frontiers between crystal structure prediction and determination by powder diffractometry armel le...

76
Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085 Le Mans, France Email : [email protected]

Upload: kelly-stone

Post on 15-Jan-2016

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry

Armel Le Bail

Université du Maine, Laboratoire des Oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085 Le Mans, France

Email : [email protected]

Page 2: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Outline

- Introduction- Prediction software and examples- Fuzzy frontiers with SDPD- More examples from the GRINSP software - Opened doors, limitations, problems- « Immediate structure solution » by search-match- Conclusion- Live demo with EVA-Bruker + PPDF-1

Page 3: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

INTRODUCTION

Personnal views about crystal structure prediction :

“Exact” description before synthesis or discovery in nature.

These “exact” descriptions should be used for the calculation of powder patterns included in a database for automatic identification

of actual compounds not yet characterized crystallographycally.

Page 4: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

If the state of the art had dramatically evolved in the past ten years, we should have huge databases of predicted compounds, and not any new

crystal structure would surprise us since it would corespond already to an entry in that database.

Moreover, we would have obtained in advance the physical properties and we would have preferably synthesized those interesting compounds.

Of course, this is absolutely not the case.

Where are we with inorganic crystal structure prediction?

Page 5: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

But things are changing, maybe :

Two databases of hypothetical compounds were built in 2004.

One is exclusively devoted to zeolites : M.D. Foster & M.M.J. Treacy - Hypothetical Zeolites –

http://www.hypotheticalzeolites.net/

The other includes zeolites as well as other predicted oxides (phosphates, sulfates, silicates, borosilicates, etc) and fluorides :

the PCOD (Predicted Crystallography Open Database)http://www.crystallography.net/pcod/

Page 6: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Prediction software

Especially recommended lectures (review papers) :

1- S.M. Woodley, in: Application of Evolutionary Computation in Chemistry, R. L. Johnston (ed), Structure and bonding series, Springer-

Verlag 110 (2004) 95-132.

2- J.C. Schön & M. Jansen, Z. Krist. 216 (2001) 307-325; 361-383.

Software :

CASTEP, program for Zeolites, GULP, G42, Spuds, AASBU, GRINSP

Page 7: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

CASTEP

Uses the density functional theory (DFT) for ab initio modeling, applying a pseudopotential plane-wave code.

M.C Payne et al., Rev. Mod. Phys. 64 (1992) 1045.

Example : carbon polymorphs

Page 8: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

HypotheticalCarbon

PolymorphSuggested

ByCASTEP

Page 9: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Another CASTEP prediction

Page 10: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et
Page 11: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et
Page 12: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

ZEOLITES

The structures gathered in the database of hypothetical zeolites are produced from a 64-processor computer cluster grinding away non-stop,

generating graphs and annealing them, the selected frameworks being then re-optimized using the General Utility Lattice Program (GULP,

written by Julian Gale) using atomic potentials.

M.D. Foster & M.M.J. Treacy

- Hypothetical Zeolites –

http://www.hypotheticalzeolites.net/

Page 13: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et
Page 14: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et
Page 15: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et
Page 16: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et
Page 17: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Zeolite predictions are probably too much…

Less than 200 zeotypes are known

Less than 10 new zeotypes are discovered every year

Less than half of them are listed in that >1.000.000 database

So that zeolite predictions will continue up to attain several millions more…

Quantum chemistry validation of these prediction is required, not only empirical energy calculations, for elimination of a large number of models that will certainly never be confirmed.

Page 18: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

GULP (at the Frontier ?)

Appears to be able to predict crystal structures (one can find in the manual the data for the prediction of TiO2 polymorphs).

Recently, a genetic algorithm was implemented in GULP in order to generate crystal framework structures from the knowledge of only the

unit cell dimensions and constituent atoms (so, this is not full prediction...), the structures of the better candidates produced are relaxed by minimizing the lattice energy, which is based on the Born model of a

solid.

