garfield++ primary ionization calculations

32
Garfield++ Primary Ionization Calculations H. Schindler 6 th RD51 Collaboration Meeting October 9, 2010

Upload: others

Post on 29-Jan-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Garfield++Primary Ionization Calculations

H. Schindler

6th RD51 Collaboration Meeting

October 9, 2010

Part I

Garfield++

Garfield++

Concept

object-oriented toolkit for detailed simulation of gaseous andsemiconductor detectors

library of C++ classes

translation and extension of Fortran Garfield routines

visualization, statistics → ROOT

Team

R. Veenhof, A. Bellerive, N. Shiell, HSFurther contributors are most welcome...

Garfield++

Medium

material properties

gas → Magboltz

silicon

Detector Description

Geometry

Component

field calculation

analytic

field maps

neBEM

Sensor

Transport

Drift

charge transport

microscopic

MC

RKF

Track

primary ionization

Heed

...

Garfield++

Recent Activities

In the last few months (since the Freiburg meeting) we haveworked mainly on

analytic two-dimensional fields (wrapper and rewrite)

interface to Heed++

creation and interpolation of gas tables

How to get the code

http://svnweb.cern.ch/trac/garfield

http://svnweb.cern.ch/world/wsvn/garfield

First release within the next weeks or so.Any feedback is highly appreciated...

Tools Cluster Density Delta Electron Transport Cluster Size Distribution Summary

Part II

Primary Ionization

1 Tools

2 Cluster Density

3 Delta Electron Transport

4 Cluster Size Distribution

Tools Cluster Density Delta Electron Transport Cluster Size Distribution Summary

Tools

Heed

author: I. Smirnov

based on PAI model,extended by shell separationand atomic relaxation

phenomenological model forδ electron transport

interface to C++ version(2005) is now available

Magboltz/MIP

author: S. Biagi

electron cross-sectionsextended to mip energy

new program ”MIP”

cluster size distributionδ electron rangeW , F

δ electrons (up to ≈ 10keV) can also be simulatedon event-by-event basis(microscopic tracking)

Tools Cluster Density Delta Electron Transport Cluster Size Distribution Summary

PAI Model

Differential Cross-Section

Ndσ

dE=

z2α

β2π~cIm

(−1

ε (E )

)ln

2mβ2c2

E+

+z2α

β2π~cIm

(−1

ε (E )

)ln

1

|1− β2ε (E )|+

+z2α

β2π~c

(β2 − ε′ (E )

|ε (E )|2

)(π

2− arctan

1− β2ε′ (E )

β2ε′′ (E )

)+

+z2α

β2π~c1

E 2

E∫0

E ′Im

(−1

ε (E ′)

)dE ′

Heed:

ε′′ (E )→ N~cE

σγ (E )

Tools Cluster Density Delta Electron Transport Cluster Size Distribution Summary

Magboltz/MIP

total cross-sectionBethe-Born cross-section (for ε > 10 keV):

σion (ε) = 4π

(~mc

)2 1

β2

[M2

(ln(β2γ2

)− β2

)+ C

]tuned to exp. data

energy distribution of δ electronsparameterization by Opal, Beaty and Peterson

dE∝ 1

1 +(

EEOBP

)2 ,slightly modified 0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 10 20 30 40 50 60

prob

abili

ty

electron energy

CO2

Tools Cluster Density Delta Electron Transport Cluster Size Distribution Summary

Cluster Density

Comparison is made at T = 20◦ C, p = 760 Torr.

Experimental Data (σion)

G. W. McClure, Phys. Rev. 90 (1953), 796-803

F. Rieke, W. Prepejchal, Phys. Rev. A 6 (1972), 1507-1519

G. Malamud et al., J. Appl. Phys. 74 (1993), 3645-3651

other compilations

Particle Physics BookletSitar et al., Ionization Measurements in High Energy PhysicsBlum, Riegler, Rolandi, Particle Detection with Drift Chambers

Tools Cluster Density Delta Electron Transport Cluster Size Distribution Summary

Cluster Density - Neon

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

λ−1

[cm−1]

βγ

Rieke/Prepejchal

Heed

McClureSochting

PDGBudagov

MIP

Tools Cluster Density Delta Electron Transport Cluster Size Distribution Summary

Cluster Density - Argon

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

λ−1

[cm−1]

βγ

Heed (Henke)

Heed (Marr/West)Rieke/Prepejchal

McClureMalamud

PDGBudagov

MIP

Tools Cluster Density Delta Electron Transport Cluster Size Distribution Summary

Cluster Density - CO2

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

λ−1

[cm−1]

βγ

Rieke/Prepejchal

Heed

PDGBudagov

Tools Cluster Density Delta Electron Transport Cluster Size Distribution Summary

Cluster Density - CH4

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

λ−1

[cm−1]

βγ

Heed

Rieke/Prepejchal

MalamudPDG

BudagovMIP

Tools Cluster Density Delta Electron Transport Cluster Size Distribution Summary

Delta Electron Transport

Energy distribution of δ electrons would logically be the next pointof comparison, but is skipped here (some questions to be clarified).

