gantry crane.xls

18
SUMITOMO CORPORATION PROJECT : SKS, Prai - 350MW CCGT Power Plant Checked By Page of  DOC.TITLE: Design of Super structure-Design of Crane-girder Area: Turbine build. DOC. NO : CGPR1-100-5-011 Rev 0 Dept Structural DESIGN CALCULATIONS REFERENCES / REMARKS 6.4.a DESIGN OF CRANE GANTRY GIRDER 11M span  All below references are a) INPUT DATA :- BS 5950, (Refer Appendix-E, for EOT drawing) part-1, UNO Crane Capacity = 1050 kN Weight of Crab = 320 kN Weight of Crane Bridge = 780 kN Self weight of the Rail = 2 kN/m Width of Walk way = 0.6 m Dead Load of the Walkway = 1.5 kN/m² Live Load of the Walkway = 5 kN/m² Height of the Crane Rail = 65 mm Span of the Crane Girder, Lg = 11 m Centre to centre distance of , Lc = 32 m Rail (i.e. Span of Crane Bridge) Mini. approach of crane hook to the gantry = 1.800 m No. of Wheels = 4 Wheel Spacing1 = 1.40 m Wheel Spacing2 = 4.70 m C.G of loading from left load = 3.75 m 1.40 4.70 1.40 Impact Factor : Vertical = 30 % Horizontal = 10 % (Transverse to rail) Deflection Factor Vertical = 600 Table:5 Horizontal = 500 Load Factor : Imposed load vertical = 1.6 Imposed load Horiz.gI = 1.6 Dead load gdf = 1.4 Design strength of steel, py = 265.0 N/mm 2 Table:6 Maximum unsupported length Top Flange = 2.60 m 146905687.xls.ms_office .xls REF gvrs/ST

Upload: amirthraj74

Post on 31-Oct-2015

1.914 views

Category:

Documents


45 download

DESCRIPTION

design

TRANSCRIPT

7/16/2019 gantry crane.xls

http://slidepdf.com/reader/full/gantry-cranexls 1/18

SUMITOMO CORPORATION

PROJECT : SKS, Prai - 350MW CCGT Power Plant Checked By Page of  

DOC.TITLE: Design of Super structure-Design of Crane-girder  Area: Turbine build.

DOC. NO : CGPR1-100-5-011 Rev 0 Dept Structural

DESIGN CALCULATIONS REFERENCES /

REMARKS

6.4.a DESIGN OF CRANE GANTRY GIRDER 11M span  All below

references are

a) INPUT DATA :- BS 5950,

(Refer Appendix-E, for EOT drawing) part-1, UNO

Crane Capacity = 1050 kN

Weight of Crab = 320 kN

Weight of Crane Bridge = 780 kN

Self weight of the Rail = 2 kN/m

Width of Walk way = 0.6 m

Dead Load of the Walkway = 1.5 kN/m²

Live Load of the Walkway = 5 kN/m²

Height of the Crane Rail = 65 mm

Span of the Crane Girder, Lg = 11 m

Centre to centre distance of , Lc = 32 m

Rail (i.e. Span of Crane Bridge)

Mini. approach of crane hook to the gantry = 1.800 m

No. of Wheels = 4

Wheel Spacing1 = 1.40 m

Wheel Spacing2 = 4.70 m

C.G of loading from left load = 3.75 m 1.40 4.70 1.40

Impact Factor : Vertical = 30 %

Horizontal = 10 %

(Transverse to rail)

Deflection Factor Vertical = 600 Table:5

Horizontal = 500

Load Factor : Imposed load vertical = 1.6

Imposed load Horiz.gI = 1.6

Dead load gdf  = 1.4

Design strength of steel, py = 265.0 N/mm2

Table:6

Maximum unsupported length Top Flange = 2.60 m

146905687.xls.ms_office .xls REF gvrs/ST

7/16/2019 gantry crane.xls

http://slidepdf.com/reader/full/gantry-cranexls 2/18

SUMITOMO CORPORATION

PROJECT : SKS, Prai - 350MW CCGT Power Plant Checked By Page of  

DOC.TITLE: Design of Super structure-Design of Crane-girder  Area: Turbine build.

DOC. NO : CGPR1-100-5-011 Rev 0 Dept Structural

DESIGN CALCULATIONS REFERENCES /

REMARKS

Depth of the surge girder = 0.60 m

Maximum unsupported length Bottom Flange = 2.60 m

1.80m (1050+320)kN 780 kN

Kicker 

RL 32.00m RR

RL = (1370 x 30.20 + 780 x 32.00/2)/32.00= 1682.938 kN

Wheel Load by calculation 420.73 kN/wheel

b) LOAD CALCULATIONS:

b.1) Vertical Loads

b.1.a) Conc. Loads

Max. static Wheel Load say Wm = 421 kN

875.7 875.7

Load due to Impact = 0.30 x 421 = 126.3 kN

Total load = 547 kNFactored Load Wmf = 1.60 x 547. = 875.68 kN 1.40 4.70 1.40

b.1.b) Uniform Dirstributed Load

Self weight of rail = 2.00 kN/m

Walkway Dead Load = 0.45 kN/m

Walkway Live Load = 1.50 kN/m

Self weight of girder = 4.66 kN/m

8.61 kN/m

Factored load Wdf = 1.40 x 8.61 12.06 kN/m

b.2) Horizontal Loads

Maximum lateral load per wheel is equal to 10% Static vertical wheel load,l = 0.1 from Fig-1

