generation of entanglement & suppression of decoherence in endor-based quantum computing

25
Generation of entanglement & suppression of decoherenc e in ENDOR-based quantum co mputing Robabeh Rahimi 1 , Akira SaiToh 2 , and Mikio Nakaka ra 1 1 Department of Physics, Kinki University 2 Graduate School of Engineering Science, Osaka University

Upload: keelty

Post on 12-Jan-2016

26 views

Category:

Documents


1 download

DESCRIPTION

Generation of entanglement & suppression of decoherence in ENDOR-based quantum computing. Robabeh Rahimi 1 , Akira SaiToh 2 , and Mikio Nakakara 1 1 Department of Physics, Kinki University 2 Graduate School of Engineering Science, Osaka University. Liquid state NMR Quantum Computing - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Generation of entanglement & suppression of decoherence in ENDOR-based quantum computing

Generation of entanglement & suppression of decoherence in ENDOR-ba

sed quantum computing

Robabeh Rahimi1, Akira SaiToh2, and Mikio Nakakara1

1 Department of Physics, Kinki University2 Graduate School of Engineering Science, Osaka University

Page 2: Generation of entanglement & suppression of decoherence in ENDOR-based quantum computing

2007/9/? IICQI'07, Kish, IRAN 2

Liquid state NMR Quantum ComputingSeems working fine

Drawbacks of NMR quantum computing

• requires number of experiments, molecules

• weak signal intensity

Pseudo-pure states come with some costs!!

Exponential !!

!

Sates in the current NMR experiments separable (non-entangled)

Page 3: Generation of entanglement & suppression of decoherence in ENDOR-based quantum computing

2007/9/? IICQI'07, Kish, IRAN 3

For NMR Quantum ComputingHigher nuclear spin polarizations are requires

• Directly:

lowering the temperature; mK required!

increasing the magnetic field; current technology• Indirectly:

parahydrogen molecule; a large number of qubits

dynamic nuclear polarization (DNP)

Spin polarization is transferred

from electron spins, with high spin polarization,

to the nuclear spins, with low spin polarizationlow spin polarization.

Page 4: Generation of entanglement & suppression of decoherence in ENDOR-based quantum computing

2007/9/? IICQI'07, Kish, IRAN 4

Electron spin bus systems forquantum computing

Solid state quantum computingwith a bus spin, an electron spin, coupled to client qubits, many nuclear spins.*

* M. Mehring, J. Mende, Phys. Rev. A 73, 052303 (2006)

solid state

can be cooled to low temperaturewith an available high magnetic field

quantum limit can be achieved

Page 5: Generation of entanglement & suppression of decoherence in ENDOR-based quantum computing

2007/9/? IICQI'07, Kish, IRAN 5

ENDOR; Electron Nuclear DOuble ResonanceNMR in paramagnetic entities

Pulsed ENDORelectron-nuclear spin manipulation technology

high sensitivity & high polarization from ESR high resolution & nuclear selectivity from NMR

Magnetic Resonasnce Technology: ENDOR = ESR + NMR High sensitivity ( ~ 101-2 GHz) High resolution ( ~ 1 kHz)

Page 6: Generation of entanglement & suppression of decoherence in ENDOR-based quantum computing

2007/9/? IICQI'07, Kish, IRAN 6

Block Diagram of Pulsed QC-ENDOR Setup

X-band ( 10 GHz) Version:

~ DetectorTWTAPulse Former

RF Generator Nd:YAG LaserRF Amplifier

8 channel

Two Direct Digital Synthesizers

1 kW

300 W, 0.25 150 MHz 500 W, 0.30 35 MHz1000 W, 0.01 250 MHz

50 Hz, 90 mJ (at 532 nm) 1064/532/355/266 nm

High-Speed Digital Oscilloscope

Pulse Programmer

Water-cooling Electromagnet (-1.5~1.5 T)

9.6 GHzMW OSC.

ENDOR Probehead(Dielectric Resonator with RF Coil)Operating at liq. He Temp.

