gary steigman

40
Gary Steigman OSU Physics Colloquium, November 21, 2006 PROBING THE UNIVERSE AT 20 MINUTES AND 400 THOUSAND YEARS The Ohio State University

Upload: glenna

Post on 03-Feb-2016

26 views

Category:

Documents


0 download

DESCRIPTION

PROBING THE UNIVERSE AT 20 MINUTES AND 400 THOUSAND YEARS. Gary Steigman. The Ohio State University. OSU Physics Colloquium, November 21, 2006. The Universe is expanding and is filled with radiation. ~ 100 s after the Big Bang Primordial Nucleosynthesis. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Gary  Steigman

Gary Steigman

OSU Physics Colloquium, November 21, 2006

PROBING THE UNIVERSE AT

20 MINUTES AND 400 THOUSAND YEARS

The Ohio State University

Page 2: Gary  Steigman

The Universe is expanding and is filled with radiation

Page 3: Gary  Steigman

~ 0.1 s after the Big BangNeutrinos Decouple

~ 400 kyr after the Big BangRelic Photons (CBR) are free

~ 100 s after the Big BangPrimordial Nucleosynthesis

Page 4: Gary  Steigman

BBN & The CBR Provide Complementary

Probes Of The Early Universe

Do predictions and observations of the

baryon density and the expansion rate

agree at 20 minutes and at 400 kyr ?

Page 5: Gary  Steigman

Baryon Density Parameter

Note : Baryons Nucleons

nN / n ; 10 = 274 Bh2

where : B B / c

and : h H0 / 100 km / s / Mpc 0.7

H0-1 = 9.8 / h Gyr 14 Gyr

Page 6: Gary  Steigman

BBN “begins” at T 70 keV

(when n / p 1 / 7)

Coulomb barriers and the absence of

free neutrons end BBN at T 30 keV

tBBN 4 24 min.

The Early, Hot, Dense Universe Is A

Cosmic Nuclear Reactor

Page 7: Gary  Steigman

10

More nucleons less D

Evolution of Deuterium

Page 8: Gary  Steigman

n / p 1 / 7 Y 0.25

All / most neutrons are incorporated in 4He

Y is VERY WEAKLY dependent on the nucleon abundance

Y 4He Mass Fraction

Y is neutron limited

10

Evolution of Helium - 4

Page 9: Gary  Steigman

BBN Abundances of D, 3He, 7Li

are RATE (Density) LIMITED

D, 3He, 7Li are potential BARYOMETERS

BBN – Predicted Primordial Abundances

7Li 7Be

Page 10: Gary  Steigman

Two pathways to mass - 7

Page 11: Gary  Steigman

DEUTERIUM --- The Baryometer Of Choice

• As the Universe evolves, D is only DESTROYED

* Anywhere, Anytime : (D/H) t (D/H) P

* For Z << Z : (D/H) t (D/H) P (Deuterium Plateau)

• H and D are seen in Absorption BUT …

* H and D spectra are identical H Interlopers?

* Unresolved velocity structure Errors in N(H ) ?

• (D/H) P is sensitive to the baryon density ( )

Page 12: Gary  Steigman

Ly - Absorption

Page 13: Gary  Steigman

D/H vs. Metallicity

Deuterium Plateau ?

Low – Z / High – z QSOALS

Real variations,systematic differences, statistical uncertainties ?

Page 14: Gary  Steigman

D/H vs. H I Column Density

D/H Correlated With N(H I) ?

Page 15: Gary  Steigman

D/H vs. H I Column Density

NEW (2006)

Page 16: Gary  Steigman

D/H vs. H I Column Density

D/H Correlated With N(H I) ?