Max. Lateral load WH = 0.10(421*4) = 168.4 kN BS:2573,part-1

4 wheels are resisting the total lateral load

Factored lateral load Wdf = 1.60 x 168.40 / 4 67.36 kN/wheel

146905687.xls.ms_office .xls REF gvrs/ST

7/16/2019 gantry crane.xls

http://slidepdf.com/reader/full/gantry-cranexls 3/18

SUMITOMO CORPORATION

PROJECT : SKS, Prai - 350MW CCGT Power Plant Checked By Page of  

DOC.TITLE: Design of Super structure-Design of Crane-girder  Area: Turbine build.

DOC. NO : CGPR1-100-5-011 Rev 0 Dept Structural

DESIGN CALCULATIONS REFERENCES /

REMARKS

c) MAXIMUM BENDING MOMENT AND SHEAR FORCE:

c.1) For vertical loads

c.1.a) Bending Moment :-

The maximum Bending moment under moving loads occurs when line of 

action of one load and centre of gravity of the loads are at equal distance

from the centre of span.

875.68kN 875.68kN 875.68kN 875.68kN12.06kN/m

C

R A RB

11.00m

Reactions :-

Ra = 4x875.68x(11 - 11*0.5 - 0.25*4.7) = 1443.525 kN

+ 12.06 x 11 /2

Rb = 4x875.68+12.06x11- 1,443.525 = 2191.834 kN

Maximum Bending moment occurs at C. =

Mux1 = (1443.53 x 4.33) -875.68 x 1.4 - (12.06 x 4.33²/2)

= 4904.517 kN.m

c.1.b) Shear Force:-

875.68kN 875.68kN 12.06kN/m

R A 11.00m

Reactions:

RA = 4 x 875.7 x [11.0-3.8] /11+ (12.1 x 11.0/2) 2374.930 kN

RB = (4 x 875.7) + (12.1 x 11.0) - 2374.93 1260.428 kN

Max. Reaction = 2374.930 kN

c.2) For Horizontal loads :-

CG. OF LOADS

Mid Span of Crane Girder 

==

CG. OF GANTRY

146905687.xls.ms_office .xls REF gvrs/ST

7/16/2019 gantry crane.xls

http://slidepdf.com/reader/full/gantry-cranexls 4/18

SUMITOMO CORPORATION

PROJECT : SKS, Prai - 350MW CCGT Power Plant Checked By Page of  

DOC.TITLE: Design of Super structure-Design of Crane-girder  Area: Turbine build.

DOC. NO : CGPR1-100-5-011 Rev 0 Dept Structural

DESIGN CALCULATIONS REFERENCES /

REMARKS

67.36kN

C

c.2.a) Local Bending Moment at C,

Crane Girder is laterally bending between Node points of surge Girder 

Muy  = 67.360 x 2.6 /4 43.784 kN.m

c.2.b) Axial Force:

Because of Lateral force, the Crane Girder is subjected to axial force.

Max lateral bending Moment 4904.5 x 67.36 / 875.68 377.27 kN-m

F=Axial force in the surge girder 377.27 / 0.6 628.78 kN

c.2.c) Shear force :-

67.36kN 67.36kN

RA 3.75m 11.00m RB

Reactions :-

RA = 4x 67.4[11.0 - 3.8]11.00 = 177.585 kN

RB = 4 x 67.360 - 177.585 = 91.855 kN

Max. Horzontal reaction RH = 177.585 kN

d) DESIGN OF GANTRY GIRDER: y

146905687.xls.ms_office .xls REF gvrs/ST

7/16/2019 gantry crane.xls

http://slidepdf.com/reader/full/gantry-cranexls 5/18

SUMITOMO CORPORATION

PROJECT : SKS, Prai - 350MW CCGT Power Plant Checked By Page of  

DOC.TITLE: Design of Super structure-Design of Crane-girder  Area: Turbine build.

