘ฆ1 ๐‘ฆ2 =

IntroState based systemsFunctors and Coalgebras

Functor propertiesWeak Pullback PreservationFunctors parameterized by algebras

Free-algebra functorPreimage preservationWeak kernel preservation

Conclusion- and Breaking News

Properties of ๐นฮฃ(๐‘‹)

๐นฮฃ ๐‘‹ ๐’œ

๐‘‹

๐œ‘

โ€ข Suppose ๐’œ satisfies the equations ฮฃ

Properties of ๐นฮฃ(๐‘‹)

๐นฮฃ ๐‘‹ ๐’œ

๐‘‹

๐œ‘

โˆƒ ! เดค๐œ‘

โ€ข Suppose ๐’œ satisfies the equations ฮฃ

โ€ข Each map ๐œ‘:๐‘‹ โ†’ ๐ด has unique homomorphic extension

เดค๐œ‘: ๐นฮฃ ๐‘‹ โ†’ ๐’œ

Properties of ๐นฮฃ(๐‘‹)

๐นฮฃ ๐‘‹ ๐’œ

๐‘‹

๐œ‘

โˆƒ ! เดค๐œ‘

โ€ข Suppose ๐’œ satisfies the equations ฮฃ

โ€ข Each map ๐œ‘:๐‘‹ โ†’ ๐ด has unique homomorphic extension

เดค๐œ‘: ๐นฮฃ ๐‘‹ โ†’ ๐’œ

โ€ข เดค๐œ‘ ๐‘ก ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘› = ๐‘ก๐ด(๐œ‘๐‘ฅ1, โ€ฆ , ๐œ‘๐‘ฅ๐‘›)

Properties of ๐นฮฃ(๐‘‹)

๐นฮฃ ๐‘‹ ๐นฮฃ ๐‘Œ

๐‘‹ ๐‘Œ๐œ‘

?

โ€ข Suppose ๐’œ satisfies the equations ฮฃ

โ€ข Each map ๐œ‘:๐‘‹ โ†’ ๐ด has unique homomorphic extension

เดค๐œ‘: ๐นฮฃ ๐‘‹ โ†’ ๐’œ

โ€ข เดค๐œ‘ ๐‘ก ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘› = ๐‘ก๐ด(๐œ‘๐‘ฅ1, โ€ฆ , ๐œ‘๐‘ฅ๐‘›)

โ€ข ๐นฮฃ(โˆ’) is a ๐‘†๐‘’๐‘ก-functor

Properties of ๐นฮฃ(๐‘‹)

๐นฮฃ ๐‘‹ ๐นฮฃ ๐‘Œ

๐‘‹ ๐‘Œ

๐œ„๐‘Œ

๐œ‘

?

โ€ข Suppose ๐’œ satisfies the equations ฮฃ

โ€ข Each map ๐œ‘:๐‘‹ โ†’ ๐ด has unique homomorphic extension

เดค๐œ‘: ๐นฮฃ ๐‘‹ โ†’ ๐’œ

โ€ข เดค๐œ‘ ๐‘ก ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘› = ๐‘ก๐ด(๐œ‘๐‘ฅ1, โ€ฆ , ๐œ‘๐‘ฅ๐‘›)

โ€ข ๐นฮฃ(โˆ’) is a ๐‘†๐‘’๐‘ก-functor

Properties of ๐นฮฃ(๐‘‹)

๐นฮฃ ๐‘‹ ๐นฮฃ ๐‘Œ

๐‘‹ ๐‘Œ

๐œ„๐‘Œ

๐œ‘

๐œ‘โ€ฒ

โ€ข Suppose ๐’œ satisfies the equations ฮฃ

โ€ข Each map ๐œ‘:๐‘‹ โ†’ ๐ด has unique homomorphic extension

เดค๐œ‘: ๐นฮฃ ๐‘‹ โ†’ ๐’œ

โ€ข เดค๐œ‘ ๐‘ก ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘› = ๐‘ก๐ด(๐œ‘๐‘ฅ1, โ€ฆ , ๐œ‘๐‘ฅ๐‘›)

โ€ข ๐นฮฃ(โˆ’) is a ๐‘†๐‘’๐‘ก-functor

Properties of ๐นฮฃ(๐‘‹)

โ€ข Suppose ๐’œ satisfies the equations ฮฃ

โ€ข Each map ๐œ‘:๐‘‹ โ†’ ๐ด has unique homomorphic extension

เดค๐œ‘: ๐นฮฃ ๐‘‹ โ†’ ๐’œ

โ€ข เดค๐œ‘ ๐‘ก ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘› = ๐‘ก๐ด(๐œ‘๐‘ฅ1, โ€ฆ , ๐œ‘๐‘ฅ๐‘›)

โ€ข ๐นฮฃ(โˆ’) is a ๐‘†๐‘’๐‘ก-functor

๐นฮฃ ๐‘‹ ๐นฮฃ ๐‘Œ

๐‘‹ ๐‘Œ

๐œ„๐‘Œ

๐นฮฃ๐œ‘ โˆถ= เดฅ๐œ‘โ€ฒ

๐œ‘

๐œ‘โ€ฒ

IntroState based systemsFunctors and Coalgebras

Functor propertiesWeak Pullback PreservationFunctors parameterized by algebras

Free-algebra functorPreimage preservationWeak kernel preservation

Conclusion- and Breaking News

Independence

โ€ข ๐‘(๐‘ฅ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘›) weakly independent of ๐‘ฅ if

๐‘ ๐‘ฅ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘› โ‰ˆ ๐‘ž(๐‘ฆ) where ๐‘ฅ โ‰  ๐‘ฆ

Independence

โ€ข ๐‘(๐‘ฅ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘›) weakly independent of ๐‘ฅ if

๐‘ ๐‘ฅ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘› โ‰ˆ ๐‘ž(๐‘ฆ) where ๐‘ฅ โ‰  ๐‘ฆ

โ€ข ๐‘(๐‘ฅ, ๐‘ง1 , โ€ฆ , ๐‘ง๐‘›) independent of ๐‘ฅ, if

๐‘ ๐‘ฅ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› โ‰ˆ ๐‘(๐‘ฆ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘›) where ๐‘ฅ, ๐‘ฆ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› mutually different

Independence

โ€ข ๐‘(๐‘ฅ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘›) weakly independent of ๐‘ฅ if

๐‘ ๐‘ฅ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘› โ‰ˆ ๐‘ž(๐‘ฆ) where ๐‘ฅ โ‰  ๐‘ฆ

โ€ข ๐‘(๐‘ฅ, ๐‘ง1 , โ€ฆ , ๐‘ง๐‘›) independent of ๐‘ฅ, if

๐‘ ๐‘ฅ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› โ‰ˆ ๐‘(๐‘ฆ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘›) where ๐‘ฅ, ๐‘ฆ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› mutually different

Derivative of ฮฃ:

ฮฃโ€ฒ โ‰” {๐‘ ๐‘ฅ, ิฆ๐‘ง โ‰ˆ ๐‘ ๐‘ฆ, ิฆ๐‘ง โˆฃ ๐‘ ๐‘ฅ, ิฆ๐‘ฃ weakly independent of ๐‘ฅ}

Preservation of preimages

โ€ข Thm: ๐นฮฃ โˆ’ preserves preimages iff ฮฃ โŠข ฮฃโ€ฒ

Preservation of preimages

โ€ข Thm: ๐นฮฃ โˆ’ preserves preimages iff ฮฃ โŠข ฮฃโ€ฒ

โ€ข Proof(โ‡’)

Preservation of preimages

โ€ข Thm: ๐นฮฃ โˆ’ preserves preimages iff ฮฃ โŠข ฮฃโ€ฒ

โ€ข Proof(โ‡’) ๐‘ ๐‘ฅ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘› โ‰ˆ ๐‘ž ๐‘ฆ โŠข ๐‘ ๐‘ฅ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› โ‰ˆ ๐‘(๐‘ฆ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘›)

Preservation of preimages

โ€ข Thm: ๐นฮฃ โˆ’ preserves preimages iff ฮฃ โŠข ฮฃโ€ฒ

โ€ข Proof(โ‡’) ๐‘ ๐‘ฅ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘› โ‰ˆ ๐‘ž ๐‘ฆ โŠข ๐‘ ๐‘ฅ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› โ‰ˆ ๐‘(๐‘ฆ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘›)

๐‘ฅ, ๐‘ฆ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› ๐‘ฅ, ๐‘ฆ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘›

๐‘ฅ โˆ‰ ๐œ‘โˆ’1 ๐‘ฆ ๐‘ฆ

๐œ‘

Preservation of preimages

โ€ข Thm: ๐นฮฃ โˆ’ preserves preimages iff ฮฃ โŠข ฮฃโ€ฒ

โ€ข Proof(โ‡’) ๐‘ ๐‘ฅ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘› โ‰ˆ ๐‘ž ๐‘ฆ โŠข ๐‘ ๐‘ฅ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› โ‰ˆ ๐‘(๐‘ฆ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘›)