Liq. He Cryostat with a Gas-Flow Controller

Page 7: Generation of entanglement & suppression of decoherence in ENDOR-based quantum computing

2007/9/? IICQI'07, Kish, IRAN 7

Pulse Electron Multiple Resonance Spectrometers 

ESR/ENDOR/ELDOR

Page 8: Generation of entanglement & suppression of decoherence in ENDOR-based quantum computing

2007/9/? IICQI'07, Kish, IRAN 8

Entanglement & ENDOR

• Pseudo-pure state entanglemententanglement*:

*Mehring et al., PRL. 90, 153001(2003)

(a) (b) (c)

neneP

neneP

neSI

2

1

2

1 )()2/( 2434 MWRF

(a) (b) (c)

1

2

4

3

w24

w12

w34

1

2

4

3

w24

w12

w34

1

2

4

3

w24

w12

w34

Page 9: Generation of entanglement & suppression of decoherence in ENDOR-based quantum computing

2007/9/? IICQI'07, Kish, IRAN 9

(Pseudo-)Entanglement

ENDOR quantum computing

MW RF1 RF2 Bell state nTPPI

w24 w12 w34 f1 − f2

w24 w34 w12 f1 + f2

w13 w12 w34 f1 + f2

w13 w34 w12 f1 − f2

2

1

2

1

2

1

2

1ESRENDOR

1

2

4

3

w24

w12

w34

w13

RF1 RF2 RF2

echo

MW MW MW

2

2

2

2

1f

2f109

Page 10: Generation of entanglement & suppression of decoherence in ENDOR-based quantum computing

2007/9/? IICQI'07, Kish, IRAN 10

Malonyl Q-band

1.198898w24

1.198898w24

1.201028w13

B0/T

C

B

A

22.701w34

79.699w12

79.699w12

22.701w34

79.757w12

22.777w34

RF2/MHzRF1/MHz

0 2 4 6 8 10

TPPI Frequency / MHz

21

21

21

|1 − 2 ||1 + 2|

|1||2|1 = -5.2 MHz2 = 1.0 MHz

(Pseudo-)EntanglementENDOR quantum computing

ESRENDOR

1

2

4

3

w24

w12

w34

w13

Page 11: Generation of entanglement & suppression of decoherence in ENDOR-based quantum computing

2007/9/? IICQI'07, Kish, IRAN 11

DPNO Q-band

11

11

21

21

0 2 4 6 8 10

TPPI Frequency/ MHz

0 2 4 6 8 10

TPPI Frequency/ MHz

1 − 2 ||1 + 2|

|1|

2|

1 = -5.2 MHz2 = 1.0 MHz

00

00

21

21

B0 = 1. 2044T

B0 = 1.2066T

HN IIS MMMS IN IH

21

21 ,1,

21

21 ,1,

21

21 ,1,

21

21 ,1,

21

21 ,0,

21

21 ,0,

21

21 ,0,

21

21 ,0,

(Pseudo-)EntanglementENDOR quantum computing

Page 12: Generation of entanglement & suppression of decoherence in ENDOR-based quantum computing

2007/9/? IICQI'07, Kish, IRAN 12

Decoherenceelectron spin with very short decoherence time

Radical T1 /ms

DPNO-d10 42.5

Malonyl radical 91.5

DPNO 392.0

Spin-lattice relaxation time, T1@10K, saturation recovery

Radical T2 /μs

Malonyl radical 5.200 *

DPNO 0.777

DPNO-d10 0.489

Spin-spin relaxation time, T2@10 K , two pulse echo decay

* at 20 K

R. Rahimi, PhD thesis, quant-ph/0609063

Page 13: Generation of entanglement & suppression of decoherence in ENDOR-based quantum computing

2007/9/? IICQI'07, Kish, IRAN 13

A conventional model of a spin-boson system

On-resonance bosons,if dissipation is ignored,oscillation is found rather than a decay

A dissipative model of a spin-boson system

Page 14: Generation of entanglement & suppression of decoherence in ENDOR-based quantum computing

2007/9/? IICQI'07, Kish, IRAN 14

System study

CPS HHHH

n

kkk

n

jjjS SSASfH

100

0

bn

lkllP aaH

1

as

ssaasC aaSCH

a

ssaaC aaSCH~

Spin system Hamiltonian

Boson system Hamiltonian

Spin-boson coupling

For a bosonic mode in resonance with the spinaa aS

Page 15: Generation of entanglement & suppression of decoherence in ENDOR-based quantum computing

