fret texx\aching module

Upload: danielep1

Post on 01-Jun-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 FRET TeXX\aching Module

    1/34

    FRET Basics and Applicationsan EAMNET teaching module

    Timo Zimmermann + Stefan Terjung Advanced Light Microscopy Facility

    European Molecular Biology Laboratory, Heidelberg

    http://www.embl.de/almf/http://www.embl.de/eamnet/

  • 8/9/2019 FRET TeXX\aching Module

    2/34

    Overview

    1) Fluorescence Resonance Energy Transfer Basics

    2) Confocal FRET detection techniques3) FRET and fluorescent proteins

    4) A new GFP FRET pair with increased efficiency

    S. Terjung + T. Zimmermann

    EAMNET FRET teaching module

  • 8/9/2019 FRET TeXX\aching Module

    3/34

    The resolving power of light microscopes is limited to distances of

    hundreds of nanometers (

  • 8/9/2019 FRET TeXX\aching Module

    4/34

    Fluorescence Resonance Energy transfer (FRET)

    FRET is a non-radiative transfer of energy from an excited donor molecule to a suitable acceptor molecule in close proximity.

    Wouters et al. (2001), TICB 11/5

    Fluorescence Resonance Energy Transfer

    In the case of FRET, excitation of the donor fluorophore results

    not only in donor emission, but partially also in emission

    characteristic for the acceptor fluorophore.

    S. Terjung + T. Zimmermann

    EAMNET FRET teaching module

  • 8/9/2019 FRET TeXX\aching Module

    5/34

    Dependence on distance and spectral overlap

    S. Terjung + T. Zimmermann

    EAMNET FRET teaching module

    The efficiency of energy transfer strongly depends on the distance between the donor 

    acceptor molecules and on overlap of the donor molecule emission and acceptor moleculeexcitation spectra high specificity.

    FRET efficiency is depends

    on molecule distance

    and

    The FRET efficiency depends on the distance between the two interacting molecules. Atthe distance of the Förster radius R0 between the molecules, the FRET efficiency is 50%.

    The typical R0 is around 3 nm.

  • 8/9/2019 FRET TeXX\aching Module

    6/34

    Donor/Acceptor Pairs

    Examples for common FRET Donor/Acceptor pairs:

    Donor (Em.) Acceptor (Exc.)

    FITC (520 nm) TRITC (550 nm)

    Cy3 (566 nm) Cy5 (649 nm)

    EGFP(508 nm) Cy3 (554 nm)

    CFP (477 nm) YFP (514 nm)

    EGFP (508 nm) YFP (514 nm)

    S. Terjung + T. Zimmermann

    EAMNET FRET teaching module

  • 8/9/2019 FRET TeXX\aching Module

    7/34

    FRET detection methods

    A variety of FRET detection methods exist for light microscopy

     Acceptor photobleaching

    Donor photobleaching

    Ratio imaging

    Sensitized emission

    Fluorescence lifetime measurements

    S. Terjung + T. Zimmermann

    EAMNET FRET teaching module

  • 8/9/2019 FRET TeXX\aching Module

    8/34

    FRET detection methods

    The detection methods have different properties and are suitedto different samples

    Detection of changes:

     Acceptor photobleaching

    Donor photobleaching

    Information self-contained:

    Ratio imaging

    Sensitized emission

    => fixed samples

    => in vivo

    Fluorescence lifetime measurements

    S. Terjung + T. Zimmermann

    EAMNET FRET teaching module

  • 8/9/2019 FRET TeXX\aching Module

    9/34

    Acceptor Photobleaching

    Experimental steps of acceptor photobleaching measurements

    In acceptor photobleaching, the acceptor molecule of the FRET pair is bleached,resulting in a brightening (unquenching) of the donor fluorescence.

    Prebleach

    ImageBleaching

    Postbleach

    Image

    Median

    Filtering

    Subtraction:

    Postbleach – 

    Prebleach

    Division:

    Subtraction/

    Postbleach

    Zoom

    4x

    Original

    Zoom

    GFP GFP

    S. Terjung + T. Zimmermann

    EAMNET FRET teaching module

    Cy3 Cy3

    488 488 488

    543 543543

     An apparent FRET efficiency (productof the efficiency of the FRET pair andthe amount of interacting donor) canbe calculated

    Acquisition Processing

  • 8/9/2019 FRET TeXX\aching Module

    10/34

    Acceptor photobleachingShift Correction by Cross-Correlation helps avoiding edge artifacts in the comparison ofpre- and postbleach images.

    Edge

    artifacts

    S. Terjung + T. Zimmermann

    EAMNET FRET teaching module

    Without correction With correction

  • 8/9/2019 FRET TeXX\aching Module

    11/34

    Donor photobleaching

    FRET decreases donor fluorescence lifetime=> decreased likeliness of bleaching=> decreased bleaching rate

    Fluorescence

    lifetime

    The bleaching rate of the donor fluorophore is affected by FRET.