๐‘ฅ, ๐‘ฆ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› ๐‘ฅ, ๐‘ฆ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘›

๐‘ฅ โˆ‰ ๐œ‘โˆ’1 ๐‘ฆ ๐‘ฆ

๐œ‘

Preservation of preimages

โ€ข Thm: ๐นฮฃ โˆ’ preserves preimages iff ฮฃ โŠข ฮฃโ€ฒ

โ€ข Proof(โ‡’) ๐‘ ๐‘ฅ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘› โ‰ˆ ๐‘ž ๐‘ฆ โŠข ๐‘ ๐‘ฅ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› โ‰ˆ ๐‘(๐‘ฆ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘›)

๐‘ฅ, ๐‘ฆ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› ๐‘ฅ, ๐‘ฆ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘›

๐‘ฅ โˆ‰ ๐œ‘โˆ’1 ๐‘ฆ ๐‘ฆ

เดค๐œ‘๐‘ ๐‘ฅ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› โ‰ˆ ๐‘ ๐œ‘๐‘ฅ, ๐œ‘๐‘ง1, โ€ฆ , ๐œ‘๐‘ง๐‘› ๐œ‘

Preservation of preimages

โ€ข Thm: ๐นฮฃ โˆ’ preserves preimages iff ฮฃ โŠข ฮฃโ€ฒ

โ€ข Proof(โ‡’) ๐‘ ๐‘ฅ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘› โ‰ˆ ๐‘ž ๐‘ฆ โŠข ๐‘ ๐‘ฅ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› โ‰ˆ ๐‘(๐‘ฆ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘›)

๐‘ฅ, ๐‘ฆ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› ๐‘ฅ, ๐‘ฆ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘›

๐‘ฅ โˆ‰ ๐œ‘โˆ’1 ๐‘ฆ ๐‘ฆ

เดค๐œ‘๐‘ ๐‘ฅ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› โ‰ˆ ๐‘ ๐œ‘๐‘ฅ, ๐œ‘๐‘ง1, โ€ฆ , ๐œ‘๐‘ง๐‘›โ‰ˆ ๐‘ ๐‘ฅ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘›

๐œ‘

Preservation of preimages

โ€ข Thm: ๐นฮฃ โˆ’ preserves preimages iff ฮฃ โŠข ฮฃโ€ฒ

โ€ข Proof(โ‡’) ๐‘ ๐‘ฅ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘› โ‰ˆ ๐‘ž ๐‘ฆ โŠข ๐‘ ๐‘ฅ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› โ‰ˆ ๐‘(๐‘ฆ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘›)

๐‘ฅ, ๐‘ฆ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› ๐‘ฅ, ๐‘ฆ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘›

๐‘ฅ โˆ‰ ๐œ‘โˆ’1 ๐‘ฆ ๐‘ฆ

เดค๐œ‘๐‘ ๐‘ฅ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› โ‰ˆ ๐‘ ๐œ‘๐‘ฅ, ๐œ‘๐‘ง1, โ€ฆ , ๐œ‘๐‘ง๐‘›โ‰ˆ ๐‘ ๐‘ฅ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘›โ‰ˆ ๐‘ž ๐‘ฆ

๐œ‘

Preservation of preimages

โ€ข Thm: ๐นฮฃ โˆ’ preserves preimages iff ฮฃ โŠข ฮฃโ€ฒ

โ€ข Proof(โ‡’) ๐‘ ๐‘ฅ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘› โ‰ˆ ๐‘ž ๐‘ฆ โŠข ๐‘ ๐‘ฅ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› โ‰ˆ ๐‘(๐‘ฆ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘›)

๐‘ฅ, ๐‘ฆ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› ๐‘ฅ, ๐‘ฆ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘›

๐‘ฅ โˆ‰ ๐œ‘โˆ’1 ๐‘ฆ ๐‘ฆ

เดค๐œ‘๐‘ ๐‘ฅ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› โ‰ˆ ๐‘ ๐œ‘๐‘ฅ, ๐œ‘๐‘ง1, โ€ฆ , ๐œ‘๐‘ง๐‘›โ‰ˆ ๐‘ ๐‘ฅ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘›โ‰ˆ ๐‘ž ๐‘ฆ โˆˆ ๐นฮฃ ๐‘ฆ

๐œ‘

Preservation of preimages

โ€ข Thm: ๐นฮฃ โˆ’ preserves preimages iff ฮฃ โŠข ฮฃโ€ฒ

โ€ข Proof(โ‡’) ๐‘ ๐‘ฅ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘› โ‰ˆ ๐‘ž ๐‘ฆ โŠข ๐‘ ๐‘ฅ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› โ‰ˆ ๐‘(๐‘ฆ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘›)

๐‘ฅ, ๐‘ฆ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› ๐‘ฅ, ๐‘ฆ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘›

๐‘ฅ โˆ‰ ๐œ‘โˆ’1 ๐‘ฆ ๐‘ฆ

เดค๐œ‘๐‘ ๐‘ฅ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› โ‰ˆ ๐‘ ๐œ‘๐‘ฅ, ๐œ‘๐‘ง1, โ€ฆ , ๐œ‘๐‘ง๐‘›โ‰ˆ ๐‘ ๐‘ฅ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘›โ‰ˆ ๐‘ž ๐‘ฆ โˆˆ ๐นฮฃ ๐‘ฆ

โ‡’ ๐‘ ๐‘ฅ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› โˆˆ เดค๐œ‘โˆ’1 (๐นฮฃ ๐‘ฆ )

๐œ‘

Preservation of preimages

โ€ข Thm: ๐นฮฃ โˆ’ preserves preimages iff ฮฃ โŠข ฮฃโ€ฒ

โ€ข Proof(โ‡’) ๐‘ ๐‘ฅ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘› โ‰ˆ ๐‘ž ๐‘ฆ โŠข ๐‘ ๐‘ฅ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› โ‰ˆ ๐‘(๐‘ฆ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘›)

๐‘ฅ, ๐‘ฆ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› ๐‘ฅ, ๐‘ฆ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘›

๐‘ฅ โˆ‰ ๐œ‘โˆ’1 ๐‘ฆ ๐‘ฆ

เดค๐œ‘๐‘ ๐‘ฅ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› โ‰ˆ ๐‘ ๐œ‘๐‘ฅ, ๐œ‘๐‘ง1, โ€ฆ , ๐œ‘๐‘ง๐‘›โ‰ˆ ๐‘ ๐‘ฅ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘›โ‰ˆ ๐‘ž ๐‘ฆ โˆˆ ๐นฮฃ ๐‘ฆ

โ‡’ ๐‘ ๐‘ฅ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› โˆˆ เดค๐œ‘โˆ’1 (๐นฮฃ ๐‘ฆ )= ๐นฮฃ(๐œ‘

โˆ’1 ๐‘ฆ )

๐œ‘

Preservation of preimages

โ€ข Thm: ๐นฮฃ โˆ’ preserves preimages iff ฮฃ โŠข ฮฃโ€ฒ

โ€ข Proof(โ‡’) ๐‘ ๐‘ฅ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘› โ‰ˆ ๐‘ž ๐‘ฆ โŠข ๐‘ ๐‘ฅ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› โ‰ˆ ๐‘(๐‘ฆ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘›)

๐‘ฅ, ๐‘ฆ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› ๐‘ฅ, ๐‘ฆ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘›

๐‘ฅ โˆ‰ ๐œ‘โˆ’1 ๐‘ฆ ๐‘ฆ

เดค๐œ‘๐‘ ๐‘ฅ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› โ‰ˆ ๐‘ ๐œ‘๐‘ฅ, ๐œ‘๐‘ง1, โ€ฆ , ๐œ‘๐‘ง๐‘›โ‰ˆ ๐‘ ๐‘ฅ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘›โ‰ˆ ๐‘ž ๐‘ฆ โˆˆ ๐นฮฃ ๐‘ฆ

โ‡’ ๐‘ ๐‘ฅ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› โˆˆ เดค๐œ‘โˆ’1 (๐นฮฃ ๐‘ฆ )= ๐นฮฃ(๐œ‘

โˆ’1 ๐‘ฆ )โŠ† ๐นฮฃ( ๐‘ฆ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› )

๐œ‘

Preservation of preimages

โ€ข Thm: ๐นฮฃ โˆ’ preserves preimages iff ฮฃ โŠข ฮฃโ€ฒ

โ€ข Proof(โ‡’) ๐‘ ๐‘ฅ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘› โ‰ˆ ๐‘ž ๐‘ฆ โŠข ๐‘ ๐‘ฅ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› โ‰ˆ ๐‘(๐‘ฆ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘›)

๐‘ฅ, ๐‘ฆ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› ๐‘ฅ, ๐‘ฆ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘›

