# gcf present distributive property in reverse

Post on 06-Jan-2018

215 views

Category:

## Documents

Embed Size (px)

TRANSCRIPT

• GCF present

• Distributive Property in Reverse

• Distributive Property in Reverse

• Distributive Property in ReverseExample 1

• Distributive Property in ReverseExample 1

• Difference of 2 SQUARES

• Example 1

• Example 1

• Example 2

• Example 3

• Example 4

• Is this a perfect Square?

• Difference of 2 CUBES

• The Difference of Two Cubes:The difference of cubes can be modeled using volume. The volume of a cube is:

• Imagine taking a cube with a volume of x3

xxx

• Imagine taking a cube with a volume of x3

The volume of the resulting figure must be x3 - y3. xxxyyyand cutting out and removing a smaller cube with a volume of y3 .

• Imagine taking a cube with a volume of x3

We call this the difference of two cubes.xxxyyyand cutting out and removing a smaller cube with a volume of y3 . The volume of the resulting figure must be x3 - y3.

• We are going to discover how to factor the difference of two cubes by breaking the diagram into rectangular prisms and finding the sum of the volumes of the rectangular prisms.

• xxx - yxxxyyy

• xxx - yxxxyyy

• xxx - yxxxyyy

yx-yx

• xxx - yxxxyyy

yx-yx

• xxx - yxxxyyy

yx-yxyx-yy

• xxx - yxxxyyy

yx-yxyx-yy

• 4x26x92x 3

• 4x26x92x 3

• 9x23x13x 1

• 9x23x13x 1

• Sum of 2 CUBES

• x22x4x 2

• x22x4x 2

• GCF presentDifference of 2 SQUARESDifference of 2 CUBESSum of 2 CUBES

• 2

36

x

-

xx

66

( )( )

(

)

(

)

abab

-+

x

6

2

25

x

+

33

ab

-

-

22

ab

-

33

ab

-

acbc

+

33

ab

+

(

)

cab

+

(

)

(

)

abab

+-

(

)

(

)

22

abaabb

+-+

2

2)16

y

-

a

cc

b

+

(

)

c

ab

+

22

xx

2

41

x

-

11

2

x

1

33

ab

+

(

)

(

)

-=-++

3322

xyxyxxyy

6

36

x

-

33

xx

3

x

3

Vxxx

or

Vx

=

=

(

)

(

)

22

b

a

b

aa

b

+-+

(

)

3

3

2

3

x

-

3

8

x

+

(

)

(

)

2

224

xxx

+-+

(

)

(

)

22

222

xxx

+-+

33

a

b

+=

2

b

=

ax

=

3

827

x

-

33

a

b

-=

(

)

(

)

22

b

a

b

aa

b

-++

36

-

2

ax

=

3

b

=

(

)

(

)

(

)

2

2

22

2

333

xx

x

-

++

(

)

(

)

2

23

469

x

xx

-

++

3

27

x

+

(

)

(

)

2

339

xxx

+-+

3

271

x

-

(

)

(

)

2

31931

xxx

-++

6

x

-

2

x

18

x

-

m

(

)

(

)

2

23

469

x

xx

-

=++

6

x

+

6

x

2

11

mm

-

(

)

11

m

m

-

2

x

27

-

2

12

x

18

x

2

12

x

-

3

8

x

18

x

-

2

9

x

-

2

12

x

2

12

x

-

18

x

1

-

3

x

-

2

9

x

3

x

2

9

x

-

3

27

x

3

x

2

9

x

3

x

-

(

)

(

)

2

224

xxx

=+-+

3

x

6

x

33

2

x

+

(

)

3

3

2

3

x

-

(

)

3

3

2

3

x

-

(

)

3

3

2

3

x

-

(

)

3

3

2

3

x

-

(

)

3

3

2

3

x

-

(

)

3

3

2

3

x

-

(

)

3

3

2

3

x

-

(

)

3

3

2

3

x

-

(

)

3

3

2

3

x

-

33

2

x

+

33

2

x

+

33

2

x

+

33

2

x

+

33

2

x

+

33

2

x

+

33

2

x

+

33

2

x

+

33

2

x

+

33

2

x

+

33

2

x

+

2

2

x

-

4

x

2

2

x

33

ab

-

33

ab

-

33

ab

+

(

)

(

)

22

abaabb

-++

(

)

(

)

22

abaabb

+-+

4

x

-

2

036

xx

+

-

2

6

6

6

3

x

x

x

-+

-

(

)

(

)

66

xx

-+

33

ab

+

-

+

=

Vlengthwidthheight

+

-

+

=

Vlwh

8

2

2

x

4

x

(

)

(

)

=-

=-

2

Vxxxy

xxy

(

)

(

)

=-

=-

Vxyxy

xyxy

(

)

(

)

=-

=-

2

Vyyxy

yxy

x

3

-

y

3

=

x

2

x

-

y

(

)

+

x

y

x

-

y

(

)

+

y

2

x

-

y

(

)

-

33

xy

(

)

-

2

xxy

(

)

-

xyxy

(

)

-

2

yxy

=

x

-

y

(

)

x

2

+

x

y

+

y

2

(

)

\

x

3

-

y

3

=

x

-

y

(

)

x

2

+

x

y

+

y

2

(

)

2

4)9

x

+

2

3)49

x

-

(

)

(

)

33

xx

-+

(

)

(

)

44

yy

-+

(

)

(

)

2323

xx

-+

-

33

xy

2

1)9

x

-

22

ab

-

(

)

(

)

abab

-+

2

2

x

-

4

x

-

Recommended