from the pinhole camera … to the telescope and … from the

101
From the pinhole camera … to the telescope and … from the telescope … to the optical interferometer

Upload: others

Post on 31-Oct-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

From the pinhole camera … to the telescope and … from the telescope … to the optical interferometer

http://galileoscope.org

Galileoscope

D = 5cm, F/D = 10, G = 17, 25, 50; cost: 18 €

Deconvolution Theorem

Camera obscura

Pinhole camera

Pinhole

Camera obscura (cf. shoe box)

1 cm Angle = 1/114 radian

Projected image of the Sun Angle = 1/114 radian

114 cm

5 cm

5,7m = 5 x 114 cm

Camera obscura

Pinhole camera

Pinhole camera

Camera obscura

Pinhole camera

Camera obscura

H

H S

D

The blur B of the hearts is proportional to H, and inversely proportional to S, which is itself propotional to D è B ÷ H / D

The angular resolution Φ = H / D

H

D

The surface brightness SB of the hearts is proportional to H2, and inversely proportional to S2, and thus to D2 è SB ÷ (H / D)2

H S

Quiz (?)

??? ???

I(ζ,η) = Heart(ζ ',η ') Solar disk(ζ −ζ ',η −η ') dζ 'dη '∫∫I(ζ,η) = Solar disk(ζ ',η ')Heart(ζ −ζ ',η −η ') dζ 'dη '∫∫

Camera obscura

Pinhole camera

Objective lens Eyepiece = magnifier

9 Fourier Optical Elements 9.3 Telescope applications

■  9.3.1 Optical telescopes ■  9.3.2 Coupled telescopes ■  9.3.3 X-ray telescopes ■  9.3.4 Radio-telescopes and radio-interferometers

9 Fourier Optical Elements 9.3 Telescope applications 9.3.1 Optical telescopes

(a) (b)

9 Fourier Optical Elements 9.3 Telescope applications 9.3.1 Optical telescopes

(a)

(b) (c)

1 simple lens

1 double lens

9 Fourier Optical Elements 9.3 Telescope applications 9.3.1 Optical telescopes

(a) (b)

(c) (d)

9 Fourier Optical Elements 9.3 Telescope applications 9.3.1 Optical telescopes

Fobj Foc

αobj αoc

φ = E S = π D2 E / 4, f = F / D, E’ ~ f-2. G = αoc / αobj = Fobj / Foc.

9 Fourier Optical Elements 9.3 Telescope applications 9.3.1 Optical telescopes

(a)

(b)

(c)

9 Fourier Optical Elements 9.3 Telescope applications 9.3.1 Optical telescopes

(a)

(b) (c)

(d) (e)

9 Fourier Optical Elements 9.3 Telescope applications 9.3.1 Optical telescopes

(a) (b)

9 Fourier Optical Elements 9.3 Telescope applications 9.3.1 Optical telescopes

Newton focus (a) and Primary focus (b) of optical telescopes

(a) (b)

9 Fourier Optical Elements 9.3 Telescope applications 9.3.1 Optical telescopes

(a) (b) Observers in the Prime focus cage

(c)

9 Fourier Optical Elements 9.3 Telescope applications 9.3.1 Optical telescopes

(a) Cassegrain, Ritchey-Chrétien or Strand foci of an optical telescope and (b) Coudé focus

(a) (b)

9 Fourier Optical Elements 9.3 Telescope applications 9.3.1 Optical telescopes

(a)

(b)

(a)  Optical components of a Schmidt telescope and (b)  big Schmidt telescope of Mont Palomar

9 Fourier Optical Elements 9.3 Telescope applications 9.3.1 Optical telescopes

ESO VLT (Paranal, Chile) See the URL: http://www.eso.org

9 Fourier Optical Elements 9.3 Telescope applications 9.3.1 Optical telescopes http://www.stsci.edu/

(a) (b)

VLTI

9 Fourier Optical Elements 9.3 Telescope applications

■  9.3.1 Optical telescopes ■  9.3.2 Coupled telescopes ■  9.3.3 X-ray telescopes ■  9.3.4 Radio-telescopes and radio-interferometers

9 Fourier Optical Elements 9.3 Telescope applications 9.3.3 X-ray telescopes

(a) X-ray telescope with double grazing reflection (P: paraboloid; H: hyperboloid); (b) simple paraboloid; (c) X-ray mirror of the Einstein satellite and (d) Cellular collimator.