๐‘ฅ โˆ‰ ๐œ‘โˆ’1 ๐‘ฆ ๐‘ฆ

เดค๐œ‘๐‘ ๐‘ฅ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› โ‰ˆ ๐‘ ๐œ‘๐‘ฅ, ๐œ‘๐‘ง1, โ€ฆ , ๐œ‘๐‘ง๐‘›โ‰ˆ ๐‘ ๐‘ฅ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘›โ‰ˆ ๐‘ž ๐‘ฆ โˆˆ ๐นฮฃ ๐‘ฆ

โ‡’ ๐‘ ๐‘ฅ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› โˆˆ เดค๐œ‘โˆ’1 (๐นฮฃ ๐‘ฆ )= ๐นฮฃ(๐œ‘

โˆ’1 ๐‘ฆ )โŠ† ๐นฮฃ( ๐‘ฆ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› )

โ‡’ ๐‘ ๐‘ฅ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› โ‰ˆ ๐‘Ÿ ๐‘ฆ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘›

๐œ‘

Preservation of preimages

โ€ข Thm: ๐นฮฃ โˆ’ preserves preimages iff ฮฃ โŠข ฮฃโ€ฒ

โ€ข Proof(โ‡’) ๐‘ ๐‘ฅ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘› โ‰ˆ ๐‘ž ๐‘ฆ โŠข ๐‘ ๐‘ฅ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› โ‰ˆ ๐‘(๐‘ฆ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘›)

๐‘ฅ, ๐‘ฆ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› ๐‘ฅ, ๐‘ฆ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘›

๐‘ฅ โˆ‰ ๐œ‘โˆ’1 ๐‘ฆ ๐‘ฆ

เดค๐œ‘๐‘ ๐‘ฅ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› โ‰ˆ ๐‘ ๐œ‘๐‘ฅ, ๐œ‘๐‘ง1, โ€ฆ , ๐œ‘๐‘ง๐‘›โ‰ˆ ๐‘ ๐‘ฅ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘›โ‰ˆ ๐‘ž ๐‘ฆ โˆˆ ๐นฮฃ ๐‘ฆ

โ‡’ ๐‘ ๐‘ฅ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› โˆˆ เดค๐œ‘โˆ’1 (๐นฮฃ ๐‘ฆ )= ๐นฮฃ(๐œ‘

โˆ’1 ๐‘ฆ )โŠ† ๐นฮฃ( ๐‘ฆ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› )

โ‡’ ๐‘ ๐‘ฅ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› โ‰ˆ ๐‘Ÿ ๐‘ฆ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› โ‰ˆ ๐‘Ÿ ๐‘ฅ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘›

๐œ‘

Preservation of preimages

โ€ข Thm: ๐นฮฃ โˆ’ preserves preimages iff ฮฃ โŠข ฮฃโ€ฒ

โ€ข Proof(โ‡’) ๐‘ ๐‘ฅ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘› โ‰ˆ ๐‘ž ๐‘ฆ โŠข ๐‘ ๐‘ฅ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› โ‰ˆ ๐‘(๐‘ฆ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘›)

๐‘ฅ, ๐‘ฆ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› ๐‘ฅ, ๐‘ฆ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘›

๐‘ฅ โˆ‰ ๐œ‘โˆ’1 ๐‘ฆ ๐‘ฆ

เดค๐œ‘๐‘ ๐‘ฅ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› โ‰ˆ ๐‘ ๐œ‘๐‘ฅ, ๐œ‘๐‘ง1, โ€ฆ , ๐œ‘๐‘ง๐‘›โ‰ˆ ๐‘ ๐‘ฅ, ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘›โ‰ˆ ๐‘ž ๐‘ฆ โˆˆ ๐นฮฃ ๐‘ฆ

โ‡’ ๐‘ ๐‘ฅ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› โˆˆ เดค๐œ‘โˆ’1 (๐นฮฃ ๐‘ฆ )= ๐นฮฃ(๐œ‘

โˆ’1 ๐‘ฆ )โŠ† ๐นฮฃ( ๐‘ฆ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› )

โ‡’ ๐‘ ๐‘ฅ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› โ‰ˆ ๐‘Ÿ ๐‘ฆ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› โ‰ˆ ๐‘Ÿ ๐‘ฅ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘› โ‰ˆ ๐‘(๐‘ฆ, ๐‘ง1, โ€ฆ , ๐‘ง๐‘›)

๐œ‘

Preservation of preimages

โ€ข Thm: ๐นฮฃ โˆ’ preserves preimages iff ฮฃ โŠข ฮฃโ€ฒ

โ€ข Proof(โ‡)

Preservation of preimages

โ€ข Thm: ๐นฮฃ โˆ’ preserves preimages iff ฮฃ โŠข ฮฃโ€ฒ

โ€ข Proof(โ‡) Enough to consider classifying preimages

Preservation of preimages

โ€ข Thm: ๐นฮฃ โˆ’ preserves preimages iff ฮฃ โŠข ฮฃโ€ฒ

โ€ข Proof(โ‡) Enough to consider classifying preimages

๐‘† ๐Ÿ

๐‘ˆ ๐Ÿ

๐œ’๐‘ˆ

Preservation of preimages

โ€ข Thm: ๐นฮฃ โˆ’ preserves preimages iff ฮฃ โŠข ฮฃโ€ฒ

โ€ข Proof(โ‡) Enough to consider classifying preimages

๐‘‹ โˆช ๐‘Œ {๐‘ฅ, ๐‘ฆ}

๐‘Œ {๐‘ฆ}

๐œ‘

Preservation of preimages

โ€ข Thm: ๐นฮฃ โˆ’ preserves preimages iff ฮฃ โŠข ฮฃโ€ฒ

โ€ข Proof(โ‡) Enough to consider classifying preimages

๐นฮฃ ๐‘‹ โˆช ๐‘Œ ๐นฮฃ({๐‘ฅ, ๐‘ฆ})

๐นฮฃ(๐‘Œ) ๐นฮฃ({๐‘ฆ})

เดค๐œ‘

Preservation of preimages

โ€ข Thm: ๐นฮฃ โˆ’ preserves preimages iff ฮฃ โŠข ฮฃโ€ฒ

โ€ข Proof(โ‡) Enough to consider classifying preimages

๐นฮฃ ๐‘‹ โˆช ๐‘Œ ๐นฮฃ({๐‘ฅ, ๐‘ฆ})

๐นฮฃ(๐‘Œ) ๐นฮฃ({๐‘ฆ})

Given ๐‘ โˆˆ ๐นฮฃ(๐‘‹ โˆช ๐‘Œ) with เดค๐œ‘๐‘ โˆˆ ๐นฮฃ ๐‘ฆ show ๐‘ โˆˆ ๐นฮฃ(๐‘Œ)

เดค๐œ‘

Preservation of preimages

โ€ข Thm: ๐นฮฃ โˆ’ preserves preimages iff ฮฃ โŠข ฮฃโ€ฒ

โ€ข Proof(โ‡) Enough to consider classifying preimages

๐นฮฃ ๐‘‹ โˆช ๐‘Œ ๐นฮฃ({๐‘ฅ, ๐‘ฆ})

๐นฮฃ(๐‘Œ) ๐นฮฃ({๐‘ฆ})

Given ๐‘ โˆˆ ๐นฮฃ(๐‘‹ โˆช ๐‘Œ) with เดค๐œ‘๐‘ โˆˆ ๐นฮฃ ๐‘ฆ show ๐‘ โˆˆ ๐นฮฃ(๐‘Œ)

เดค๐œ‘๐‘ = เดค๐œ‘๐‘ ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›, ๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘šเดค๐œ‘

Preservation of preimages

โ€ข Thm: ๐นฮฃ โˆ’ preserves preimages iff ฮฃ โŠข ฮฃโ€ฒ

โ€ข Proof(โ‡) Enough to consider classifying preimages

๐นฮฃ ๐‘‹ โˆช ๐‘Œ ๐นฮฃ({๐‘ฅ, ๐‘ฆ})

๐นฮฃ(๐‘Œ) ๐นฮฃ({๐‘ฆ})

Given ๐‘ โˆˆ ๐นฮฃ(๐‘‹ โˆช ๐‘Œ) with เดค๐œ‘๐‘ โˆˆ ๐นฮฃ ๐‘ฆ show ๐‘ โˆˆ ๐นฮฃ(๐‘Œ)

เดค๐œ‘๐‘ = เดค๐œ‘๐‘ ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›, ๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘šเดค๐œ‘

Preservation of preimages

โ€ข Thm: ๐นฮฃ โˆ’ preserves preimages iff ฮฃ โŠข ฮฃโ€ฒ

โ€ข Proof(โ‡) Enough to consider classifying preimages

๐นฮฃ ๐‘‹ โˆช ๐‘Œ ๐นฮฃ({๐‘ฅ, ๐‘ฆ})

๐นฮฃ(๐‘Œ) ๐นฮฃ({๐‘ฆ})

Given ๐‘ โˆˆ ๐นฮฃ(๐‘‹ โˆช ๐‘Œ) with เดค๐œ‘๐‘ โˆˆ ๐นฮฃ ๐‘ฆ show ๐‘ โˆˆ ๐นฮฃ(๐‘Œ)

