gérard a. mourou laboratoire doptique appliquée – loa ensta – ecole polytechnique – cnrs...

70
Gérard A. MOUROU Laboratoire d’Optique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France [email protected] Extreme Light Infrastructure ELI Autumn 2008 NuPECC Glasgow 3-4/10/2008

Upload: katelyn-hogan

Post on 27-Mar-2015

256 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Gérard A. MOUROULaboratoire d’Optique Appliquée – LOA

ENSTA – Ecole Polytechnique – CNRSPALAISEAU, France

[email protected]

Extreme Light InfrastructureELI

Autumn 2008 NuPECC Glasgow

3-4/10/2008

Page 2: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

The different Epochs of Laser Physics

Ec =erb

2 =m2e5

h4

ER =m0c

2

eλ=

hνDce

ES =

2m0c2

DCe1960

1990

2010

Coulombic Epoch

RelativisticEpoch

ELI Nonlinear QEDand Epoch

Page 3: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

“Optics Horizon”

This field does not seem to have This field does not seem to have natural limits, only horizon. natural limits, only horizon.

Page 4: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Why should we build an Extreme Light

Infrastructure?

Why should we build an Extreme Light

Infrastructure?

Page 5: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Science (1 july 2005)“100 questions spanning the science…”

Science (1 july 2005)“100 questions spanning the science…”

• 1) Is ours the only universe? • 2) What drove cosmic inflation?• 3) When and how did the first stars and galaxies form? • 4) Where do ultrahigh-energy cosmic rays come from? • 5) What powers quasars?• 6) What is the nature of black holes? • 7) Why is there more matter than antimatter?• 8) Does the proton decay? • 9)What is the nature of gravity? • 10) Why is time different from other dimensions?• 11) Are there smaller building blocks than quarks?• 12) Are neutrinos their own antiparticles?• 13) Is there a unified theory explaining all correlated electron systems?• 14) What is the most powerful laser researchers can build? Theorists say an

intense enough laser field would rip photons into electron-positron pairs, dousing the beam. But no one knows whether it's possible to reach that point.

• 15) Can researchers make a perfect optical lens?• 16) Is it possible to create magnetic semiconductors that work at room

temperature?

• 1) Is ours the only universe? • 2) What drove cosmic inflation?• 3) When and how did the first stars and galaxies form? • 4) Where do ultrahigh-energy cosmic rays come from? • 5) What powers quasars?• 6) What is the nature of black holes? • 7) Why is there more matter than antimatter?• 8) Does the proton decay? • 9)What is the nature of gravity? • 10) Why is time different from other dimensions?• 11) Are there smaller building blocks than quarks?• 12) Are neutrinos their own antiparticles?• 13) Is there a unified theory explaining all correlated electron systems?• 14) What is the most powerful laser researchers can build? Theorists say an

intense enough laser field would rip photons into electron-positron pairs, dousing the beam. But no one knows whether it's possible to reach that point.

• 15) Can researchers make a perfect optical lens?• 16) Is it possible to create magnetic semiconductors that work at room

temperature?

Page 6: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Contents

ELI’s Bricks

• The Peak Power-Pulse Duration conjecture

• Relativistic Rectification(wake-field) the key to High energy electron beam

• Generation of Coherent x and -ray, by Coherent Thomson, radiation reaction, X-Ray laser, …

• Source of attosecond photon and electron pulses

ELI’s Science: Study of the structure of matter from atoms to vacuum

Page 7: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Peak Power -Pulse Duration Conjecture Peak Power -Pulse Duration Conjecture

1) To get high peak power you must decrease the pulse duration.

2) To get short pulses you must increase the intensity

1) To get high peak power you must decrease the pulse duration.

2) To get short pulses you must increase the intensity

Page 8: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Q-Switch, DyeI=kW/cm2

Modelocking, DyeI=MW/cm2

Mode-Locking KLMI=GW/cm2

MPII>1013W/cm2

Laser Pulse Duration vs. Intensity

Relativistic and Ultra R Atto, zepto….?

Page 9: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Scalable Isolated Attosecond Pulses

Amplitude, a

1D PIC simulations in boosted frame

Duration,

(as) 2D: a=3, 200as

as)=600/a0

I=1022W/cm2 (Hercules)

(3 laser)

optimal ratio: a0/n0=2, or exponential gradient due to cr=0a-1/2

n0= n/ncr

Page 10: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Rel

ativ

istic

Ultr

a R

elat

ivis

tic

Rel

ativ

istic

Com

pres

sion

EQ=mpc2

Ultra-relativistic intensity isdefined with respect to the proton EQ=mpc2, intensity~1024W/cm2

NL Optics

Page 11: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

The ELI’s Scientific Goal: from the atom to the Vacuum StructureThe ELI’s Scientific Goal: from the atom to the Vacuum Structure

The advent of ultra-intense laser light pulses (ELI) reaching within a decade towards a critical field strength will allow us to probe the Vacuum in a new way, and at a new "macroscopic" scale.

The advent of ultra-intense laser light pulses (ELI) reaching within a decade towards a critical field strength will allow us to probe the Vacuum in a new way, and at a new "macroscopic" scale.

