geology 3120 - failure models

36
Geology 3120 - Failure Models Geology 3120 - Failure Models Powerpoint notes are available online at: Powerpoint notes are available online at: http://www.colorado.edu/geolsci/courses/GEOL3120 http://www.colorado.edu/geolsci/courses/GEOL3120

Upload: amie

Post on 04-Jan-2016

74 views

Category:

Documents


1 download

DESCRIPTION

Geology 3120 - Failure Models. Powerpoint notes are available online at: http://www.colorado.edu/geolsci/courses/GEOL3120. Outline. Virtual rock deformation experiment Influence of pore fluid pressure Andersonian faulting Byerlee’s law Other failure models. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Geology 3120 - Failure Models

Geology 3120 - Failure ModelsGeology 3120 - Failure Models

Powerpoint notes are available online at:Powerpoint notes are available online at:http://www.colorado.edu/geolsci/courses/GEOL3120http://www.colorado.edu/geolsci/courses/GEOL3120

Page 2: Geology 3120 - Failure Models

OutlineOutline

• Virtual rock deformation experiment

• Influence of pore fluid pressure

• Andersonian faulting

• Byerlee’s law

• Other failure models

Page 3: Geology 3120 - Failure Models

Virtual Rock Deformation ExperimentVirtual Rock Deformation Experiment

Run 1 (MPa) 3 (Mpa) Failure ()

1 250 150 none

2 250 50 +37°

3 490 190 +37°

4 690 310 +37°

11

11

33

Page 4: Geology 3120 - Failure Models

Run 1: Run 1: 11= 250 MPa; = 250 MPa; 33=150 MPa; no =150 MPa; no

fracturefracture

Page 5: Geology 3120 - Failure Models

Run 1: Run 1: 11= 250 MPa; = 250 MPa; 33=150 MPa; no =150 MPa; no

fracturefracture

Page 6: Geology 3120 - Failure Models

Run 2: Run 2: 11= 250 MPa; = 250 MPa; 33= 50 MPa; 37° = 50 MPa; 37°

fracturefracture

Page 7: Geology 3120 - Failure Models

Run 2: Run 2: 11= 250 MPa; = 250 MPa; 33=150 MPa; no =150 MPa; no

fracturefracture

74°

Page 8: Geology 3120 - Failure Models

Run 3: Run 3: 11= 490 MPa; = 490 MPa; 33=190 MPa; 37° =190 MPa; 37°

fracturefracture

Page 9: Geology 3120 - Failure Models

Run 3: Run 3: 11= 490 MPa; = 490 MPa; 33=190 MPa; 37° =190 MPa; 37°

fracturefracture

74°

Page 10: Geology 3120 - Failure Models

Run 4: Run 4: 11= 690 MPa; = 690 MPa; 33=310 MPa; 37° =310 MPa; 37°

fracturefracture

Page 11: Geology 3120 - Failure Models

Run 4: Run 4: 11= 690 MPa; = 690 MPa; 33=310 MPa; 37° =310 MPa; 37°

fracturefracture

74°

Page 12: Geology 3120 - Failure Models

Determining the Failure EnvelopeDetermining the Failure Envelope

= 16tan = 0.290 = 60 MPac = 0.29n + 60 MPa

c = 0.29n + 60 MPa

Page 13: Geology 3120 - Failure Models

Predicting FailurePredicting Failure

Run 5: Run 5: 33= 250 MPa; at what = 250 MPa; at what 1 1 fracture occur?fracture occur?

Page 14: Geology 3120 - Failure Models

Predicting FailurePredicting Failure

Run 5: Run 5: 33= 200 MPa; at what = 200 MPa; at what 1 1 fracture occur?fracture occur?

74°

Page 15: Geology 3120 - Failure Models

Influence of Pore Fluid PressureInfluence of Pore Fluid Pressure

Applied Stress

Effective Stress

pf

Pore fluid pressure decreases normal stresses by the fluid pressure Pore fluid pressure decreases normal stresses by the fluid pressure

amount.amount.