DOC. NO : CGPR1-100-5-011 Rev 0 Dept Structural

DESIGN CALCULATIONS REFERENCES /

REMARKS

Depth 1250 mm

Width 450 mm 20

t  = 20 mm x x 1250

T = 40 mm

40

450

Properties :-

Depth of the section, D = 1250 mmWidth of the section, B = 450 mm

Thickness of web, t = 20 mm

Thickness of flange, T = 40 mm

Effective depth of web, d = 1170 mmSecond moment of inertia, Ixx = 1.59E+10 mm

4

econ momen o ner a, yy = 6.08E+08 mm4

r min = 101.19 mm

Section modulus, Zxx = 2.54E+07 mm3

ec on mo u u s, yy = 2.70E+06 mm3

Plastic modulus, Sxx = 2.96E+07 mm3

Plastic modulus, Syy = 4.28E+06 mm3

Buckling parameter, u = 1 conservatively

Torsional index, x : D/T = 31.25as per Cl.4.3.7.5

Sectional Area, A = 59400 mm2

Flange Area on one side, Ag = 18000 mm2

Out stand width of panel, b = 215 mm

Constant, e, = sqrt(275/py) = 1.02

Outstand element of compression flange, b/T = 5.38 Plastic Cl.3.5.2 and

Web slenderness, d/t = 58.50 Plastic Table:7

d.1) Shear Capacity

Web slenderness, d/t = 58.50 < 63*1.02 Cl.4.4.4.1

Satisfactory

Shear area parallel to the web, Avx=t*d = 23400 mm2 Cl.4.2.3,

Critical Shear strength, qcr for t/d =58.50 = 159 N/mm2 Table:21,

Shear Capacity, Vcr=qcr*Avx = 3720.6 kN Cl.4.4.5.3

>2,374.93 kN Satisfactory

d.2) Moment capacity, Mb

146905687.xls.ms_office .xls REF gvrs/ST

7/16/2019 gantry crane.xls

http://slidepdf.com/reader/full/gantry-cranexls 6/18

SUMITOMO CORPORATION

PROJECT : SKS, Prai - 350MW CCGT Power Plant Checked By Page of  

DOC.TITLE: Design of Super structure-Design of Crane-girder  Area: Turbine build.

DOC. NO : CGPR1-100-5-011 Rev 0 Dept Structural

DESIGN CALCULATIONS REFERENCES /

REMARKS

d.2.a) Lateral-torsional buckling moment, Mb:

( as per clause 4.3.7.3 of BS 5950, part-1)

Effective length factor = 1.00 Table:9

( Destabilizing condition)

(As per table:9,BS 5950,part-1: Beam partial restrained against rotation)

Effective length, LE = 2.60 m

Slenderness, l = LE/r min = 25.69

Equivalent slenderness, lLT = nunl Cl.4.3.7.5

Slenderness correction factor, n = 1.0 conservatively

Uniform moment factor, m = 1.0 conservatively

Buckling parameter, u = 1.000

l/x = 0.822

N = 0.50

Slenderness factor, n = 1.00 Table:14

 lLT = 25.69

pb = 265.00 N/mm2 Table:12

Buckling resistance, Mb = pb*Sxx

= 7843.23 kN.m Satisfactory

>4904.52 kN.m Cl.4.3.7.2

> m*Mux1

e) CHECK FOR COMBINED BENDING COMPRESSIVE STRESS

IN EXTREME FIBRE (FOR VERTICAL PLUS LATERAL)

e.1) Compressive strength pc :-

Slenderness, l = LE/r min = 25.69

Reduced design strength, py = 245.00 N/mm2 Cl.4.7.5

pc = 240.00 N/mm2 Table:27c

e.2) Overall buckling check

(As per Clause 4.8.3.3.1, BS 5950: part-1)

F/Ag*pc + mMux1/Mb + mMuy/py*Zyy = 0.832 Satisfactory

< 1.000

f) CHECK FOR LONGITUDINAL STRESS:

146905687.xls.ms_office .xls REF gvrs/ST

7/16/2019 gantry crane.xls

http://slidepdf.com/reader/full/gantry-cranexls 7/18

SUMITOMO CORPORATION

PROJECT : SKS, Prai - 350MW CCGT Power Plant Checked By Page of  

DOC.TITLE: Design of Super structure-Design of Crane-girder  Area: Turbine build.

DOC. NO : CGPR1-100-5-011 Rev 0 Dept Structural

DESIGN CALCULATIONS REFERENCES /

REMARKS

Height of rail = 65 mm

5% of the static wheel load = 5/100 x4x 875.7 175.14 kN

Bending moment in the longitudinal direction is equal to Longitudinal Force into

Crane Rail Depth plus half of Crane Girder depth

Mux2 = 175136 x (65 + 625.0) 120.84 kN.m

CHECK FOR COMBINED BENDING COMPRESSIVE STRESS

IN EXTREME FIBRE (FOR VERTICAL PLUS LONGITUDINAL)

F/Ag*pc + m(Mux1+Mux2)/Mb = 0.681 Satisfactory

g) CHECK FOR DEFLECTION:

 Allowable deflection for vertical loads

d lim, v = Span / 600 =11,000.0 / 600.0 = 18.33 mm

 Allowable deflection for horizontal loads

d lim, h = Span / 500 = 11,000.0 /500 = 22.00 mm

Vertical Deflection:-

3.15

1.75

547.3kN 547.3kN 8.61kN/m

c

R A 11.00 RB

d v =

= #VALUE!