S.M. Woodley, in: Application of Evolutionary Computation in Chemistry, R. L. Johnston (ed), Structure and bonding series, Springer-Verlag 110 (2004) 95-132.

GULP : J. D. Gale, J. Chem. Soc., Faraday Trans., 93 (1997) 629-637. http://gulp.curtin.edu.au/

Page 19: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Part of the command list of GULP :

Page 20: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

G42

A concept of 'energy landscape' of chemical systems is used by Schön and Jansen for structure prediction with their program named G42.

J.C. Schön & M. Jansen, Z. Krist. 216 (2001) 307-325; 361-383.

Page 21: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et
Page 22: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et
Page 23: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et
Page 24: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

SPuDS

Dedicated especially to the prediction of perovskites.

M.W. Lufaso & P.M. Woodward, Acta Cryst. B57 (2001) 725-738.

Page 25: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

AASBU method

(Automated Assembly of Secondary Building Units)

Developed by Mellot-Draznieks et al.,

C. Mellot-Drazniek, J.M. Newsam, A.M. Gorman, C.M. Freeman & G. Férey, Angew. Chem. Int. Ed. 39 (2000) 2270-2275;

C. Mellot-Drazniek, S. Girard, G. Férey, C. Schön, Z. Cancarevic, M. Jansen, Chem. Eur. J. 8 (2002) 4103-4113.

Using Cerius2 and GULP in a sequence of simulated annealing plus minimization steps for the aggregation of large structural motifs.

Cerius2, Version 4.2, Molecular Simulations Inc., Cambridge, UK, 2000.

Page 26: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et
Page 27: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et
Page 28: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et
Page 29: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Two (incredible ?) predictions

« Giant structures solved by

combined targeted chemistry and computational design."

2 cubic hybrid solids structures published :

- 2004 - V ~380.000 Å3, a ~ 73Å, Fd-3m, 68 indpdt atoms (not-H)

- 2005 - V ~702.000 Å3, a ~ 89Å, Fd-3m, 74 indpdt atoms (not-H)

Presented more or less as being predicted, but with indexed powder patterns and guessed content.

Are they SDPD or predictions ?The fuzzy frontier is there…

Page 30: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Angew. Chem. Int. Ed. 43 (2004) 2-7.

Page 31: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Super-tetrahedra sharing corners, building super-zeolites (MTN-analogue)

Page 32: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Science 309 (2005) 2040-2042.

Page 33: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Same « prediction » process, building another MTN-analogue super-zeolite

From different super-tetrahedra

Page 34: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Will you be able to equal or surpass these giant structure « predictions » ?

YESIf the molecule, the cell and the space group are known, then the direct space methods need only 50 or 100 reflections for solving the structure, whatever the cell volume (6 DoF per molecule rotated and translated).

But this is not prediction.

MAYBEBy partial prediction (without cell but with known content).

This is « molecular packing prediction ».

NOWithout cell and without content, full total prediction at such complexity

level looks impossible.

Anyway, you may try to impress some Nature or Science reviewer searching for « sensational » results, by your eloquence.

Page 35: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Not enough full predictions

If zeolites are excluded, the productions of these prediction software are a few dozen… not enough,

and not available in any database.

The recent (2005) prediction program GRINSP is able to extendthe investigations to larger series of inorganic compounds

characterized by corner-sharing polyhedra.

Page 36: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

GRINSP

Geometrically Restrained INorganic Structure Prediction

Applies the knowledge about the geometrical characteristics of a particular group of inorganic crystal structures

(N-connected 3D networks with N = 3, 4, 5, 6, for one or two N values).

Explores that limited and special space (exclusive corner-sharing polyhedra) by a Monte Carlo approach.

The cost function is very basic, depending on weighted differences between ideal and calculated interatomic distances for first neighbours M-X, X-X and M-M for binary MaXb or ternary MaM'bXc compounds.