เดค๐œ‘๐‘ = เดค๐œ‘๐‘ ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›, ๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘š= ๐‘ ๐‘ฅ,โ€ฆ , ๐‘ฅ, ๐‘ฆ, โ€ฆ , ๐‘ฆ

เดค๐œ‘

Preservation of preimages

โ€ข Thm: ๐นฮฃ โˆ’ preserves preimages iff ฮฃ โŠข ฮฃโ€ฒ

โ€ข Proof(โ‡) Enough to consider classifying preimages

๐นฮฃ ๐‘‹ โˆช ๐‘Œ ๐นฮฃ({๐‘ฅ, ๐‘ฆ})

๐นฮฃ(๐‘Œ) ๐นฮฃ({๐‘ฆ})

Given ๐‘ โˆˆ ๐นฮฃ(๐‘‹ โˆช ๐‘Œ) with เดค๐œ‘๐‘ โˆˆ ๐นฮฃ ๐‘ฆ show ๐‘ โˆˆ ๐นฮฃ(๐‘Œ)

เดค๐œ‘๐‘ = เดค๐œ‘๐‘ ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›, ๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘š= ๐‘ ๐‘ฅ,โ€ฆ , ๐‘ฅ, ๐‘ฆ, โ€ฆ , ๐‘ฆ โ‰ˆ ๐‘ž(๐‘ฆ)

เดค๐œ‘

Preservation of preimages

โ€ข Thm: ๐นฮฃ โˆ’ preserves preimages iff ฮฃ โŠข ฮฃโ€ฒ

โ€ข Proof(โ‡) Enough to consider classifying preimages

๐นฮฃ ๐‘‹ โˆช ๐‘Œ ๐นฮฃ({๐‘ฅ, ๐‘ฆ})

๐นฮฃ(๐‘Œ) ๐นฮฃ({๐‘ฆ})

Given ๐‘ โˆˆ ๐นฮฃ(๐‘‹ โˆช ๐‘Œ) with เดค๐œ‘๐‘ โˆˆ ๐นฮฃ ๐‘ฆ show ๐‘ โˆˆ ๐นฮฃ(๐‘Œ)

เดค๐œ‘๐‘ ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›, ๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘š= ๐‘ ๐‘ฅ,โ€ฆ , ๐‘ฅ, ๐‘ฆ, โ€ฆ , ๐‘ฆ โ‰ˆ ๐‘ž(๐‘ฆ)

๐‘ ๐‘ฅ1, ๐‘ฅ2, โ€ฆ , ๐‘ฅ๐‘›, ๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘šโ‰ˆโ‰ˆโ‰ˆโ‰ˆ

เดค๐œ‘

Preservation of preimages

โ€ข Thm: ๐นฮฃ โˆ’ preserves preimages iff ฮฃ โŠข ฮฃโ€ฒ

โ€ข Proof(โ‡) Enough to consider classifying preimages

๐นฮฃ ๐‘‹ โˆช ๐‘Œ ๐นฮฃ({๐‘ฅ, ๐‘ฆ})

๐นฮฃ(๐‘Œ) ๐นฮฃ({๐‘ฆ})

Given ๐‘ โˆˆ ๐นฮฃ(๐‘‹ โˆช ๐‘Œ) with เดค๐œ‘๐‘ โˆˆ ๐นฮฃ ๐‘ฆ show ๐‘ โˆˆ ๐นฮฃ(๐‘Œ)

เดค๐œ‘๐‘ ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›, ๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘š= ๐‘ ๐‘ฅ,โ€ฆ , ๐‘ฅ, ๐‘ฆ, โ€ฆ , ๐‘ฆ โ‰ˆ ๐‘ž(๐‘ฆ)

๐‘ ๐‘ฅ1, ๐‘ฅ2, โ€ฆ , ๐‘ฅ๐‘›, ๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘šโ‰ˆ ๐‘ ๐‘ง1, ๐‘ฅ2, โ€ฆ , ๐‘ฅ๐‘›, ๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘šโ‰ˆโ‰ˆโ‰ˆ

เดค๐œ‘

Preservation of preimages

โ€ข Thm: ๐นฮฃ โˆ’ preserves preimages iff ฮฃ โŠข ฮฃโ€ฒ

โ€ข Proof(โ‡) Enough to consider classifying preimages

๐นฮฃ ๐‘‹ โˆช ๐‘Œ ๐นฮฃ({๐‘ฅ, ๐‘ฆ})

๐นฮฃ(๐‘Œ) ๐นฮฃ({๐‘ฆ})

Given ๐‘ โˆˆ ๐นฮฃ(๐‘‹ โˆช ๐‘Œ) with เดค๐œ‘๐‘ โˆˆ ๐นฮฃ ๐‘ฆ show ๐‘ โˆˆ ๐นฮฃ(๐‘Œ)

เดค๐œ‘๐‘ ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›, ๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘š= ๐‘ ๐‘ฅ,โ€ฆ , ๐‘ฅ, ๐‘ฆ, โ€ฆ , ๐‘ฆ โ‰ˆ ๐‘ž(๐‘ฆ)

๐‘ ๐‘ฅ1, ๐‘ฅ2, โ€ฆ , ๐‘ฅ๐‘›, ๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘šโ‰ˆ ๐‘ ๐‘ง1, ๐‘ฅ2, โ€ฆ , ๐‘ฅ๐‘›, ๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘šโ‰ˆ ๐‘ ๐‘ง1, ๐‘ง2, โ€ฆ , ๐‘ฅ๐‘›, ๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘šโ‰ˆโ‰ˆ

เดค๐œ‘

Preservation of preimages

โ€ข Thm: ๐นฮฃ โˆ’ preserves preimages iff ฮฃ โŠข ฮฃโ€ฒ

โ€ข Proof(โ‡) Enough to consider classifying preimages

๐นฮฃ ๐‘‹ โˆช ๐‘Œ ๐นฮฃ({๐‘ฅ, ๐‘ฆ})

๐นฮฃ(๐‘Œ) ๐นฮฃ({๐‘ฆ})

Given ๐‘ โˆˆ ๐นฮฃ(๐‘‹ โˆช ๐‘Œ) with เดค๐œ‘๐‘ โˆˆ ๐นฮฃ ๐‘ฆ show ๐‘ โˆˆ ๐นฮฃ(๐‘Œ)

เดค๐œ‘๐‘ ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›, ๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘š= ๐‘ ๐‘ฅ,โ€ฆ , ๐‘ฅ, ๐‘ฆ, โ€ฆ , ๐‘ฆ โ‰ˆ ๐‘ž(๐‘ฆ)

๐‘ ๐‘ฅ1, ๐‘ฅ2, โ€ฆ , ๐‘ฅ๐‘›, ๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘šโ‰ˆ ๐‘ ๐‘ง1, ๐‘ฅ2, โ€ฆ , ๐‘ฅ๐‘›, ๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘šโ‰ˆ ๐‘ ๐‘ง1, ๐‘ง2, โ€ฆ , ๐‘ฅ๐‘›, ๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘šโ‰ˆ โ‹ฏโ‰ˆ ๐‘ ๐‘ง1, ๐‘ง2, โ€ฆ , ๐‘ง๐‘›, ๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘š

เดค๐œ‘

Preservation of preimages

โ€ข Thm.: ๐นฮฃ โˆ’ preserves preimages iff ฮฃ โŠข ฮฃโ€ฒ

โ€ข Proof(โ‡) Enough to consider classifying preimages

๐นฮฃ ๐‘‹ โˆช ๐‘Œ ๐นฮฃ({๐‘ฅ, ๐‘ฆ})

๐นฮฃ(๐‘Œ) ๐นฮฃ({๐‘ฆ})

Given ๐‘ โˆˆ ๐นฮฃ(๐‘‹ โˆช ๐‘Œ) with เดค๐œ‘๐‘ โˆˆ ๐นฮฃ ๐‘ฆ show ๐‘ โˆˆ ๐นฮฃ(๐‘Œ)

เดค๐œ‘๐‘ ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›, ๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘š= ๐‘ ๐‘ฅ,โ€ฆ , ๐‘ฅ, ๐‘ฆ, โ€ฆ , ๐‘ฆ โ‰ˆ ๐‘ž(๐‘ฆ)

๐‘ ๐‘ฅ1, ๐‘ฅ2, โ€ฆ , ๐‘ฅ๐‘›, ๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘šโ‰ˆ ๐‘ ๐‘ง1, ๐‘ฅ2, โ€ฆ , ๐‘ฅ๐‘›, ๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘šโ‰ˆ ๐‘ ๐‘ง1, ๐‘ง2, โ€ฆ , ๐‘ฅ๐‘›, ๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘šโ‰ˆ โ‹ฏโ‰ˆ ๐‘ ๐‘ง1, ๐‘ง2, โ€ฆ , ๐‘ง๐‘›, ๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘š โ‰ˆ ๐‘ ๐‘ฆ, ๐‘ฆ, โ€ฆ , ๐‘ฆ, ๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘š