{( 2 x 547300 x 11000³)/( 48 x 205000 x 1.59E+10)} x

{[3 x 1.75/11 - 4 x (1.75/11)³] + [3 x 3.15/11 - 4 x (3.15/11)³]}

= 11.960 mm

CHECK dv < Allowable Deflection 11.960 < 18.3 HENCE SAFE

h) Crane Girder Welding Calculation

Top Flange & Web is welded by full Penetration Butt weld.

úúû

ù

êêë

é÷ ø

 öçè 

æ 

úúû

ù

êêë

é÷ ø

 öçè 

æ -´+-´+´

3333

L

a23a2

48EI

PL

L

a13a1

48EI

PL

EI

WL

384

5

LL44

4

CG. OF GANTRY

CG OF LOADS

==

146905687.xls.ms_office .xls REF gvrs/ST

7/16/2019 gantry crane.xls

http://slidepdf.com/reader/full/gantry-cranexls 8/18

SUMITOMO CORPORATION

PROJECT : SKS, Prai - 350MW CCGT Power Plant Checked By Page of  

DOC.TITLE: Design of Super structure-Design of Crane-girder  Area: Turbine build.

DOC. NO : CGPR1-100-5-011 Rev 0 Dept Structural

DESIGN CALCULATIONS REFERENCES /

REMARKS

Bottom Flange Weld.

Horizontal Shear = FAy/ Ixx

 A- Area of the Bottom Flange = 18000 mm2

y - C.G of flange Plate from C.G of section = 605 mm

Ixx of the section = 1.59E+10 mm4

Maximum vertical shear = 2374.930 kN

Horizontal Shear 2,374.9 x 1000 x 18000x605 / 1585105 1631.626 N/mm

Size of the weld on each side 1,631.6/ ( 2 x 215x 0.707) 5.421 mm

Provide weld as = 12 mm

i) DESIGN OF BEARING STIFFENER

Bearing check:

Minimum area of stiffener in contact with the flange = 0.8*Fx/pys Cl.4.5.4.2

Fx = External reaction

pys = Design strength of stiffener  

Minimum Area of stiffener required = 7169.60 mm2

Conside Thk. Of Stiffener , ts = 25.00 mm

Width of the stiffener, bs = 450.00 mm

 Area of the stiffener = 11250.00 mm2 Satisfactory

Check for outstands

Outstand from the face of the web = bs/2-web thickness

= 215.00 mm

Outstand of web stiffeners, as per Cl.4.5.1.2 of BS5950: Limits:

19tse = 483.88 mm

13tse = 331.08 mm Satisfactory

Bearing resistance of the stiffener 

Bearing Stress in member = 211.10 N/mm2

146905687.xls.ms_office .xls REF gvrs/ST

7/16/2019 gantry crane.xls

http://slidepdf.com/reader/full/gantry-cranexls 9/18

SUMITOMO CORPORATION

PROJECT : SKS, Prai - 350MW CCGT Power Plant Checked By Page of  

DOC.TITLE: Design of Super structure-Design of Crane-girder  Area: Turbine build.

DOC. NO : CGPR1-100-5-011 Rev 0 Dept Structural

DESIGN CALCULATIONS REFERENCES /

REMARKS

< 265 N/mm2 Satisfactory

Buckling resistance of the stiffner 

(as per Cl.4.5.1.5 of BS5950,part-1)

Design strength of the stiffner in buckling = py-20 Cl.4.5.1.5

= 245.0 N/mm2

Buckling resistance check as a column:

 Area of combined section 450 x25 + 20 x 20 x 20 19250.00 mm2

Ixx = 1.90E+08 mm4

= 99.38 mm

l = l / Rmin =1250x 1000 / 99.4 = 12.58

Compressive strength, pc = 245.00 N/mm2 Tb.27c,

Buckling resistance of the stiffener = 4716.25 kN

> 2374.93 kN Satistactory

Weld between Stiffener & web

Vetical Height avilable for Welding = 1170.00 mm

Thk. of weld reqd =2,374.9 x1000/(1170x2x0.7*215) 6.74 mm

Provide weld thickness = 12.00 mm

 j) Shear buckling of Web under Wheel load

Web bearing under wheel load

(as per Cl.4.11.4,BS 5950, part-1)

Load dispersion under wheel,lw= 2(Height of the wheel + Thickness of the flange)

= 210 mm

Bearing Capacity = lw*py*t = 1113 kN

> 875.68 kN Satisfactory

Web buckling under wheel load

(as per Cl.4.5.2.1, BS 5950,part-1)

 A I  /Rmin =

146905687.xls.ms_office .xls REF gvrs/ST

7/16/2019 gantry crane.xls

http://slidepdf.com/reader/full/gantry-cranexls 10/18

SUMITOMO CORPORATION

PROJECT : SKS, Prai - 350MW CCGT Power Plant Checked By Page of  

DOC.TITLE: Design of Super structure-Design of Crane-girder  Area: Turbine build.