Transformation of δ electrons to low energy electrons

Heed phenomenological algorithm for creation ofconduction electrons along the trackgeneric, requires only asymptotic W value andFano factor F (default 0.19)

Magboltz/Mip follow individual collisions with gas moleculesallows simulation of Penning transfers

Tools Cluster Density Delta Electron Transport Cluster Size Distribution Summary

Delta Electron Transport

Experimental Data (W )

ICRU Report 31 → asymptotic value

D. Combecher, Rad. Res. 84 (1980), 189-218

E. Waibel and B. Grosswendt

Nucl. Instr. Meth. 211 (1983), 487-498Proc. 8th Symp. Microdosimetry, Luxembourg (1983), 301-310Nucl. Instr. Meth. B 53 (1991), 239-250

B. G. R. Smith and J. Booz, Proc. 6th Symp.Microdosimetry, Brussels (1977), 759-775

I. Krajcar-Bronic et al., Rad. Res. 115 (1988), 213-222

Tools Cluster Density Delta Electron Transport Cluster Size Distribution Summary

Delta Electron Transport - Argon

20

30

40

50

60

70

80

90

100

10 100 1000 10000

W[e

V]

electron energy [eV]

CombecherSmith/Booz

Tools Cluster Density Delta Electron Transport Cluster Size Distribution Summary

Delta Electron Transport - Argon

0

0.1

0.2

0.3

0.4

0.5

10 100 1000 10000

F

electron energy [eV]

IAEA TECDOC 799

Magboltz

Heed

Tools Cluster Density Delta Electron Transport Cluster Size Distribution Summary

Delta Electron Transport - CO2

20

30

40

50

60

70

80

90

100

10 100 1000 10000

W[e

V]

electron energy [eV]

CombecherWaibel/Grosswendt

Smith/Booz

Tools Cluster Density Delta Electron Transport Cluster Size Distribution Summary

Delta Electron Transport - Ar/CO2

20

25

30

35

40

0 20 40 60 80 100

W[e

V]

CO2 concentration [%]

ε = 1 keV

without Penning transfer

with Penning transfer

Tools Cluster Density Delta Electron Transport Cluster Size Distribution Summary

Delta Electron Transport - CH4

20

30

40

50

60

70

80

90

100

10 100 1000 10000

W[e

V]

electron energy [eV]

CombecherWaibel/Grosswendt

Smith/BoozKrajcar-Bronic

Tools Cluster Density Delta Electron Transport Cluster Size Distribution Summary

Cluster Size Distribution

Experimental Data

H. Fischle et al., Nucl. Instr. Meth. A 301 (1991), 202-214

Example: CO2

n Fischle MIP Heed Heed + Magboltz

1 73.0 ± 2.8 73.9 77.1 70.22 16.2 ± 1.2 13.5 12.1 16.93 3.8 ± 0.4 4.6 3.9 5.14 2.0 ± 0.3 2.2 1.7 2.25 1.1 ± 0.2 1.2 0.9 1.1

in general: Heed gives higher probability for single-electron clusters

Tools Cluster Density Delta Electron Transport Cluster Size Distribution Summary

Cluster Size Distribution - CO2

0.01

0.1

1

10

100

2 4 6 8 10 12 14 16 18 20

per

cen

tage

number of electrons

Heed + MagboltzHeed

FischleMIP

Tools Cluster Density Delta Electron Transport Cluster Size Distribution Summary

Cluster Size Distribution - CH4

0.01

0.1

1

10

100

2 4 6 8 10 12 14 16 18 20

per

cen

tage

number of electrons

Tools Cluster Density Delta Electron Transport Cluster Size Distribution Summary

Summary and Outlook

For the calculation of primary ionization in gases, twocomplementary tools (Heed, Mip) are available.

Systematic uncertainties need to be understood andquantified:

Magboltz/Mip: uncertainties in excitation cross-sections(e. g. CH4)

Heed: shell separation and δ production → cluster sizedistributionphotoabsorption cross-section → cluster density

Cluster Density - Krypton

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

λ−1

[cm−1]

βγ

Heed

Rieke/Prepejchal

BudagovMIP

Cluster Density - Xenon

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

λ−1

[cm−1]

βγ

Rieke/Prepejchal

Heed

PDGBudagov

MIP

Cluster Density - iC4H10

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

λ−1

[cm−1]

βγ

Rieke/Prepejchal

Heed

MalamudPDG

BudagovMIP

Cluster Density - CF4

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

λ−1

[cm−1]

βγ

Rieke/Prepejchal

Heed

PDGMIP

Cluster Density - DME

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

λ−1

[cm−1]

βγ

Rieke/Prepejchal

Heed

Malamud

Delta Electron Transport - Noble Gases

20

30

40

50

60

70

80

90

100

1 10 100

W[e

V]

ε/εion

NeArKrXe

Delta Electron Transport - N2

20

30

40

50

60

70

80

90

100

10 100 1000 10000

W[e

V]

electron energy [eV]

CombecherWaibel/Grosswendt

Smith/Booz