เดค๐œ‘

Preservation of preimages

โ€ข Thm: ๐นฮฃ โˆ’ preserves preimages iff ฮฃ โŠข ฮฃโ€ฒ

โ€ข Proof(โ‡) Enough to consider classifying preimages

๐นฮฃ ๐‘‹ โˆช ๐‘Œ ๐นฮฃ({๐‘ฅ, ๐‘ฆ})

๐นฮฃ(๐‘Œ) ๐นฮฃ({๐‘ฆ})

Given ๐‘ โˆˆ ๐นฮฃ(๐‘‹ โˆช ๐‘Œ) with เดค๐œ‘๐‘ โˆˆ ๐นฮฃ ๐‘ฆ show ๐‘ โˆˆ ๐นฮฃ(๐‘Œ)

เดค๐œ‘๐‘ ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›, ๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘š= ๐‘ ๐‘ฅ,โ€ฆ , ๐‘ฅ, ๐‘ฆ, โ€ฆ , ๐‘ฆ โ‰ˆ ๐‘ž(๐‘ฆ)

๐‘ ๐‘ฅ1, ๐‘ฅ2, โ€ฆ , ๐‘ฅ๐‘›, ๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘šโ‰ˆ ๐‘ ๐‘ง1, ๐‘ฅ2, โ€ฆ , ๐‘ฅ๐‘›, ๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘šโ‰ˆ ๐‘ ๐‘ง1, ๐‘ง2, โ€ฆ , ๐‘ฅ๐‘›, ๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘šโ‰ˆ โ‹ฏโ‰ˆ ๐‘ ๐‘ง1, ๐‘ง2, โ€ฆ , ๐‘ง๐‘›, ๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘š โ‰ˆ ๐‘ ๐‘ฆ, ๐‘ฆ, โ€ฆ , ๐‘ฆ, ๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘š โˆˆ ๐นฮฃ(๐‘Œ)

เดค๐œ‘

IntroState based systemsFunctors and Coalgebras

Functor propertiesWeak Pullback PreservationFunctors parameterized by algebras

Free-algebra functorPreimage preservationWeak kernel preservation

Conclusion- and Breaking News

Malโ€˜cev term

โ€ข Variety ๐’ฑ(ฮฃ) = all algebras satisfying ฮฃ

Malโ€˜cev term

โ€ข Variety ๐’ฑ(ฮฃ) = all algebras satisfying ฮฃ

โ€ข Malโ€˜cev variety โˆถโ‡” โˆƒ๐‘š.

๐‘ฅ = ๐‘š(๐‘ฅ, ๐‘ฆ, ๐‘ฆ)

๐‘š ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘ฆ

ะ. ะ˜. ะœะฐะปัŒั†ะตะฒ1909-1967

Malโ€˜cev term

โ€ข Variety ๐’ฑ(ฮฃ) = all algebras satisfying ฮฃ

โ€ข Malโ€˜cev variety โˆถโ‡” โˆƒ๐‘š.

๐‘ฅ = ๐‘š(๐‘ฅ, ๐‘ฆ, ๐‘ฆ)

๐‘š ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘ฆ

ะ. ะ˜. ะœะฐะปัŒั†ะตะฒ1909-1967

Groups:๐‘š ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘ฅ โˆ— ๐‘ฆโˆ’1 โˆ— ๐‘ง

Quasigroups: ๐‘š ๐‘ฅ, ๐‘ฆ, ๐‘ง = (๐‘ฅ/(๐‘ฆ\y)) โˆ— (๐‘ฆ\๐‘ง)

Rings: ๐‘š ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘ฅ โˆ’ ๐‘ฆ + ๐‘ง

โ€ฆ

Malโ€˜cev term

โ€ข Variety ๐’ฑ(ฮฃ) = all algebras satisfying ฮฃ

โ€ข Malโ€˜cev variety โˆถโ‡” โˆƒ๐‘š.

๐‘ฅ = ๐‘š(๐‘ฅ, ๐‘ฆ, ๐‘ฆ)

๐‘š ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘ฆ

โ€ข ๐‘› โˆ’permutable variety โˆถโ‡” โˆƒ๐‘˜. โˆƒ๐‘š1, โ€ฆ ,๐‘š๐‘˜ .

๐‘ฅ = ๐‘š1 ๐‘ฅ, ๐‘ฆ, ๐‘ฆ ,๐‘š๐‘– ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘š๐‘–+1 ๐‘ฅ, ๐‘ฆ, ๐‘ฆ

๐‘š๐‘˜ ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘ฆ

ะ. ะ˜. ะœะฐะปัŒั†ะตะฒ1909-1967

Groups:๐‘š ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘ฅ โˆ— ๐‘ฆโˆ’1 โˆ— ๐‘ง

Quasigroups: ๐‘š ๐‘ฅ, ๐‘ฆ, ๐‘ง = (๐‘ฅ/(๐‘ฆ\y)) โˆ— (๐‘ฆ\๐‘ง)

Rings: ๐‘š ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘ฅ โˆ’ ๐‘ฆ + ๐‘ง

โ€ฆ

Malโ€˜cev term

โ€ข Variety ๐’ฑ(ฮฃ) = all algebras satisfying ฮฃ

โ€ข Malโ€˜cev variety โˆถโ‡” โˆƒ๐‘š.

๐‘ฅ = ๐‘š(๐‘ฅ, ๐‘ฆ, ๐‘ฆ)

๐‘š ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘ฆ

โ€ข ๐‘› โˆ’permutable variety โˆถโ‡” โˆƒ๐‘˜. โˆƒ๐‘š1, โ€ฆ ,๐‘š๐‘˜ .

๐‘ฅ = ๐‘š1 ๐‘ฅ, ๐‘ฆ, ๐‘ฆ ,๐‘š๐‘– ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘š๐‘–+1 ๐‘ฅ, ๐‘ฆ, ๐‘ฆ

๐‘š๐‘˜ ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘ฆ

ะ. ะ˜. ะœะฐะปัŒั†ะตะฒ1909-1967

Groups:๐‘š ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘ฅ โˆ— ๐‘ฆโˆ’1 โˆ— ๐‘ง

Quasigroups: ๐‘š ๐‘ฅ, ๐‘ฆ, ๐‘ง = (๐‘ฅ/(๐‘ฆ\y)) โˆ— (๐‘ฆ\๐‘ง)

Rings: ๐‘š ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘ฅ โˆ’ ๐‘ฆ + ๐‘ง

โ€ฆ

โ€ฆ the above, and also โ€ฆ

โ€ข implication algebrasโ€ข all congruence regular algebras

โ€ฆ

When does ๐นฮฃ(โˆ’) preserve kernel pairs

โ€ข Thm: If ๐’ฑ is Malโ€˜cev, then ๐นฮฃ โˆ’ weakly preserves kernel pairs

When does ๐นฮฃ(โˆ’) preserve kernel pairs

โ€ข Thm: If ๐’ฑ is Malโ€˜cev, then ๐นฮฃ โˆ’ weakly preserves kernel pairs

When does ๐นฮฃ(โˆ’) preserve kernel pairs

โ€ข Thm: If ๐’ฑ is Malโ€˜cev, then ๐นฮฃ โˆ’ weakly preserves kernel pairs

When does ๐นฮฃ(โˆ’) preserve kernel pairs

โ€ข Thm: If ๐’ฑ is Malโ€˜cev, then ๐นฮฃ โˆ’ weakly preserves kernel pairs

When does ๐นฮฃ(โˆ’) preserve kernel pairs

โ€ข Thm: If ๐’ฑ is Malโ€˜cev, then ๐นฮฃ โˆ’ weakly preserves kernel pairs

When does ๐นฮฃ(โˆ’) preserve kernel pairs

โ€ข Thm: If ๐’ฑ is Malโ€˜cev, then ๐นฮฃ โˆ’ weakly preserves kernel pairs

Malโ€˜cev โ‡’ weak kernel preservationโ€ข Thm: If ๐’ฑ is Malโ€˜cev, then ๐นฮฃ โˆ’ weakly preserves kernel pairs

Malโ€˜cev โ‡’ weak kernel preservationโ€ข Thm: If ๐’ฑ is Malโ€˜cev, then ๐นฮฃ โˆ’ weakly preserves kernel pairs

Malโ€˜cev โ‡’ weak kernel preservationโ€ข Thm: If ๐’ฑ is Malโ€˜cev, then ๐นฮฃ โˆ’ weakly preserves kernel pairs

Malโ€˜cev โ‡’ weak kernel preservationโ€ข Thm: If ๐’ฑ is Malโ€˜cev, then ๐นฮฃ โˆ’ weakly preserves kernel pairs

Malโ€˜cev โ‡’ weak kernel preservationโ€ข Thm: If ๐’ฑ is Malโ€˜cev, then ๐นฮฃ โˆ’ weakly preserves kernel pairs

Malโ€˜cev โ‡’ weak kernel preservationโ€ข Thm: If ๐’ฑ is Malโ€˜cev, then ๐นฮฃ โˆ’ weakly preserves kernel pairs

Malโ€˜cev โ‡’ weak kernel preservationโ€ข Thm: If ๐’ฑ is Malโ€˜cev, then ๐นฮฃ โˆ’ weakly preserves kernel pairs

๐‘›-permutable + wkp โ‡” Malโ€˜cev

โ€ข Lemma: If ๐นฮฃ weakly preserves kernel pairs then for any terms ๐‘, ๐‘ž

๐‘ ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘ž ๐‘ฅ, ๐‘ฆ, ๐‘ฆ โ‡” โˆƒ ๐‘ .