Rock can then fail under the Mohr-Coulomb Law.Rock can then fail under the Mohr-Coulomb Law.

Page 16: Geology 3120 - Failure Models

Principal StressesPrincipal Stresses

• 1 - greatest principal stress

• 2 - intermediate principal stress

• 3 - minimum principal stress

• Principal stress directions are mutually perpendicular to each other

Page 17: Geology 3120 - Failure Models

Conjugate FaultsConjugate Faults

Most simply - two fault planes that intersect to form a straight line

Perhaps more typical - two fault surfaces that intersect to form a line

Acute angle - < 90° angle

Obtuse angle - > 90° angle

Acute

Obtuse

Page 18: Geology 3120 - Failure Models

Assumptions for Andersonian Assumptions for Andersonian

FaultingFaulting

• Coulomb brittle failure - no pre-existing faults

• = 90 - 2

• Most rocks have = 30° so = ±30°

n

c

n

Y = mX + b

Y = mX + b

(

(

Page 19: Geology 3120 - Failure Models

Assumptions for Andersonian Assumptions for Andersonian

FaultingFaulting Normal stress (1 , 2, 3)

Zero shear stress

• No shear stress exists at the Earth’s surface

• One principal stress must act normal to the surface

• 1 , 2, or 3 must be perpendicular to the surface

Page 20: Geology 3120 - Failure Models

Rules of Thumb for Rules of Thumb for

StressesStresses• 1 bisects the acute angle

• 2 is parallel to the intersection of conjugate faults

• 3 bisects the obtuse angle

Page 21: Geology 3120 - Failure Models

Normal FaultNormal Fault

Page 22: Geology 3120 - Failure Models

Strike-slip FaultStrike-slip Fault

Page 23: Geology 3120 - Failure Models

Thrust FaultThrust Fault

Page 24: Geology 3120 - Failure Models

Normal faultingNormal faulting

Find the conjugate faults and

determine the orientations of

principal stresses.

SouthSouth NorthNorth

Page 25: Geology 3120 - Failure Models

Normal faultingNormal faulting SouthSouth NorthNorth

Page 26: Geology 3120 - Failure Models

Normal faultingNormal faulting SouthSouth NorthNorth

11

11

33 22

Page 27: Geology 3120 - Failure Models

Determining Sense of SlipDetermining Sense of Slip

11

33

22

Page 28: Geology 3120 - Failure Models

Determining Sense of SlipDetermining Sense of Slip

11

Page 29: Geology 3120 - Failure Models

Determining Sense of SlipDetermining Sense of Slip

11

Page 30: Geology 3120 - Failure Models

Determining Sense of SlipDetermining Sense of Slip

11

Page 31: Geology 3120 - Failure Models

Determining Sense of SlipDetermining Sense of Slip

11

Page 32: Geology 3120 - Failure Models

Determining Sense of SlipDetermining Sense of Slip

11

22

33

Page 33: Geology 3120 - Failure Models

Byerlee’s Law of Rock FrictionByerlee’s Law of Rock Friction

f f = = ss

nn

f f = coefficient of = coefficient of

sliding friction sliding friction

Page 34: Geology 3120 - Failure Models

Byerlee verses Mohr-Coulomb Byerlee verses Mohr-Coulomb

FailureFailure

For a given differential

stress, brittle failure

will occur by frictional

sliding on pre-existing

fractures (if they exist)

prior to Coulomb

failure

Page 35: Geology 3120 - Failure Models

Failure ModelsFailure Models

Page 36: Geology 3120 - Failure Models

ReferencesReferences

Slides 21, 22, 24, 39, 40Davis. G. H. and S. J. Reynolds, Structural Geology of Rocks and Regions, 2nd ed., John Wiley & Sons, New York, 776 p., 1996.

Slide 41

Twiss, R. J. and E. M. Moores, Structural Geology, W. H. Freeman & Co., New York, 532 p., 1992.