J. Appl. Cryst. 38, 2005, 389-395.J. Solid State Chem. 179, 2006, 3159-3166.

Page 37: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Observed and predicted cell parameters comparison

Predicted by GRINSP (Å) Observed or idealized (Å)

Dense SiO2 a b c R a b c

(%) Quartz 4.965 4.965 5.375 0.0009 4.912 4.9125.404 0.9

Tridymite 5.073 5.073 8.400 0.0045 5.052 5.052 8.270 0.8

Cristobalite 5.024 5.024 6.796 0.0018 4.969 4.969 6.9261.4

Zeolites ABW 9.872 5.229 8.733 0.0056 9.9 5.3 8.8

0.8EAB 13.158 13.158 15.034 0.0037 13.2 13.2 15.0 0.3EDI 6.919 6.919 6.407 0.0047 6.926 6.926 6.410

0.1GIS 9.772 9.772 10.174 0.0027 9.8 9.8 10.20.3GME 13.609 13.609 9.931 0.0031 13.7 13.7 9.90.6

Aluminum fluorides-AlF3 10.216 10.216 7.241 0.0159 10.184 10.184 7.174 

0.5Na4Ca4Al7F33 10.876 10.876 10.876 0.0122 10.781 10.781 10.781 0.9

AlF3-pyrochl. 9.668 9.668 9.668 0.0047 9.749 9.749 9.749

0.8

TitanosilicatesBatisite 10.633 14.005 7.730 0.0076 10.4 13.85 8.1

2.6Pabstite 6.724 6.724 9.783 0.0052 6.7037 6.7037 9.8240.9Penkvilskite 8.890 8.426 7.469 0.0076 8.956 8.727 7.387

1.3

Page 38: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Predictions produced by GRINSP

Binary compounds

Formulations M2X3, MX2, M2X5 et MX3 were examined.

Zeolites MX2 (= 4-connected 3D nets)

More than 4700 zeolites (not 1.000.000) are proposed with cell parameters < 16 Å, placed into the PCOD database :

http://www.crystallography.net/pcod/

GRINSP recognizes a zeotype by comparing the coordination sequences (CS) of a model with a previously established list of CS and with the CS

of the models already proposed during the current calculation).

Page 39: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Hypothetical zeolite PCOD1010026SG : P432, a = 14.623 Å, FD = 11.51

Page 40: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Other GRINSP predictions : > 3000 B2O3 polymorphs

Hypothetical B2O3 - PCOD1062004.

Triangles BO3 sharing corners. = 3-connected 3D nets

Page 41: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

> 1300 V2O5 polymorphs

square-based pyramids

= 5-connected 3D nets

Page 42: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

>30 AlF3 polymorphs

Corner-sharing octahedra.= 6-connected 3D nets

Page 43: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Do these AlF3 polymorphs can really exist ?

Ab initio energy calculations by WIEN2K « Full Potential (Linearized) Augmented Plane Wave code »

A. Le Bail & F. Calvayrac, J. Solid State Chem. 179 (2006) 3159-3166.

Page 44: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Ternary compounds MaM’bXc in 3D networks of polyhedra connected by corners

Either M/M’ with same coordination but different ionic radii

or with different coordinations

(mixed N-N’-connected 3D frameworks)

These ternary compounds are not always electrically neutral.

Page 45: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Borosilicates

PCOD2050102, Si5B2O13, R = 0.0055.

> 3000 models

SiO4 tetrahedra

andBO3

triangles

Page 46: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Aluminoborates

> 4000 models

Example : [AlB4O9]-2, cubic, SG : Pn-3, a = 15.31 Å, R = 0.0051:

AlO6 octahedra and

BO3

triangles

Page 47: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Fluoroaluminates

Known Na4Ca4Al7F33 : PCOD1000015 - [Ca4Al7F33]4-.