(a)

(b)

(c)

(d)

9 Fourier Optical Elements 9.3 Telescope applications 9.3.3 X-ray telescopes

(a)

(b)

(c)

9 Fourier Optical Elements 9.3 Telescope applications 9.3.3 X-ray telescopes

(a) (b) See the URLs: http://sci.esa.int/xmm/ and http://xmm.vilspa.esa.es/

9 Fourier Optical Elements 9.3 Telescope applications 9.3.3 X-ray telescopes

Entrance pupil P(x,y) and response function |h(ρ‘)|2 for an X-ray telescope (grazing light ray incidence).

9 Fourier Optical Elements 9.3 Telescope applications 9.3.4 Radio-telescopes and radio-interferometers

(a) Effelsberg radio-telescope (F: primary focus; F’: Gregory focus). (b) and (c) Photographs

(a) (b) (c)

9 Fourier Optical Elements

9.3 Telescope applications

9.3.4 Radio-telescopes and radio-interferometers

The Green Bank 300ft (West Virginia) … before and after 15/11/1988!

9 Fourier Optical Elements 9.3 Telescope applications 9.3.4 Radio-telescopes and radio-interferometers

(a), (b) and (c) : Photographs of the new Green Bank radio-telescope

(a) (b) (c)

9 Fourier Optical Elements 9.3 Telescope applications 9.3.4 Radio-telescopes and radio-interferometers

(a) Nançay radio-telescope

(a) (b)

9 Fourier Optical Elements 9.3 Telescope applications 9.3.4 Radio-telescopes and radio-interferometers

Arecibo radio-telescope

9 Fourier Optical Elements 9.3 Telescope applications 9.3.4 Radio-telescopes and radio-interferometers

The 500-metre aperture spherical telescope (FAST) in China's Pingtang county.

9 Fourier Optical Elements 9.3 Telescope applications 9.3.4 Radio-telescopes and radio-interferometers

Antenna diagram of a radio-telescope. (a) Excitation of the antenna for a point-like object inclined by an angle θ with respect to the central axis; (b) sensitivity of the mirror + antenna in polar coordinates (or graph of the response function in polar coordinates assuming that the antenna is point-like; (c) real diagram corresponding to λ / D ~ 1 / 10 and showing the back-side lobe B.

(a) (b) (c)

9 Fourier Optical Elements 9.3 Telescope applications 9.3.4 Radio-telescopes and radio-interferometers

Radio-interferometer: (a) Connection diagram; (b) Antenna diagram (graph in polar coordinates of the response function).

(a) (b)

~2

9 Fourier Optical Elements 9.3 Telescope applications 9.3.4 Radio-telescopes and radio-interferometers

( ) ( )2

2 2sin( ) 2 ( ) cos

pde p d O p pD

pdπ

ππ

⎛ ⎞⎡ ⎤= ∗⎜ ⎟ ⎣ ⎦

⎝ ⎠

( )2

2 sin 1 1( ) 2 ( ) ( ) cos(2 )

2 2R

pde p d O p dp O p pD

pdπ

ππ

⎛ ⎞ ⎡ ⎤= + ∗⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠∫

( )1( ) Re ( ) exp(2 )

2e p A B O p i pDπ⎡ ⎤= + ∗⎢ ⎥⎣ ⎦

A= 2d 2sin π pd( )π pd

⎜⎜

⎟⎟

2

and B = 12

O( p)dpR∫

(9.3.10)

(9.3.11)

(9.3.12)

(9.3.13)

,

,

,

,

9 Fourier Optical Elements 9.3 Telescope applications 9.3.4 Radio-telescopes and radio-interferometers

⎥⎦

⎤⎢⎣

⎡ += )))((_()2cos(21

)( DrOTFpDBApe π

( )( )1( ) Re ( )exp 2 ( )

2 Re p A B O r i p r D drπ⎡ ⎤= + −⎢ ⎥⎣ ⎦∫

γ(D) = (emax - emin) / (emax + emin),

γ(D) = TF_(O(r))(D) / (2B) = TF_(O(r))(D) / ∫O(p) dp.