DOC. NO : CGPR1-100-5-011 Rev 0 Dept Structural

DESIGN CALCULATIONS REFERENCES /

REMARKS

b1 = Stiff bearing length = 2(Height of the crane rail)

= 130.00 mm

n1 = Dispersion at 45degrees through half the depth of the section

= (depth of the web + 2*thickness of the flange)

= 1250 mm

d = Depth of the web

= 1170 mm

Web slenderness, l = 2.5*depth of the web/thickness of the web Cl.4.5.2.1

= 146.25

Compressive resistance, pc = 70 N/mm2 Table 27c

Buckling resistance, Pw = (b1+n1)*t*pc

= 1932.00 kN

> 875.68 kN Satisfactory

k) Connection for Longitudinal Force

Longitudinal Force = 175.14 kN

Dia of bolt provided = 24.00 mm

No. of bolts provided = 4.00

Stress in Bolts = 96.78 N/mm2

< 160 N/mm2

l) Design of Surge Girder 

Design of bracing members

Maximum Horizontal force = 177.585 kN

Max Force in diagonal = 335.1 kN

 Angles provided = 100X100X8 RSC

 Area of the Section = 15.60 cm2

Rmin of the section = 3.07 cm

Length of diagonal = 1.50 mInclination of diagonal w.r.t Horizontal = 32.00

Stress in member = 214.82 N/mm2

(No.bays are

not to count in

the sketch)

 Allowable Stress in member 

l=1.5 *100 / 3.07 = 48.86

146905687.xls.ms_office .xls REF gvrs/ST

7/16/2019 gantry crane.xls

http://slidepdf.com/reader/full/gantry-cranexls 11/18

SUMITOMO CORPORATION

PROJECT : SKS, Prai - 350MW CCGT Power Plant Checked By Page of  

DOC.TITLE: Design of Super structure-Design of Crane-girder  Area: Turbine build.

DOC. NO : CGPR1-100-5-011 Rev 0 Dept Structural

DESIGN CALCULATIONS REFERENCES /

REMARKS

Compressive stress, pc = 225.00 N/mm2 Table 27c

> 214.82 Satisfactory

Design of bottom chord member 

(as surge may come on either direction, bottom chord members are designed

for compression)

Member size provided = 300X150X32 MS profile

 Area of the Section = 40.80 cm2

Rmin of the section = 3.29 cm

Unsupported length = 2.60 m

Maximum axial force, F = 628.78 kNStress in member = 154.11 N/mm

2

 Allowable Stress in member 

l=2.6 *100 / 3.29 = 79.03

Compressive stress, pc = 161.00 N/mm2 Table 27c

> 154.11 Satisfactory

 j) Design of Crane Girder Bracket

Depth of the bracket, Db = 1200 mm

Width of the flange plate, Wb = 600.00 mm

Thickness of the flange plate, Tb = 32.00 mm

Thickness of the web plate, tb = 25.00 mmEccetricity of Crane girder from grid = 1.00 m

Maximum Vertical force = 2374.93 kN

Design for Moment

Moment due to eccentricity, Me = 2374.93 kN.m

 Axial Force in Top flange, Ab=Me/Db = 1979.11 kN

Stress in top flange=Ab/Wb*Tb = 10.3078569 N/mm2

< 265.0 N/mm2 Satisfactory

Design for shear 

Web slenderness = 45.44 < 63*1.02 Cl.4.4.4.1

Satisfactory

Shear area parallel to the web = 28400 mm2 Cl.4.2.3,

Critical Shear strength = 159 N/mm2 Cl.4.2.3

Shear Capacity, = 4515.6 kN

>2,374.93 kN Satisfactory

146905687.xls.ms_office .xls REF gvrs/ST

7/16/2019 gantry crane.xls

http://slidepdf.com/reader/full/gantry-cranexls 12/18

Name Depth Breadth wt/m Tf Tw Cyy G Ixx Iyy Rxx Ryy Zxx Zyy Area

mm mm kN/m mm mm mm mm mm 

mm 

mm mm mm 

mm 

mm 

ISMC 75 75 40 0.0681 7.30 4.40 13.10 21 760000 126000 29.60 12.10 20300 4700 867ISMC 100 100 50 0.0918 7.50 4.70 15.30 28 1867000 259000 40.00 14.90 37300 7500 1170