๐‘ ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘  ๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ง๐‘ž ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘ (๐‘ฅ, ๐‘ฅ, ๐‘ฆ, ๐‘ง)

๐‘›-permutable + wkp โ‡” Malโ€˜cev

โ€ข Lemma: If ๐นฮฃ weakly preserves kernel pairs then for any terms ๐‘, ๐‘ž

๐‘ ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘ž ๐‘ฅ, ๐‘ฆ, ๐‘ฆ โ‡” โˆƒ ๐‘ .

๐‘ ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘  ๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ง๐‘ž ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘ (๐‘ฅ, ๐‘ฅ, ๐‘ฆ, ๐‘ง)

๐‘‘

๐‘๐‘Ž ๐‘

โŸน

๐‘  ๐‘Ž, ๐‘, ๐‘, ๐‘‘ ๐‘ž ๐‘, ๐‘, ๐‘‘

๐‘ ๐‘Ž, ๐‘, ๐‘ ๐‘ ๐‘, ๐‘, ๐‘ = ๐‘ž(๐‘, ๐‘, ๐‘)๐œƒ

๐œ“

๐œƒ

๐‘›-permutable + wkp โ‡” Malโ€˜cev

โ€ข Lemma: If ๐นฮฃ weakly preserves kernel pairs then for any terms ๐‘, ๐‘ž

๐‘ ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘ž ๐‘ฅ, ๐‘ฆ, ๐‘ฆ โ‡” โˆƒ ๐‘ .

๐‘ ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘  ๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ง๐‘ž ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘ (๐‘ฅ, ๐‘ฅ, ๐‘ฆ, ๐‘ง)

๐‘‘

๐‘๐‘Ž ๐‘

โŸน

๐‘  ๐‘Ž, ๐‘, ๐‘, ๐‘‘ ๐‘ž ๐‘, ๐‘, ๐‘‘

๐‘ ๐‘Ž, ๐‘, ๐‘ ๐‘ ๐‘, ๐‘, ๐‘ = ๐‘ž(๐‘, ๐‘, ๐‘)๐œƒ

๐œ“

๐œƒ

๐‘›-permutable + wkp โ‡” Malโ€˜cev

โ€ข Lemma: If ๐นฮฃ weakly preserves kernel pairs then for any terms ๐‘, ๐‘ž

๐‘ ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘ž ๐‘ฅ, ๐‘ฆ, ๐‘ฆ โ‡” โˆƒ ๐‘ .

๐‘ ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘  ๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ง๐‘ž ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘ (๐‘ฅ, ๐‘ฅ, ๐‘ฆ, ๐‘ง)

๐‘‘

๐‘๐‘Ž ๐‘

โŸน

๐‘  ๐‘Ž, ๐‘, ๐‘, ๐‘‘ ๐‘ž ๐‘, ๐‘, ๐‘‘

๐‘ ๐‘Ž, ๐‘, ๐‘ ๐‘ ๐‘, ๐‘, ๐‘ = ๐‘ž(๐‘, ๐‘, ๐‘)๐œƒ

๐œ“๐œ“

๐œƒ

๐‘›-permutable + wkp โ‡” Malโ€˜cev

โ€ข Lemma: If ๐นฮฃ weakly preserves kernel pairs then for any terms ๐‘, ๐‘ž

๐‘ ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘ž ๐‘ฅ, ๐‘ฆ, ๐‘ฆ โ‡” โˆƒ ๐‘ .

๐‘ ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘  ๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ง๐‘ž ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘ (๐‘ฅ, ๐‘ฅ, ๐‘ฆ, ๐‘ง)

๐‘‘

๐‘๐‘Ž ๐‘

โŸน

๐‘  ๐‘Ž, ๐‘, ๐‘, ๐‘‘ ๐‘ž ๐‘, ๐‘, ๐‘‘

๐‘ ๐‘Ž, ๐‘, ๐‘ ๐‘ ๐‘, ๐‘, ๐‘ = ๐‘ž(๐‘, ๐‘, ๐‘)๐œƒ

๐œ“๐œ“

๐œƒ

๐œ“

๐œƒ

๐‘›-permutable + wkp โ‡” Malโ€˜cev

โ€ข Lemma: If ๐นฮฃ weakly preserves kernel pairs then for any terms ๐‘, ๐‘ž

๐‘ ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘ž ๐‘ฅ, ๐‘ฆ, ๐‘ฆ โ‡” โˆƒ ๐‘ .

๐‘ ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘  ๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ง๐‘ž ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘ (๐‘ฅ, ๐‘ฅ, ๐‘ฆ, ๐‘ง)

โ€ข Thm: Malโ€˜cev โ‡” ๐‘› โˆ’permutable + ๐นฮฃ weakly preserves kernel pairs

๐‘ฅ = ๐‘š(๐‘ฅ, ๐‘ฆ, ๐‘ฆ)๐‘š ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘ฆ

๐‘ฅ = ๐‘š1 ๐‘ฅ, ๐‘ฆ, ๐‘ฆ ,๐‘š๐‘– ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘š๐‘–+1 ๐‘ฅ, ๐‘ฆ, ๐‘ฆ

๐‘š๐‘˜ ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘ฆ+WKPโ‡”

๐‘›-permutable + wkp โ‡” Malโ€˜cev

โ€ข Lemma: If ๐นฮฃ weakly preserves kernel pairs then for any terms ๐‘, ๐‘ž

๐‘ ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘ž ๐‘ฅ, ๐‘ฆ, ๐‘ฆ โ‡” โˆƒ ๐‘ .

๐‘ ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘  ๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ง๐‘ž ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘ (๐‘ฅ, ๐‘ฅ, ๐‘ฆ, ๐‘ง)

โ€ข Thm: Malโ€˜cev โ‡” ๐‘› โˆ’permutable + ๐นฮฃ weakly preserves kernel pairs

๐‘ฅ = ๐‘š1 ๐‘ฅ, ๐‘ฆ, ๐‘ฆ ,โ‹ฏ

๐‘š๐‘–โˆ’1 ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘š๐‘– ๐‘ฅ, ๐‘ฆ, ๐‘ฆ = ๐‘š(๐‘ฅ, ๐‘ฆ, ๐‘ฆ)๐‘š๐‘– ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘š๐‘–+1 ๐‘ฅ, ๐‘ฆ, ๐‘ฆ

๐‘š ๐‘ฅ, ๐‘ฆ, ๐‘ฆ = ๐‘š๐‘–+1 ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘š๐‘–+2 ๐‘ฅ, ๐‘ฆ, ๐‘ฆโ‹ฏ

๐‘š๐‘˜ ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘ฆ

Proof โ‡ :

๐‘›-permutable + wkp โ‡” Malโ€˜cev

โ€ข Lemma: If ๐นฮฃ weakly preserves kernel pairs then for any terms ๐‘, ๐‘ž

๐‘ ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘ž ๐‘ฅ, ๐‘ฆ, ๐‘ฆ โ‡” โˆƒ ๐‘ .

๐‘ ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘  ๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ง๐‘ž ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘ (๐‘ฅ, ๐‘ฅ, ๐‘ฆ, ๐‘ง)

โ€ข Thm: Malโ€˜cev โ‡” ๐‘› โˆ’permutable + ๐นฮฃ weakly preserves kernel pairs

๐‘ฅ = ๐‘š1 ๐‘ฅ, ๐‘ฆ, ๐‘ฆ ,โ‹ฏ

๐‘š๐‘–โˆ’1 ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘š๐‘– ๐‘ฅ, ๐‘ฆ, ๐‘ฆ = ๐‘š(๐‘ฅ, ๐‘ฆ, ๐‘ฆ)๐‘š๐‘– ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘š๐‘–+1 ๐‘ฅ, ๐‘ฆ, ๐‘ฆ

๐‘š ๐‘ฅ, ๐‘ฆ, ๐‘ฆ = ๐‘š๐‘–+1 ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘š๐‘–+2 ๐‘ฅ, ๐‘ฆ, ๐‘ฆโ‹ฏ

๐‘š๐‘˜ ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘ฆ

Proof โ‡ :

๐‘›-permutable + wkp โ‡” Malโ€˜cev

โ€ข Lemma: If ๐นฮฃ weakly preserves kernel pairs then for any terms ๐‘, ๐‘ž

๐‘ ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘ž ๐‘ฅ, ๐‘ฆ, ๐‘ฆ โ‡” โˆƒ ๐‘ .