(9.3.14)

(9.3.15)

(9.3.16)

(9.3.17)

,

,

9 Fourier Optical Elements 9.3 Telescope applications 9.3.4 Radio-telescopes and radio-interferometers

(a) (b)

(c) (d) (e)

Radio-telescope interferometer (a)  Connection diagram; (b)  Entrance pupil; (c) Response function; (d) Antenna diagram; (e) Trace of the main lobe over the celestial sphere.

9 Fourier Optical Elements 9.3 Telescope applications 9.3.4 Radio-telescopes and radio-interferometers

∑∫∫−

=

+−−

+−−−−

−−=1

0

2)1(

2

2)1(

2

2/

2/0,)2exp()2exp(),(

N

n

naaNd

naaNd

d

drdxpxidyqyiqph ππ

∑∫−

=

+−−

+−−− −=

1

0

2)1(

2

2)1(

20,

)2exp()sin(

),(N

n

naaNd

naaNdrdxpxi

qdqd

dqph πππ

( )( ) ( )( )1

,00

exp ( 1) 2 exp ( 1) 2sin( )( , )

2

N

rn

i p d N a na i p d N a naqdp q dqd i ph

π πππ π

=

− + − − − + − −=

−∑

(9.3.18)

(9.3.19)

(9.3.20)

(9.3.21)

,

,

,

,

1

,00

( 1)2( , )

N

rn

ax N nayx y

d dP−

=

⎡ ⎤+ − −⎢ ⎥⎡ ⎤=Π Π ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

9 Fourier Optical Elements 9.3 Telescope applications 9.3.4 Radio-telescopes and radio-interferometers

( ) ( )1

2,0

0

sin( ) sin( )( , ) exp ( 1) exp 2

N

rn

qd pdh p q d i pa N i panqd pdπ π

π ππ π

=

⎛ ⎞⎛ ⎞= − −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠∑

x = iπap and r = exp(-2x) ,

(9.3.22)

(9.3.23)

.

( )2,0

sin( ) sin( ) 1 exp( 2 )( , ) exp ( 1)

1 exp( 2 )rqd pd xN

h p q d x Nqd pd xπ ππ π

⎛ ⎞⎛ ⎞ − −= −⎜ ⎟⎜ ⎟ − −⎝ ⎠⎝ ⎠

(9.3.24) ,

2,0

sin( ) sin( ) exp( ) exp( )( , )

exp( ) exp( )rqd pd xN xN

h p q dqd pd x xπ ππ π

⎛ ⎞⎛ ⎞ − −= ⎜ ⎟⎜ ⎟ − −⎝ ⎠⎝ ⎠

2,0

sin( ) sin( ) sin( )( , )sin( )r

qd pd N pah p q dqd pd paπ π ππ π π

⎛ ⎞⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠

,

.

(9.3.25)

(9.3.26)

9 Fourier Optical Elements 9.3 Telescope applications 9.3.4 Radio-telescopes and radio-interferometers

.

(9.3.27)

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=

)sin()sin()sin()sin(

)(),(2222

220,

2

papa

paNpaN

pdpd

qdqd

dNqphr ππ

ππ

ππ

ππ

Central peak + intermediate peaks

Response function of a single aperture

N apertures!