ISMC 125 125 65 0.1271 8.10 5.00 19.40 35 4164000 599000 50.70 19.20 66600 13100 1619

ISMC 150 150 75 0.1639 9.00 5.40 22.20 40 7794000 1023000 61.10 22.10 103900 19400 2088

ISMC 175 175 75 0.1914 10.20 5.70 22.00 40 12233000 1210000 70.80 22.30 139800 22800 2438

ISMC 200 200 75 0.2214 11.40 6.10 21.70 40 18193000 1404000 80.30 22.30 181900 26300 2821

ISMC 225 225 80 0.2591 12.40 6.40 23.00 45 26946000 1872000 90.30 23.80 239500 32800 3301

ISMC 250 250 80 0.3036 14.10 7.10 23.00 45 38168000 2191000 99.40 23.80 305300 38400 3867

ISMC 300 300 90 0.3583 13.00 7.60 23.60 50 63626000 3108000 118.10 26.10 424200 46800 4564

ISMC 350 350 100 0.4212 13.50 8.10 24.40 60 100080000 4306000 136.60 28.30 571900 57000 5366

ISMC 400 400 100 0.4940 15.30 8.60 24.20 60 150828000 5048000 154.80 28.30 754100 66600 6293

146905687.xls.ms_office Page 12 of 29

7/16/2019 gantry crane.xls

http://slidepdf.com/reader/full/gantry-cranexls 13/18

Section H B wt/m A Tf Tw R1 R2 H1 H2 G Ixx Iyy Rxx Ryy Zxx Zyymm mm kN/m mm

 mm mm mm mm mm mm mm mm

 mm

 mm mm mm

 mm

 

ISMB100 100 75 0.115 1460 7.2 4.0 9.0 4.5 65.0 17.50 35 2575000 408000 42.0 16.7 51500 10880

ISMB125 125 75 0.130 1660 7.6 4.4 9.0 4.5 89.2 17.90 35 4490000 437000 52.0 16.2 71840 11653

ISMB150 150 80 0.149 1900 7.6 4.8 9.0 4.5 113.9 18.05 40 7264000 526000 61.8 16.6 96853 13150

ISMB175 175 90 0.193 2462 8.6 5.5 10.0 5.0 134.5 20.25 50 12720000 850000 71.9 18.6 145371 18889

ISMB200 200 100 0.254 3233 10.8 5.7 11.0 5.5 152.7 23.65 55 22354000 1500000 83.2 21.5 223540 30000

ISMB225 225 110 0.312 3972 11.8 6.5 12.0 6.0 173.3 25.85 60 34418000 2183000 93.1 23.4 305938 39691

ISMB250 250 125 0.373 4755 12.5 6.9 13.0 6.5 194.1 27.95 65 51314000 3345000 103.9 26.5 410512 53520

ISMB300 300 140 0.442 5626 12.4 7.5 14.0 7.0 241.6 29.25 80 86034000 4539000 123.7 28.4 573560 64843

ISMB350 350 140 0.524 6671 14.2 8.1 14.0 7.0 288.0 31.00 80 136303000 5377000 142.9 28.4 778874 76814

ISMB400 400 140 0.616 7846 16.0 8.9 14.0 7.0 334.4 32.80 80 204584000 6221000 161.5 28.2 1022920 88871

ISMB450 450 150 0.724 9227 17.4 9.4 15.0 7.5 379.2 35.40 90 303908000 8340000 181.5 30.1 1350702 111200

ISMB500 500 180 0.869 11074 17.2 10.2 17.0 8.5 424.1 37.95 100 452183000 13698000 202.1 35.2 1808732 152200

ISMB600 600 210 1.226 15621 20.8 12.0 20.0 10.0 509.7 45.15 140 918130000 26510000 242.4 41.2 3060433 252476

146905687.xls.ms_office Page 13 of 29

7/16/2019 gantry crane.xls

http://slidepdf.com/reader/full/gantry-cranexls 14/18

DESIGN OF CRANE GANTRY GIRDER

Project : PRAI POWER 350 MW CCGT POWER PLANT PROJECT

Building : CW PUMPHOUSE ( INTERNAL)

Girder Type : EXISTING CRANE BEAM - DESIGN CHECK

1) INPUT DATA

(Refer Appendix-A, for EOT drawing) All below

references are

Crane Capacity = 100 kN BS 5950,

part-1,

Weight of Crab = 0 kN

Weight of Crane Bridge = 0 kN

Self weight of the Rail = 1 kN/m

Height of the Crane Rail = 70 mm

Span of the Crane Girder, Lg = 8.7 m

Mini. approach of crane hook to the gantry = 1.000 m

No. of Wheels = 2

Wheel Spacing1 = 0.60 m

C.G of loading from left load = 0.30 m

Impact Factor : Vertical = 30 %

Horizontal = 10 %

(Transverse to rail)