    Measuring the bleaching of the donor in the presence/absence ofacceptor is a possibility to detect FRET.

    An apparent FRET efficiency (product of the efficiency

    of the FRET pair and the amount of interacting donor)

    can be calculated.

    However: Quantitation is problematic due to direct and

    indirect bleaching of acceptor 

    S. Terjung + T. Zimmermann

    EAMNET FRET teaching module

  • 8/9/2019 FRET TeXX\aching Module

    12/34

    Overview1) Fluorescence Resonance Energy Transfer Basics

    2) Confocal FRET detection techniques

    3) FRET and fluorescent proteins

    4) A new GFP FRET pair with increased efficiency

    S. Terjung + T. Zimmermann

    EAMNET FRET teaching module

  • 8/9/2019 FRET TeXX\aching Module

    13/34

    FRET and Fluorescent Proteins (FPs)

    Protein-Protein Interactions:

    - FRET between an FP and a dye

    - FRET between FPs

    Cameleons:

    In vivo measurements of physiologicalchanges (ratio imaging)

    S. Terjung + T. Zimmermann

    EAMNET FRET teaching module

  • 8/9/2019 FRET TeXX\aching Module

    14/34

    GFP-Protein GFP-Protein

    P

    d>Ro

    d

  • 8/9/2019 FRET TeXX\aching Module

    15/34

    Acceptor photobleachingReceptor phosphorylation after EGF-Stimulation

    0 min 2 min 5 min

    ErbB1-GFP/Cy3 FRET (receptor phosphorylation), Verveer, et al. 2000

    S. Terjung + T. Zimmermann

    EAMNET FRET teaching module

    CFP/YFP

  • 8/9/2019 FRET TeXX\aching Module

    16/34

    CFP/YFPThe combination of cyan and yellow fluorescent protein is the

    most commonly used fluorescent protein FRET pair 

    S. Terjung + T. Zimmermann

    EAMNET FRET teaching module

  • 8/9/2019 FRET TeXX\aching Module

    17/34

    Fluorescence Resonance Energy Transfer Cameleon Tandem constructs

    CFP YFP

    Pollock and Heim TiCB 1999, Miyawaki et al. Nature 1997

    S. Terjung + T. Zimmermann

    EAMNET FRET teaching module

    In vivo CFP/YFP cameleon measurements

  • 8/9/2019 FRET TeXX\aching Module

    18/34

    In vivo CFP/YFP cameleon measurementsMeasurements caried out on the Leica SP2 AOBS at 405 nm excitation:

    2 µM Ionomycin+ 20mM CaCl2

    Histamine EGTA

    S. Terjung + T. Zimmermann

    EAMNET FRET teaching module

  • 8/9/2019 FRET TeXX\aching Module

    19/34

    Sensitized emission detection

  • 8/9/2019 FRET TeXX\aching Module

    20/34

    Sensitized emission detection

    D

    A

       D

      A

    D

    A

    D  

    A  

    Ratiometric imaging can

    only be done in samples

    with a fixed stochiometryof donor and acceptor 

    (e.g. Cameleons)

    D

    A

    A

    S. Terjung + T. Zimmermann

    EAMNET FRET teaching module

    DA In samples with variable

    stochiometries, the detected

    acceptor fluorescence has to becorrected for emission cross-talk

    and for cross-excitation

    A

    DA

    A

    DA

    DA

    A

    Sensitized emission detection

  • 8/9/2019 FRET TeXX\aching Module

    21/34

    Sensitized emission detection

    Predetermined factors with pure samples of donor and acceptor:Donor cross-talk : RD Acceptor cross-excitation: RE

    S. Terjung + T. Zimmermann

    EAMNET FRET teaching module

    Donor channel

    Donor excitation

    FD

    Acceptor channel

    Donor excitation

    FDA

    Acceptor channel

    Acceptor excitation

    FA

     corr

     Donor

     cross-talk

     correction

     Acceptor

     cross-excitation

     correction

    Required images:

    FDA corr/FA

    =>

  • 8/9/2019 FRET TeXX\aching Module

    22/34

    Overview1) Fluorescence Resonance Energy Transfer Basics

    2) Confocal FRET detection techniques

    3) FRET and fluorescent proteins

    4) A new GFP FRET pair with increased efficiency

    S. Terjung + T. Zimmermann

    EAMNET FRET teaching module

    CFP/YFP

  • 8/9/2019 FRET TeXX\aching Module

    23/34

    CFP/YFPCyan and yellow fluorescent protein is the most commonly used

    fluorescent protein FRET pair 

    S. Terjung + T. Zimmermann

    EAMNET FRET teaching module

  • 8/9/2019 FRET TeXX\aching Module

    24/34

    Requirements for a good FRET pair 

    -Maximal overlap of donor emission and

    acceptor excitation-Minimal direct excitation of the acceptor at theexcitation maximum of the donor 