9 Fourier Optical Elements 9.3 Telescope applications

Photograph of the Mills Cross in Australia

9 Fourier Optical Elements 9.3 Telescope applications 9.3.4 Radio-telescopes and radio-interferometers

Mills cross. (a) Disposition of the elements; (b) and (c) Traces over the celestial sphere of the antenna diagram when the two branches R1 and R2 are connected in phase (b) and in phase opposition (c); (d) trace over the celestial sphere of the difference diagram

(a) (b) (c) (d)

9 Fourier Optical Elements 9.3 Telescope applications 9.3.4 Radio-telescopes and radio-interferometers

PM,0(x,y) = Pr,0(x,y) + Pr,0(y,x), (9.3.28)

P’M,0(x,y) = Pr,0(x,y) - Pr,0(y,x). (9.3.29)

hM,0(p,q) = hr,0(p,q) + hr,0(q,p), (9.3.30)

h’M,0(p,q) = hr,0(p,q) - hr,0(q,p). (9.3.31)

9 Fourier Optical Elements 9.3 Telescope applications 9.3.4 Radio-telescopes and radio-interferometers |hc(p,q)|2 = |hM,0(p,q)|2 - |h’M,0(p,q)|2. (9.3.32)

|hc(p,q)|2 = 2[hr,0(p,q) h*

r,0(q,p) + h*r,0(p,q) hr,0(q,p)], (9.3.33)

|hc(p,q)|2 = 4 Re [hr,0(p,q) h*

r,0(q,p)]. (9.3.34)

. (9.3.35)

Interference terms

( ) ( ) ( )2 2

2 4 sin sin sin( ) sin( ), 4sin( ) sin( )c

pd qd N pa N qah p q dpd qd pa qaπ π π π

π π π π

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

9 Fourier Optical Elements

The Very Large Array near Socorro in New Mexico (USA)

9 Fourier Optical Elements

The Very Large Array near Socorro in New Mexico (USA)

9 Fourier Optical Elements

The Very Long Baseline Array (USA)

9 Fourier Optical Elements

The Very Long Baseline Array (USA)

9 Fourier Optical Elements

Quasar and AGN (Very Large Array, USA)

9 Fourier Optical Elements

Quasar and AGN (Very Long Baseline Array, USA)

9 Fourier Optical Elements

The LOFAR 'superterp'. View of the heart of the radio-interferometer located near Exloo, Holland (1,3 - 30m, 20 000 antenna, B ≈ 1000 km, 300 000 m2) .

9 Fourier Optical Elements

The 'SKA' (Square Kilometer Array) project: phased radio interferometer (Australia / South Africa, Base ≈ 3 000 km, 1 000 000 m2, 2024).

9 Fourier Optical Elements The Nançay

radio-helio- graphs (France)

See the URL: http://www.obs-nancay.fr/html_an/a_rh.htm

9 Fourier Optical Elements

Atacama Large Millimeter Array (Chile)

See the URL: http://www.eso.org/projects/alma/

View of North of Chile (space shuttle)

Geographic sites of the VLT and ALMA

9 Fourier Optical Elements

Atacama Large Millimeter Array (Chile)

See the URL: http://www.eso.org/projects/alma/

Aerial view of the ALMA site

Panoramic view of the ALMA site in Chajnantor

9 Fourier Optical Elements

Atacama Large Millimeter Array (Chile)

See the URL: http://www.eso.org/projects/alma/

Futuristic model of ALMA

9 Fourier Optical Elements

Atacama Large Millimeter Array (Chile)

See the URL: http://www.eso.org/projects/alma/

Futuristic models of ALMA

9 Fourier Optical Elements

Atacama Large Millimeter Array (Chile)

See the URL: http://www.eso.org/projects/alma/

9 Fourier Optical Elements

Atacama Large Millimeter Array (Chile)

See the URL: http://www.eso.org/projects/alma/

9 Fourier Optical Elements

Atacama Large Millimeter Array (Chile) HL Tauri, 450 light years from Earth, planetary disk made of gas and dust, spatial resolution is approximately 5 AU

See the URL: http://www.eso.org/projects/alma/