๐‘ ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘  ๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ง๐‘ž ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘ (๐‘ฅ, ๐‘ฅ, ๐‘ฆ, ๐‘ง)

โ€ข Thm: Malโ€˜cev โ‡” ๐‘› โˆ’permutable + ๐นฮฃ weakly preserves kernel pairs

๐‘ฅ = ๐‘š1 ๐‘ฅ, ๐‘ฆ, ๐‘ฆ ,โ‹ฏ

๐‘š๐‘–โˆ’1 ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘š๐‘– ๐‘ฅ, ๐‘ฆ, ๐‘ฆ = ๐‘š(๐‘ฅ, ๐‘ฆ, ๐‘ฆ)๐‘š๐‘– ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘š๐‘–+1 ๐‘ฅ, ๐‘ฆ, ๐‘ฆ

๐‘š ๐‘ฅ, ๐‘ฆ, ๐‘ฆ = ๐‘š๐‘–+1 ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘š๐‘–+2 ๐‘ฅ, ๐‘ฆ, ๐‘ฆโ‹ฏ

๐‘š๐‘˜ ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘ฆ

Proof โ‡ :

๐‘›-permutable + wkp โ‡” Malโ€˜cev

โ€ข Lemma: If ๐นฮฃ weakly preserves kernel pairs then for any terms ๐‘, ๐‘ž

๐‘ ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘ž ๐‘ฅ, ๐‘ฆ, ๐‘ฆ โ‡” โˆƒ ๐‘ .

๐‘ ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘  ๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ง๐‘ž ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘ (๐‘ฅ, ๐‘ฅ, ๐‘ฆ, ๐‘ง)

โ€ข Thm: Malโ€˜cev โ‡” ๐‘› โˆ’permutable + ๐นฮฃ weakly preserves kernel pairs

๐‘ฅ = ๐‘š1 ๐‘ฅ, ๐‘ฆ, ๐‘ฆ ,โ‹ฏ

๐‘š๐‘–โˆ’1 ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘š๐‘– ๐‘ฅ, ๐‘ฆ, ๐‘ฆ = ๐‘š(๐‘ฅ, ๐‘ฆ, ๐‘ฆ)๐‘š๐‘– ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘š๐‘–+1 ๐‘ฅ, ๐‘ฆ, ๐‘ฆ

๐‘š ๐‘ฅ, ๐‘ฆ, ๐‘ฆ = ๐‘š๐‘–+1 ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘š๐‘–+2 ๐‘ฅ, ๐‘ฆ, ๐‘ฆโ‹ฏ

๐‘š๐‘˜ ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘ฆ

Proof โ‡ :๐‘š๐‘– ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘  ๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ง๐‘š๐‘–+1 ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘  ๐‘ฅ, ๐‘ฅ, ๐‘ฆ, ๐‘ง

๐‘›-permutable + wkp โ‡” Malโ€˜cev

โ€ข Lemma: If ๐นฮฃ weakly preserves kernel pairs then for any terms ๐‘, ๐‘ž

๐‘ ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘ž ๐‘ฅ, ๐‘ฆ, ๐‘ฆ โ‡” โˆƒ ๐‘ .

๐‘ ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘  ๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ง๐‘ž ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘ (๐‘ฅ, ๐‘ฅ, ๐‘ฆ, ๐‘ง)

โ€ข Thm: Malโ€˜cev โ‡” ๐‘› โˆ’permutable + ๐นฮฃ weakly preserves kernel pairs

๐‘ฅ = ๐‘š1 ๐‘ฅ, ๐‘ฆ, ๐‘ฆ ,โ‹ฏ

๐‘š๐‘–โˆ’1 ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘š๐‘– ๐‘ฅ, ๐‘ฆ, ๐‘ฆ = ๐‘š(๐‘ฅ, ๐‘ฆ, ๐‘ฆ)๐‘š๐‘– ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘š๐‘–+1 ๐‘ฅ, ๐‘ฆ, ๐‘ฆ

๐‘š ๐‘ฅ, ๐‘ฆ, ๐‘ฆ = ๐‘š๐‘–+1 ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘š๐‘–+2 ๐‘ฅ, ๐‘ฆ, ๐‘ฆโ‹ฏ

๐‘š๐‘˜ ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘ฆ

Proof โ‡ :๐‘š๐‘– ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘  ๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ง๐‘š๐‘–+1 ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘  ๐‘ฅ, ๐‘ฅ, ๐‘ฆ, ๐‘ง

๐‘š ๐‘ฅ, ๐‘ฆ, ๐‘ง โ‰” ๐‘ (๐‘ฅ, ๐‘ฆ, ๐‘ฆ, ๐‘ง)

๐‘›-permutable + wkp โ‡” Malโ€˜cev

โ€ข Lemma: If ๐นฮฃ weakly preserves kernel pairs then for any terms ๐‘, ๐‘ž

๐‘ ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘ž ๐‘ฅ, ๐‘ฆ, ๐‘ฆ โ‡” โˆƒ ๐‘ .

๐‘ ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘  ๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ง๐‘ž ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘ (๐‘ฅ, ๐‘ฅ, ๐‘ฆ, ๐‘ง)

โ€ข Thm: Malโ€˜cev โ‡” ๐‘› โˆ’permutable + ๐นฮฃ weakly preserves kernel pairs

๐‘ฅ = ๐‘š1 ๐‘ฅ, ๐‘ฆ, ๐‘ฆ ,โ‹ฏ

๐‘š๐‘–โˆ’1 ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘š๐‘– ๐‘ฅ, ๐‘ฆ, ๐‘ฆ = ๐‘š(๐‘ฅ, ๐‘ฆ, ๐‘ฆ)๐‘š๐‘– ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘š๐‘–+1 ๐‘ฅ, ๐‘ฆ, ๐‘ฆ

๐‘š ๐‘ฅ, ๐‘ฆ, ๐‘ฆ = ๐‘š๐‘–+1 ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘š๐‘–+2 ๐‘ฅ, ๐‘ฆ, ๐‘ฆโ‹ฏ

๐‘š๐‘˜ ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘ฆ

Proof โ‡ :๐‘š๐‘– ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘  ๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ง๐‘š๐‘–+1 ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘  ๐‘ฅ, ๐‘ฅ, ๐‘ฆ, ๐‘ง

๐‘š ๐‘ฅ, ๐‘ฆ, ๐‘ง โ‰” ๐‘ (๐‘ฅ, ๐‘ฆ, ๐‘ฆ, ๐‘ง)

๐‘š ๐‘ฅ, ๐‘ฆ, ๐‘ฆ = ๐‘  ๐‘ฅ, ๐‘ฆ, ๐‘ฆ, ๐‘ฆ= ๐‘š๐‘–(๐‘ฅ, ๐‘ฆ, ๐‘ฆ)

๐‘›-permutable + wkp โ‡” Malโ€˜cev

โ€ข Lemma: If ๐นฮฃ weakly preserves kernel pairs then for any terms ๐‘, ๐‘ž

๐‘ ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘ž ๐‘ฅ, ๐‘ฆ, ๐‘ฆ โ‡” โˆƒ ๐‘ .

๐‘ ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘  ๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ง๐‘ž ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘ (๐‘ฅ, ๐‘ฅ, ๐‘ฆ, ๐‘ง)

โ€ข Thm: Malโ€˜cev โ‡” ๐‘› โˆ’permutable + ๐นฮฃ weakly preserves kernel pairs

๐‘ฅ = ๐‘š1 ๐‘ฅ, ๐‘ฆ, ๐‘ฆ ,โ‹ฏ

๐‘š๐‘–โˆ’1 ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘š๐‘– ๐‘ฅ, ๐‘ฆ, ๐‘ฆ = ๐‘š(๐‘ฅ, ๐‘ฆ, ๐‘ฆ)๐‘š๐‘– ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘š๐‘–+1 ๐‘ฅ, ๐‘ฆ, ๐‘ฆ

๐‘š ๐‘ฅ, ๐‘ฆ, ๐‘ฆ = ๐‘š๐‘–+1 ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘š๐‘–+2 ๐‘ฅ, ๐‘ฆ, ๐‘ฆโ‹ฏ

๐‘š๐‘˜ ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘ฆ

Proof โ‡ :๐‘š๐‘– ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘  ๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ง๐‘š๐‘–+1 ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘  ๐‘ฅ, ๐‘ฅ, ๐‘ฆ, ๐‘ง

๐‘š ๐‘ฅ, ๐‘ฆ, ๐‘ง โ‰” ๐‘ (๐‘ฅ, ๐‘ฆ, ๐‘ฆ, ๐‘ง)

๐‘›-permutable + wkp โ‡” Malโ€˜cev

โ€ข Lemma: If ๐นฮฃ weakly preserves kernel pairs then for any terms ๐‘, ๐‘ž

๐‘ ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘ž ๐‘ฅ, ๐‘ฆ, ๐‘ฆ โ‡” โˆƒ ๐‘ .