    S. Terjung + T. Zimmermann

    EAMNET FRET teaching module

    Spectral overlap of FRET Pairs

  • 8/9/2019 FRET TeXX\aching Module

    25/34

    Spectral overlap of FRET Pairs

    The spectral overlap of donor emission and acceptor excitation is

    only partial for CFP/YFP and much better for GFP/YFP pairs

    S. Terjung + T. Zimmermann

    EAMNET FRET teaching module

  • 8/9/2019 FRET TeXX\aching Module

    26/34

    Requirements for a good FRET pair 

    -Maximal overlap of donor emission and

    acceptor excitation-Minimal direct excitation of the acceptor at theexcitation maximum of the donor 

    S. Terjung + T. Zimmermann

    EAMNET FRET teaching module

    Different Cross-Excitation of FRET Pairs

  • 8/9/2019 FRET TeXX\aching Module

    27/34

    Different Cross Excitation of FRET Pairs

    Using a suitable laser excitation for CFP, YFP is directly excited

    significantly (=> high background signal)GFP2 is excitable around 400 nm, where YFP is almost not excitable

    (=> low background signal)

    458 405

    S. Terjung + T. Zimmermann

    EAMNET FRET teaching module

    Comparison of CFP/YFP and

  • 8/9/2019 FRET TeXX\aching Module

    28/34

    Comparison of CFP/YFP and

    GFP2/YFP FRET pairs

    CFP YFP

    exc. 405/458 nm

    glycine linker 

    GFP2 YFP

    exc. 405 nm

    glycine linker 

    S. Terjung + T. Zimmermann

    EAMNET FRET teaching module

  • 8/9/2019 FRET TeXX\aching Module

    29/34

    Acceptor photobleachingComparison of CFP and GFP2 in the same construct

    Before After  

    CFP-YFP: FRET efficiency 20%

    GFP2-YFP: FRET efficiency 30%

    => 50% increase

    S. Terjung + T. Zimmermann

    EAMNET FRET teaching module

    Improved FRET Efficiency significantly improves Detection

  • 8/9/2019 FRET TeXX\aching Module

    30/34

    Whereas the differences between FRET pairs are not significant at high

    transfer efficiencies, a more efficient FRET pair significantly improvesthe detectable FRET interaction in cases of low FRET efficiency.

    S. Terjung + T. Zimmermann

    EAMNET FRET teaching module

    Sensitized emission of GFP2-YFP FRET pairs

  • 8/9/2019 FRET TeXX\aching Module

    31/34

    p

    GFP2

    excitation

    GFP2

    emission

    GFP2

    excitation

    YFP

    emission

    YFP

    excitation

    YFP

    emission

    YFP (sensitized emission)

    YFP (direct excitation)

    GFP2+YFP

    Coexpression

    GFP2-YFP

    linked

    Data are shown after linear unmixing of the GFP2 and YFP emission signals.

    S. Terjung + T. Zimmermann

    EAMNET FRET teaching module

    Comparison of CFP/YFP and GFP2/YFP

  • 8/9/2019 FRET TeXX\aching Module

    32/34

    FRET pairs

    - 32% increased overlap of donor emission and acceptor excitation

    - Higher absorbance and quantum efficiency of the donor 

    - Higher Foerster Radius (approx. 5.5 nm)

    - Increased FRET efficiency, especially at longer distances- Suitable for donor photobleaching

    - However: Linear unmixing of the strongly overlappingemission signals required

    S. Terjung + T. Zimmermann

    EAMNET FRET teaching module

  • 8/9/2019 FRET TeXX\aching Module

    33/34

    ALMF: Rainer PepperkokJens Rietdorf 

    Stefan Terjung

    GFP2/YFP project: Andreas GirodVirginie Georget

    Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2 -YFP FRET pair 

    T. Zimmermann, J. Rietdorf, A. Girod, V. Georget, R. Pepperkok, FEBS Letters 531 (2002)245 -249

    http://www.embl.de/almf/http://www.embl.de/eamnet/

    S. Terjung + T. Zimmermann

    EAMNET FRET teaching module

    Lit t

  • 8/9/2019 FRET TeXX\aching Module

    34/34

    Literature• T. Förster (1946): Naturwissenschaften 6, 166

    • T. Förster (1948): Ann. Phys. (Leipzig) 2, 55

    • A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura and R. Y.

    Tsien (1997): Nature 388, 882-887.

    • B.A. Pollok and R. Heim (1999): Trends in Cell Biology 9, 57-60.

    • P.J. Verveer, F.S. Wouters, A.R. Reynolds, P.I. Bastiaens (2000): Science 290, 1567-

    1570

    • F.S. Wouters, P. J. Verveer and P. I. H. Bastiaens (2001): Trends Cell Biol 11, 203-211.

    • T. Zimmermann, J. Rietdorf, A. Girod, V. Georget, R. Pepperkok (2002): FEBS Letters531, 245 -249

    S. Terjung + T. Zimmermann

    EAMNET FRET teaching module