On Stopper = 16 kN

Deflection Factor Vertical = 1000 Table:5

Horizontal = 1000

Load Factor : Imposed load vertical -gIvf  = 1.6

Imposed load Horiz.gIhf  = 1.6

Dead load gdf  = 1.4

Design strength of steel, py = 275 N/mm2

Table:6

Maximum unsupported length Top Flange = 8.70 m

Maximum unsupported length Bottom Flange = 8.70 m

2) LOAD CALCULATIONS

Wheel load calculation

Wheel Load by Vendor = 50.00 kN/wheel

2.a) Vertical Loads

i) Conc. Loads

 Average static Wheel Load say Wm = 50.0 kN

104.0 104.0

Load due to Impact = 0.30 x 50 = 15.00 kN

Total load = 65 kN

Factored Load Wmf = 1.60 x 65.00 = 104.00 kN 0.60 #### 0.60

ii) Uniform Dirstributed Load

Self weight of rail = 1.00 kN/m

Self weight of girder = 1.49 kN/m2.49 kN/m

Factored load Wdf = 1.40 x 2.49 = 3.49 kN/m

2.b) Horizontal Loads

Maximum lateral load per wheel is equal to 10% Static vertical wheel load,

l = 0.1 from Fig-1

7/16/2019 gantry crane.xls

http://slidepdf.com/reader/full/gantry-cranexls 15/18

Max. Lateral load WH = 0.10(50*2) = 10.0 kN BS:2573,part-1

2 wheels are resisting the total lateral load

Factored lateral load Wdf = 1.60 x 10.00 / 2 = 8.00 kN/wheel

2.c) Stopper Loads

Factored lateral load Wsp = 1.60 x 16.00 = 25.6 kN/stopper  

3) MAXIMUM BENDING MOMENT AND SHEAR FORCE

3.a) For vertical loads

i) Bending Moment

The maximum Bending moment under moving loads occurs when line of 

action of one load and centre of gravity of the loads are at equal distance

from the centre of span. ( refer diagram at deflection check)

Reactions :-

Ra = 104x(1 + 0.60/2/8.7) +3.49x8.70/2 = 122.76 kN

Rb = 2x104+3.49x8.7- 122.759 = 115.59 kN

Maximum Bending Moment

Mux1 = (122.76 x 4.35) -104 x 0.45 - (3.49 x 4.35²/2)

= 355.20 kN.m

ii) Shear Force:-

Reactions:

RA = 2 x 104.0 x [8.7-0.3] /8.7+ (3.5 x 8.7/2) = 216.00 kN 

RB = (2 x 104.0) + (3.5 x 8.7) - 216.00 = 22.35 kN

Max. Reaction = 216.00 kN

3.b) For Horizontal loads

i) Local Bending Moment at C,

Crane Girder is laterally bending between points of restrained at support

Muy  = 8.000 x 8.7 /4 = 17.40 kN.m

ii) Shear force

Reactions :-

RA = 2x 8.0[8.7 - 0.3]8.70 = 15.448 kN

RB = 2 x 8.000 - 15.448 = 0.552 kN

Max. Horzontal reaction RH = 15.448 kN

4) DESIGN OF GANTRY BEAM

Properties :-

Depth of the section, D = 609.9 mm UB610X305X149kg/m

Width of the section, B = 304.8 mm

Thickness of web, t = 11.9 mmThickness of flange, T = 19.7 mm

Effective depth of web, d = 537.2 mm

Second moment of inertia, Ixx = 1.25E+09 mm4

Second moment of inertia, Iyy = 9.30E+07 mm4

r min = 69.90 mm

Section modulus, Zxx = 4.09E+06 mm3

7/16/2019 gantry crane.xls

http://slidepdf.com/reader/full/gantry-cranexls 16/18

Section modulus, Zyy = 6.10E+05 mm3

Plastic modulus, Sxx = 4.57E+06 mm3

Plastic modulus, Syy = 9.37E+05 mm3

Buckling parameter, u = 0.886

Torsional index, x : D/T = 32.5

Sectional Area, A = 19000mm2Flange Area on one side, Ag = 6005 mm2

Out stand width of panel, b = 146.45 mm

Constant, e, = sqrt(275/py) = 1.00

Outstand element of compression flange, b/T = 7.43 Plastic Cl.3.5.2 and

Web slenderness, d/t = 45.14 Plastic Table:7

4.a) Shear Capacity

Web slenderness, d/t = 45.14 < 63*1.00 Cl.4.4.4.1

Satisfactory

Shear area parallel to the web, Avx=t*d = 6392.68 mm2 Cl.4.2.3,

Critical Shear strength, qcr for d/t =45.14 = 165 N/mm2 Table:21,

Shear Capacity, Vcr=qcr*Avx = 1054.79 kN Cl.4.4.5.3

> 216 kN Satisfactory

4.b) Moment capacity, Mb

i) Lateral-torsional buckling moment, Mb:

( as per clause 4.3.7.3 of BS 5950, part-1)

Effective length factor = 1.20 Table:9

( Destabilizing condition)

(As per table:9,BS 5950,part-1: Beam partial restrained against rotation)

Effective length, LE = 10.44 m

Slenderness, l = LE/r min = 149.36

Equivalent slenderness, lLT = nunl Cl.4.3.7.5

Slenderness correction factor, n = 1.0 conservatively

Uniform moment factor, m = 1.0 conservatively

Buckling parameter, u = 0.886

l/x = 4.596

N = 0.50

Slenderness factor, n = 0.82 Table:14

 lLT = 108.51

pb = 109.00 N/mm2 Table:11

Buckling resistance, Mb = pb*Sxx

= 498.13 kN.m Satisfactory

>355.20 kN.m Cl.4.3.7.2

> m*Mux1

5) CHECK FOR COMBINED BENDING COMPRESSIVE STRESS

IN EXTREME FIBRE (FOR VERTICAL PLUS LATERAL)