๐‘ ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘  ๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ง๐‘ž ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘ (๐‘ฅ, ๐‘ฅ, ๐‘ฆ, ๐‘ง)

โ€ข Thm: Malโ€˜cev โ‡” ๐‘› โˆ’permutable + ๐นฮฃ weakly preserves kernel pairs

๐‘ฅ = ๐‘š1 ๐‘ฅ, ๐‘ฆ, ๐‘ฆ ,โ‹ฏ

๐‘š๐‘–โˆ’1 ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘š๐‘– ๐‘ฅ, ๐‘ฆ, ๐‘ฆ = ๐‘š(๐‘ฅ, ๐‘ฆ, ๐‘ฆ)๐‘š๐‘– ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘š๐‘–+1 ๐‘ฅ, ๐‘ฆ, ๐‘ฆ

๐‘š ๐‘ฅ, ๐‘ฆ, ๐‘ฆ = ๐‘š๐‘–+1 ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘š๐‘–+2 ๐‘ฅ, ๐‘ฆ, ๐‘ฆโ‹ฏ

๐‘š๐‘˜ ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘ฆ

Proof โ‡ :๐‘š๐‘– ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘  ๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ง๐‘š๐‘–+1 ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘  ๐‘ฅ, ๐‘ฅ, ๐‘ฆ, ๐‘ง

๐‘š ๐‘ฅ, ๐‘ฆ, ๐‘ง โ‰” ๐‘ (๐‘ฅ, ๐‘ฆ, ๐‘ฆ, ๐‘ง)

๐‘š ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘  ๐‘ฅ, ๐‘ฅ, ๐‘ฅ, ๐‘ฆ= ๐‘š๐‘–+1(๐‘ฅ, ๐‘ฅ, ๐‘ฆ)

๐‘›-permutable + wkp โ‡” Malโ€˜cev

โ€ข Lemma: If ๐นฮฃ weakly preserves kernel pairs then for any terms ๐‘, ๐‘ž

๐‘ ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘ž ๐‘ฅ, ๐‘ฆ, ๐‘ฆ โ‡” โˆƒ ๐‘ .

๐‘ ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘  ๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ง๐‘ž ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘ (๐‘ฅ, ๐‘ฅ, ๐‘ฆ, ๐‘ง)

โ€ข Thm: Malโ€˜cev โ‡” ๐‘› โˆ’permutable + ๐นฮฃ weakly preserves kernel pairs

๐‘ฅ = ๐‘š1 ๐‘ฅ, ๐‘ฆ, ๐‘ฆ ,โ‹ฏ

๐‘š๐‘–โˆ’1 ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘š๐‘– ๐‘ฅ, ๐‘ฆ, ๐‘ฆ = ๐‘š(๐‘ฅ, ๐‘ฆ, ๐‘ฆ)๐‘š๐‘– ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘š๐‘–+1 ๐‘ฅ, ๐‘ฆ, ๐‘ฆ

๐‘š ๐‘ฅ, ๐‘ฆ, ๐‘ฆ = ๐‘š๐‘–+1 ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘š๐‘–+2 ๐‘ฅ, ๐‘ฆ, ๐‘ฆโ‹ฏ

๐‘š๐‘˜ ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘ฆ

Proof โ‡ :๐‘š๐‘– ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘  ๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ง๐‘š๐‘–+1 ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘  ๐‘ฅ, ๐‘ฅ, ๐‘ฆ, ๐‘ง

๐‘š ๐‘ฅ, ๐‘ฆ, ๐‘ง โ‰” ๐‘ (๐‘ฅ, ๐‘ฆ, ๐‘ฆ, ๐‘ง)

๐‘š ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘  ๐‘ฅ, ๐‘ฅ, ๐‘ฅ, ๐‘ฆ= ๐‘š๐‘–+1(๐‘ฅ, ๐‘ฅ, ๐‘ฆ)

๐‘›-permutable + wkp โ‡” Malโ€˜cev

โ€ข Lemma: If ๐นฮฃ weakly preserves kernel pairs then for any terms ๐‘, ๐‘ž

๐‘ ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘ž ๐‘ฅ, ๐‘ฆ, ๐‘ฆ โ‡” โˆƒ ๐‘ .

๐‘ ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘  ๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ง๐‘ž ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘ (๐‘ฅ, ๐‘ฅ, ๐‘ฆ, ๐‘ง)

โ€ข Thm: Malโ€˜cev โ‡” ๐‘› โˆ’permutable + ๐นฮฃ weakly preserves kernel pairs

๐‘ฅ = ๐‘š1 ๐‘ฅ, ๐‘ฆ, ๐‘ฆ ,โ‹ฏ

๐‘š๐‘–โˆ’1 ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘š๐‘– ๐‘ฅ, ๐‘ฆ, ๐‘ฆ = ๐‘š(๐‘ฅ, ๐‘ฆ, ๐‘ฆ)๐‘š๐‘– ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘š๐‘–+1 ๐‘ฅ, ๐‘ฆ, ๐‘ฆ

๐‘š ๐‘ฅ, ๐‘ฆ, ๐‘ฆ = ๐‘š๐‘–+1 ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘š๐‘–+2 ๐‘ฅ, ๐‘ฆ, ๐‘ฆโ‹ฏ

๐‘š๐‘˜ ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘ฆ

Proof โ‡ :๐‘š๐‘– ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘  ๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ง๐‘š๐‘–+1 ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘  ๐‘ฅ, ๐‘ฅ, ๐‘ฆ, ๐‘ง

๐‘š ๐‘ฅ, ๐‘ฆ, ๐‘ง โ‰” ๐‘ (๐‘ฅ, ๐‘ฆ, ๐‘ฆ, ๐‘ง)

๐‘›-permutable + wkp โ‡” Malโ€˜cev

โ€ข Lemma: If ๐นฮฃ weakly preserves kernel pairs then for any terms ๐‘, ๐‘ž

๐‘ ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘ž ๐‘ฅ, ๐‘ฆ, ๐‘ฆ โ‡” โˆƒ ๐‘ .

๐‘ ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘  ๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ง๐‘ž ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘ (๐‘ฅ, ๐‘ฅ, ๐‘ฆ, ๐‘ง)

โ€ข Thm: Malโ€˜cev โ‡” ๐‘› โˆ’permutable + ๐นฮฃ weakly preserves kernel pairs

๐‘ฅ = ๐‘š1 ๐‘ฅ, ๐‘ฆ, ๐‘ฆ ,โ‹ฏ

๐‘š๐‘–โˆ’1 ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘š(๐‘ฅ, ๐‘ฆ, ๐‘ฆ)

๐‘š ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘š๐‘–+2 ๐‘ฅ, ๐‘ฆ, ๐‘ฆโ‹ฏ

๐‘š๐‘˜ ๐‘ฅ, ๐‘ฅ, ๐‘ฆ = ๐‘ฆ

Proof โ‡ :๐‘š๐‘– ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘  ๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ง๐‘š๐‘–+1 ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘  ๐‘ฅ, ๐‘ฅ, ๐‘ฆ, ๐‘ง

๐‘š ๐‘ฅ, ๐‘ฆ, ๐‘ง โ‰” ๐‘ (๐‘ฅ, ๐‘ฆ, ๐‘ฆ, ๐‘ง)

Conclusion

โ€ข ๐นฮฃ preserves

โ€ข preimages โ‡” weak independence implies independence

โ€ข kernel pairs โ‡ ๐’ฑ(ฮฃ) is Malโ€˜cevโ‡’ ( ๐‘›-permutable โ‡’ Malโ€˜cev )

Open: โ‡” ???

Distributive and modular varieties

โ€ข If ๐น๐’ฑ ๐‘‹ preserves kernel pairs then

โ€ข ๐’ฑ is congruence distributive iffโˆƒ๐‘˜ โˆˆ โ„•. โˆƒ๐‘š.๐‘š is ๐‘˜โˆ’ary majority term, i.e.

๐‘š ๐‘ฅ,โ€ฆ , ๐‘ฅ, ๐‘ฆ = โ‹ฏ = ๐‘š ๐‘ฅ,โ€ฆ , ๐‘ฅ, ๐‘ฆ, ๐‘ฅ, โ€ฆ , ๐‘ฅ = โ‹ฏ = ๐‘š ๐‘ฆ, ๐‘ฅ, โ€ฆ , ๐‘ฅ = ๐‘ฅ

โ€ข ๐’ฑ is congruence modular iffโˆƒ๐‘˜ โˆˆ โ„•. โˆƒ๐‘š. โˆƒ๐‘ž.

๐‘š ๐‘ฅ,โ€ฆ , ๐‘ฅ, ๐‘ฆ = โ‹ฏ = ๐‘š ๐‘ฅ,โ€ฆ , ๐‘ฅ, ๐‘ฆ, ๐‘ฅ, โ€ฆ , ๐‘ฅ = โ‹ฏ = ๐‘š ๐‘ฅ, ๐‘ฆ, ๐‘ฅ, โ€ฆ , ๐‘ฅ = ๐‘ฅ๐‘š ๐‘ฆ, ๐‘ฅ,โ€ฆ , ๐‘ฅ = ๐‘ž ๐‘ฅ, ๐‘ฅ, ๐‘ฆ๐‘ž ๐‘ฅ, ๐‘ฆ, ๐‘ฆ = ๐‘ฅ