Two-sizesoctahedra

AlF6 and CaF6

Page 48: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Unknown : PCOD1010005 - [Ca3Al4F21]3-

Page 49: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Results for titanosilicates

> 1700 models

TiO6 octahedra

andSiO4

tetrahedra

Page 50: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Numbers of compounds in ICSD version 1-4-1, 2005-2 (89369 entries) potentially fitting structurally with the [TiSinO(3+2n)]

2- series of GRINSP

predictions, adding either C, C2 or CD cations for electrical neutrality.

n +C +C2 +CD Total GRINSP

ABX5 1 300 495 464 35 1294 130 TiSiO5

AB2X7 2 215 308 236 11 770 207 TiSi2O7

AB3X9 3 119 60 199 5 383 215 TiSi3O9

AB4X11 4 30 1 40 1 72 257 TiSi4O11

AB5X13 5 9 1 1 0 11 75 TiSi5O13

AB6X15 6 27 1 13 1 42 207 TiSi6O15

Total 2581 1091

More than 70% of the predicted titanosilicates have the general formula [TiSinO(3+2n)]

2-

Not all these 2581 ICSD structures are built up from corner sharing octahedra and tetrahedra. Many isostructural compounds inside.

Page 51: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Models with real counterparts

Page 52: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Example in PCOD

Not too bad if one considers that K et H2O are not taken into account in the model prediction...

Model PCOD2200207 (Si3TiO9)2- :a = 7.22 Å; b = 9.97 Å; c =12.93 Å, SG P212121

Known as K2TiSi3O9.H2O (isostructural to mineral umbite):a = 7.1362 Å; b = 9.9084 Å; c =12.9414 Å, SG P212121

(Eur. J. Solid State Inorg. Chem. 34, 1997, 381-390)

Page 53: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Highest quality (?) models

Page 54: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et
Page 55: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et
Page 56: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Models with the largest porosity

Page 57: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

PCOD3200086 : P = 70.2%, FD = 10.6, DP = 3 (dimensionality of the pore/channels system)

[Si6TiO15]2- , cubic, SG = P4132, a = 13.83 Å

Ring apertures9 x 9 x 9

Page 58: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

PCOD3200867, P = 61.7%, FD = 12.0, DP = 3 [Si2TiO7]2- , orthorhombic, SG = Imma

Ring apertures10 x 8 x 8

Page 59: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

PCOD3200081, P = 61.8%, FD = 13.0, DP = 3 [Si6TiO15]2- , cubic, SG = Pn-3

Ring apertures12 x 12 x 12

+10+6

Page 60: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

PCOD3200026, P = 59.6%, FD = 13.0, DP = 3 [Si4TiO11]2- , tetragonal, SG = P42/mcm

Ring apertures12 x 10 x 10

Page 61: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Opened doors, Limitations, Problems

GRINSP limitation : exclusively corner-sharing polyhedra.

Opening the door potentially to > 1.000.000 hypothetical compounds.

More than 60.000 silicates, phosphates, sulfates of Al, Ti, V, Ga, Nb, Zr, or zeolites, fluorides, etc. were included into PCOD

in february 2007.

Their powder patterns were calculated, building the PPDF-1

(Predicted Powder Diffraction File version 1) for search-match identification.

Page 62: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Predictedcrystal structures provide predicted fingerprints

Page 63: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Calculated powder patterns in the PPDF-1 allow for identification

by search-match (EVA - Bruker and

Highscore - Panalytical)

Providing a way for « immediate structure

solution »

We « simply » need for a complete database of predicted structures

;-)

Page 64: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Example 1 – The actual and virtual structures have the same chemical formula, PAD = 0.52% (percentage of absolute difference on cell parameters, averaged) : -AlF3,

tetragonal, a = 10.184 Å, c = 7.174 Å. Predicted : 10.216 Å, 7.241 Å. A global search (no chemical restraint) is resulting in the actual compound (PDF-2) in first position and the virtual one (PPDF-1) in 2nd (green mark in the toolbox).