5.a) Compressive strength pc

Slenderness, l = LE/r min = 149.36

pc = 81 N/mm2 Table 27c

5.b) Overall buckling check

(As per Clause 4.8.3.3.1, BS 5950: part-1)

mMux1/Mb + mMuy/py*Zyy = 0.817 Satisfactory

< 1.000

6) CHECK FOR LONGITUDINAL STRESS

Height of rail = 70 mm

7/16/2019 gantry crane.xls

http://slidepdf.com/reader/full/gantry-cranexls 17/18

5% of the static wheel load = 5/100 x2x 104.0 10.40 kN

Bending moment in the longitudinal direction is equal to Longitudinal Force into

Crane Rail Depth plus half of Crane Girder depth

Mux2 = 10400 x (70 + 305.0) = 3.90 kN.m

CHECK FOR COMBINED BENDING COMPRESSIVE STRESS

IN EXTREME FIBRE (FOR VERTICAL PLUS LONGITUDINAL)

F/Ag*pc + m(Mux1+Mux2)/Mb = 0.742 Satisfactory

7) CHECK FOR DEFLECTION

 Allowable deflection for vertical loads

d lim, v = Span / 1000 =8,700.0 / 1,000.0 = 8.70 mm

 Allowable deflection for horizontal loads

d lim, h = Span / 1000 = 8,700.0 /1,000 = 8.70 mm

Vertical Deflection:-

4.5 4.2

3.90

65kN 65kN 2.49kN/m

c

R A 8.70 RB  

d v =

d v = #VALUE!

{( 65000 x 8700³)/( 48 x 205000 x 1.25E+09)} x

{[3 x 3.90/9 - 4 x (3.90/9)³] + [3 x 4.20/9 - 4 x (4.20/9)³]}

= 7.625 mm

CHECK dv < Allowable Deflection 7.625 < 8.7 HENCE SAFE

8) SHEAR BUCKING OF WEB UNDER WHEEL LOAD

8.a) Web bearing under wheel load

(as per Cl.4.11.4,BS 5950, part-1)

Load dispersion under wheel,lw= 2(Height of the wheel + Thickness of the flange)= 179.4 mm

Bearing Capacity = lw*py*t = 587.0865 kN

> 104.00 kN Satisfactory

8.b) Web buckling under wheel load

(as per Cl.4.5.2.1, BS 5950,part-1)

b1 = Stiff bearing length = 2(Height of the crane rail)

= 140.00 mm

n1 = Dispersion at 45degrees through half the depth of the section

= (depth of the web + 2*thickness of the flange)

= 609.9 mm

d = Depth of the web = 570.5 mm

Web slenderness, l = 2.5*depth of the web/thickness of the web Cl.4.5.2.1

= 119.85

Compressive resistance, pc = 97 N/mm2 Table 27c

úúû

ù

êêë

é÷ ø

 öçè 

æ 

úúû

ù

êêë

é÷ ø

 öçè 

æ -´+-´+´

3333

L

a23a2

48EI

PL

L

a13a1

48EI

PL

EI

WL

384

5

LL44

4

CG. OF GANTRY

CG OF LOADS

==

7/16/2019 gantry crane.xls

http://slidepdf.com/reader/full/gantry-cranexls 18/18

Buckling resistance, Pw = (b1+n1)*t*pc= 865.61 kN

= > 104.00 kN Satisfactory

9) CONNECTION FOR LONGITUDINAL LOAD

Longitudinal Force = 10.40 kN

Dia of bolt provided = 16 mm

No. of bolts provided = 2

Stress in Bolts = 25.86 N/mm2

< 160 N/mm2

10) DESIGN OF STOPPER BRACKET

Depth of the bracket, Dsp = 250 mm

Width of the bracket, Wsp = 102 mm

Thickness of the bracket plate, Tsp = 6 mm

Thickness of stiffener plate, Ts = 6 mm

No of stiffener plate, Ns = 1 nos

Distance between Stopper and flange of Crane girder = 0.20 m

Maximum Stopper force = 16.0 kNMaximum ultimate Stopper force, S = 25.6 kN

10.a) Design for Moment

Moment due to eccentricity, Mc = 5.12 kN.m

Combined plate C.G., x = 91.2 mm

Combined plate Ixx = 1.40E+07 mm4

Distance of compression edge = 158.8 mm

Combined plate Zxx = 88189 mm3

Moment capacity, Mc = PypZxx = 24.25 kNm Cl.4.13.2.4

> 5.12 kNm Satisfactory

10.b) Weld between Bracket and flange of Crane Girder 

Design strength of fillet weld, pw = 215 N/mm2

Tb.36, BS5950

Weld thickness = 6 mm

Effective length of flange weld = 400 mm

Max.bending tension in bracket, T = M/x = 56.2 kN

Capacity of bracket weld under tension = 361.2 kN

> 56.2 kN Satisfactory O.K.