Page 17: Gary  Steigman

D/H vs. Metallicity

For Primordial D/H adopt the mean and the

dispersion around the mean

105(D/H)P = 2.65 ± 0.25

Page 18: Gary  Steigman

(D/H)P + SBBN Constrains 10 (@ ~ 7 %)

SBBN

Page 19: Gary  Steigman

CBR

Page 20: Gary  Steigman

B h2 = 0.018, 0.023, 0.028

CBR (WMAP) constrains B h2

CBR Temperature Anisotropy Spectrum

(T2 vs. ) Encodes The Baryon Density

The CBR is an early - Universe Baryometer

Barger et al. (2003)

Amplitudes of odd/even

peaks depend on Bh2

Page 21: Gary  Steigman

CBR Constrains 10 (@ ~ 3 %)

CBR

Page 22: Gary  Steigman

BBN (20 min) & CBR (380 kyr) AGREE !

BBN CBR

Page 23: Gary  Steigman

BBN + WMAP

D/H vs. Metallicity

The CBR is a good Deuteronometer !

Page 24: Gary  Steigman

• S H / H (/)1/2 (1 + 7N / 43)1/2

The Expansion Rate (H Hubble Parameter)

provides a probe of Non-Standard Physics

• 4He is sensitive to S while D probes

for : + N and N 3 + N

Page 25: Gary  Steigman

0.23

0.24

0.25

4.0 3.0 2.0

YP & yD 105 (D/H)

D & 4He Isoabundance Contours

Kneller & Steigman (2004)

4He is an early – Universe Chronometer

Page 26: Gary  Steigman

SBBN Prediction

As O/H 0, Y 0

Page 27: Gary  Steigman

BBN (D, 4He)

4.0 3.0 2.0

0.25

0.24

0.23

For N ≈ 2.5 ± 0.3

YP & yD 105 (D/H)

Page 28: Gary  Steigman

Low Reheat Temp.

(TR MeV)

Kawasaki, Kohri & Sugiyama

Late Decay of a

Massive Particle

&

Relic Neutrinos Not

Fully (Re) Populated

Neff < 3

Non-Standard BBN (Example of Neff < 3)

Page 29: Gary  Steigman

N = 1, 2.75, 5, 7

CBR constrains N (S)

CBR Temperature Anisotropy Spectrum

Encodes the Radiation Density R (S or N)

The CBR is an early - Universe Chronometer

Barger et al. (2003)

Peak locations vary with N

Page 30: Gary  Steigman

BBN (D & 4He) + CBR (WMAP)

BBN

CBR

Barger et al. (2003)

BBN & CBRConsistent !

Barger et al. (2003)

Page 31: Gary  Steigman

Joint BBN (D & 4He) & CBR Fit

Barger et al. (2003)

N < 4

But, is Li Consistent ?

N > 1

Barger et al. (2003)

Page 32: Gary  Steigman

[Li]OBS 12 + log(Li/H) 2.1

[Li]BBN 12 + log(Li/H) 2.6 – 2.7

Li too low ?

BBN and Primordial (Pop ) Lithium

Page 33: Gary  Steigman

Even for N 3

Y + D H

[Li] 2.60 0.07

(vs. [Li]OBS 2.1)

Li depleted / diluted

in Pop stars ?

4.0

yLi 1010 (Li/H)

4.0 3.0 2.0

Or, New Physics ?

Page 34: Gary  Steigman

Baryon Density () Determinations

N < 3 ?

?

Page 35: Gary  Steigman

?

N < 3 ?

?

X ?

Observational Uncertainties Or New Physics?

Page 36: Gary  Steigman

N (S) Determinations

BBN is a betterChronometer than

the CBR

V. Simha

Page 37: Gary  Steigman

SUMMARY

• SBBN (N = 3) D / H & CBR

• BBN (D & 4He) & CBR agree for :

10 = 6.1 (Bh2 = 0.022) & N = 2.5 (?)

* 95% Ranges :

1.9 N 3.1

5.5 10 6.6 (B ≈ 0.04 – 0.05)

Page 38: Gary  Steigman
Page 39: Gary  Steigman

BBN and the CBR Agree !

(The Theorist’s Mantra)

More & Better Data Are Needed !

SUCCESS

CHALLENGE

But, what’s up with Lithium ?

Page 40: Gary  Steigman