Page 65: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Example 2 – Model showing uncomplete chemistry, PAD = 0.63. Actual compound : K2TiSi3O9H2O, orthorhombic, a = 7.136 Å, b = 9.908 Å, c =12.941 Å. Predicted

framework : TiSi3O9, a = 7.22 Å, b = 9.97 Å, c =12.93 Å. Without chemical restraint, the

correct PDF-2 entry is coming at the head of the list, but no virtual model. By using the chemical restraint (Ti + Si + O), the correct PPDF-1 entry comes in second position in spite of large intensity disagreements with the experimental powder pattern (K and H2O

are lacking in the PCOD model) :

Page 66: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Example 3 – Model showing uncomplete chemistry, PAD = 0.88. Predicted framework : Ca4Al7F33, cubic, a = 10.876 Å. Actual compound : Na4Ca4Al7F33,

a = 10.781 Å. By a search with chemical restraints (Ca + Al + F) the virtual model comes in fifth position, after 4 PDF-2 correct entries, if the maximum angle is limited to 30°(2) :

Page 67: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Example 4 : heulandite

Page 68: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Example 5 : Mordenite

Page 69: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Two main problems in identification by search-match process from the PPDF-1 :

- Inaccuracies in the predicted cell parameters, introducing discrepancies in the peak positions.

- Uncomplete chemistry of the models, influencing the peak intensities.

However, identification may succeed satisfyingly if the chemistry is restrained adequately during the search and if the averaged

difference in cell parameters is smaller than 1%.

Page 70: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

« New similarity index for crystal structure determination from X-ray

powder diagrams, » D.W.M. Hofmann and L. Kuleshova,

J. Appl. Cryst. 38 (2005) 861-866.

A similarity index less sensitive to cell parameter discrepancies

Page 71: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

δ-Zn2P2O7 Bataille et al., J. Solid State Chem. 140 (1998) 62-70.

Typical case to be solved by prediction

α

β

γ

δ

Uncertain indexing, line profiles broadened by size/microstrain

effects (Powder pattern not better from synchrotron radiation than from

conventional X-rays)

But the fingerprint is there…

Page 72: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Expected GRINSP improvements :

Edge, face, corner-sharing, mixed.

Hole detection, filling them automatically, appropriately, for electrical neutrality.

Using bond valence rules or/and energy calculationsto define a new cost function.

Extension to quaternary compounds, combining more than two different polyhedra.

Etc, etc. Do it yourself, the GRINSP software is open source…

Nothing planned about hybrids…

Page 73: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Current PCOD Content

4786 SiO2 + the isostructural (Al/P)O4, (Al/Si)O4 and (Al/S)O4

4138 AlO6/BO3

2394 VO5/PO4 + the isostructural VO5/SiO4, VO5/SO4, TiO5/SiO4

1747 TiO6/SiO4 + the isostructural phosphates and sulfates and also replacing Ti by Ga, Nb, V, Zr

1328 TiO6/VO5 + the isostructural VO6/VO5

1318 V2O5

33 AlF3 + the isostructural FeF3, GaF3 and CrF3

24 AlF6/CaF6

13 AlF6/NaF6

15.781 different structure-types, > 60.000 hypothetical phasesYou may ask for other isostructural series or build them…Expected > 120.000 at the next update in September 2007…

Page 74: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

Two things that don’t work well enough up to now…

Validation of the Predictions

- Ab initio calculations (WIEN2K, etc) : not fast enough for the validation of > 60000 structure candidates

(was 2 months for 12 AlF3 models)

Identification (is this predicted structure already known?)

- There is no efficient tool for the fast comparison of these thousands of inorganic predicted structures to the

known structures (inside of ICSD)

Page 75: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

One advice, if you become a structure predictorSend your data (CIFs) to the PCOD, thanks…

http://www.crystallography.net/pcod/

Page 76: Frontiers Between Crystal Structure Prediction and Determination by Powder Diffractometry Armel Le Bail Université du Maine, Laboratoire des Oxydes et

CONCLUSIONS

Structure and properties full prediction is THE challenge of this XXIth century in crystallography

Advantages are obvious (less serendipity and fishing-type syntheses)

We have to establish databases of predicted compounds, preferably open access on the Internet,

finding some equilibrium between too much and not enough

If we are unable to do that, we have to stop pretending to understand and master the crystallography laws