2007/9/? IICQI'07, Kish, IRAN 15

Tk

H

Z BO exp

1 the original density operator

(b) With polarization transfer Tk

H

PO

B

P

eZ

1n

ele

1

(a) Without polarization transfer OO

is the reduced density operator of the electron spin of the original stateele O

Page 16: Generation of entanglement & suppression of decoherence in ENDOR-based quantum computing

2007/9/? IICQI'07, Kish, IRAN 16

the total entangling operationentU

Q-band ENDOR; 35 GHz

IUIU O entent0

Page 17: Generation of entanglement & suppression of decoherence in ENDOR-based quantum computing

2007/9/? IICQI'07, Kish, IRAN 17

A dissipative noise model

tiHTk

H

p

tttiH eetptpett B

P

uu

Tr111

t is a map

tiHt

tiH etett

Page 18: Generation of entanglement & suppression of decoherence in ENDOR-based quantum computing

2007/9/? IICQI'07, Kish, IRAN 18

Decoherence control

LntxLnL

xLnLtnLVtH x 10 n

XVdtixLnL

nL

exp

xH a Hamiltonian of bang-bang pulses

10 x is a duty ratio

Page 19: Generation of entanglement & suppression of decoherence in ENDOR-based quantum computing

2007/9/? IICQI'07, Kish, IRAN 19

tVHieU 1tiHeU 2

Time evolution

txLtLxL tΔt

//1

12

0ρtρ Lt

L

at time Lt

111 UUu 222 UUu

Page 20: Generation of entanglement & suppression of decoherence in ENDOR-based quantum computing

2007/9/? IICQI'07, Kish, IRAN 20

Case without prior polarization transfer

10.0 GHz,1000.1 210 pcc

10.0 GHz,1000.1 610 pcc

Page 21: Generation of entanglement & suppression of decoherence in ENDOR-based quantum computing

2007/9/? IICQI'07, Kish, IRAN 21

Case without prior polarization transfer

50.0 GHz,1000.1 610 pcc

99.0 GHz,1000.1 610 pcc

Wipe effect

Page 22: Generation of entanglement & suppression of decoherence in ENDOR-based quantum computing

2007/9/? IICQI'07, Kish, IRAN 22

Case with prior polarization transfer

10.0 GHz,1000.1 210 pcc

10.0 GHz,1000.1 610 pcc

Page 23: Generation of entanglement & suppression of decoherence in ENDOR-based quantum computing

2007/9/? IICQI'07, Kish, IRAN 23

Case with prior polarization transfer

50.0 GHz,1000.1 610 pcc

99.0 GHz,1000.1 610 pcc

Wipe effect

Page 24: Generation of entanglement & suppression of decoherence in ENDOR-based quantum computing

2007/9/? IICQI'07, Kish, IRAN 24

Conclusion

-For an electron spin bus system, entanglement is achieved under milder experimental conditions.

-Decoherence control for an electron spin bus system is rather more challenging.

-If the number of qubits is small, we find some regions of parameters, not much far from the currently accessible region of magnetic spectroscopy technology, where the quantum state can be stable.

- A high probability of dissipation of bosons result in slow decoherence, quantum wipe effect.

Page 25: Generation of entanglement & suppression of decoherence in ENDOR-based quantum computing

2007/9/? IICQI'07, Kish, IRAN 25

work done by

S. Nishida, K. Toyota, D. Shiomi, Y. Morita, A. Ueda, S. Suzuki, K. Nakasuji (Osaka City Univ.) K. Furukawa, T. Nakamura (IMS) H. Hara, P. Carl, P. Höfer (Bruker Biospin Co.)

Masahiro Kitagawa (Osaka Univ.)

Takeji Takui (Osaka City Univ.)

Kazunobu Sato (Osaka City Univ.) Akira SaiToh (Osaka Univ.)

Mikio Nakahara (Kinki Univ.)

RR is supported bySasakawa scientific research grant from the Japan Science Society