Page 12: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Relativistic Optics

Page 13: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

RelativisticRelativistic Optics Optics

r F =q

r E +

r v c

∧r B

⎛ ⎝ ⎜

⎞ ⎠ ⎟

⎝ ⎜

⎠ ⎟

a)Classical optics v<<ca)Classical optics v<<c , , b) Relativistic optics v~cb) Relativistic optics v~c

x~ax~aoo

z~az~aoo22

aa00<<1, a<<1, a00>>a>>a0022 aa00>>1, a>>1, a00<<a<<a00

22

a0 =eA0

mc2=

eE0λmc2

Page 14: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Relativistic Rectification(Wake-Field Tajima, Dawson) sE

r+ -

1) pushes the electrons.

2) The charge separation generates an electrostatic longitudinal field. (Tajima and Dawson: Wake Fields or Snow Plough)

3) The electrostatic field

r F Bz

=qr v c

∧r B

⎛ ⎝ ⎜

⎞ ⎠ ⎟

r v ∧

r B

Es=cγmoωp

e= 4πγmoc

2ne

Es≈EL

Page 15: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Relativistic Rectification

-Ultrahigh Intensity Laser is associated with Extremely large E field.

IZE LL*

0

2 =

Medium Impedance Laser Intensity

218 /10 cmWIL =

223 /10 cmWIL =

mTVEL /2=

)/106.0(/6. 15 mVmPVEL =

Page 16: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Laser Acceleration:

At 1023W/cm2 , E= 0.6PV/m, it is SLAC (50GeV, 3km long) on 10m The size of the Fermi accelerator will only be one meter(PeV accelerator that will go around the globe, based on conventional technology).

Relativistic Microelectronics

Page 17: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure
Page 18: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

fs

Page 19: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

J. Faure et al., C. Geddes et al., S. Mangles et al. , in Nature 30 septembre 2004

e-beamThe Dream Beam

Page 20: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Zinj=225 μm

Tunable monoenergetic bunches

Zinj=125 μm

Zinj=25 μm

Zinj=-75 μm

Zinj=-175 μm

Zinj=-275 μm

Zinj=-375 μm

pumpinjection

pumpinjection

late injection

early injection

pumpinjection

middle injection

V. Malka and J. Faure

Page 21: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Front and back acceleration mechanisms

Peak energy scales as : EM ~ (IL×)1/2

Page 22: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

C

Vp ~0

Vp ~C

C

Non relativistic ions

Relativistic ions >1024Photons

Photons

Ep ~ I1/2

Ep ~ I

The Ultra relativistic:Relativistic Ions

Page 23: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

High Energy Radiation Radiation

• Betatron oscillation

• Radiation reaction

• X-ray laser

Page 24: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

The structure of the ion cavity

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Longitudinal acceleration

Ex

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

⊥rapF

Transverse oscillation: Betatron oscillation

Page 25: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

E

E

c

c

c

Radiation Reaction: Compton-Thomson Cooling

a) Charge separation.E-field Creation

b)e- move backwards, scattered onthe incoming field, cooling the e-

N. Naumova, I, Sokolov

Page 26: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Attosecond Generationfrom

Overdense plasma

Page 27: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

(a)

(b)

Relativistic Self-focusing:

ε =1−ω 2

p

γ 0ω2

where γ 0 = 1+ a0

2

A.G.Litvak (1969), C.Max, J.Arons, A.B.Langdon (1974)

?

Refraction

Reflection

Page 28: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

2-D PIC simulation

0 100 200 300 400

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Page 29: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

2-D PIC simulation

Page 30: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Scalable Isolated Attosecond Pulses

Amplitude, a

1D PIC simulations in boosted frame

Duration,

(as) 2D: a=3, 200as

as)=600/a0

I=1022W/cm2 (Hercules)

(3 laser)

optimal ratio: a0/n0=2, or exponential gradient due to cr=0a-1/2

n0= n/ncr

Page 31: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Rel

ativ

istic

Ultr

a R

elat

ivis

tic

Rel

ativ

istic

Com

pres

sion

EQ=mpc2

Ultra-relativistic intensity isdefined with respect to the proton EQ=mpc2, intensity~1024W/cm2

NL Optics

Page 32: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Attosecond Generation(electron)

Page 33: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Attosecond Electron Bunches

N. Naumova, I. Sokolov, J. Nees, A. Maksimchuk, V. Yanovsky, and G. Mourou, Attosecond Electron Bunches, Phys. Rev. Lett. 93, 195003 (2004).

Attosecond pulse train

Attosecond bunch train

25÷30 MeV

a0=10, =15fs, f/1, n0=25ncr

Page 34: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Coherent Thomson Scattering

N. Naumova, I. Sokolov, J. Nees, A. Maksimchuk, V. Yanovsky, and G. Mourou, Attosecond Electron Bunches, Phys. Rev. Lett. 93, 195003 (2004).

Attosecond pulse train

Attosecond bunch train

25÷30 MeV

a0=10, =15fs, f/1, n0=25ncr

h

h0

100

200

300

400

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0

100

200

300

400

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Page 35: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

ELI: A Unique Infrastructure that offers simultaneously

• Ultra high Intensity ~1026W/cm2

• High Energy particles ~100GeV

• High Fluxes of X and rays

• With femtosecond time structures

• Highly synchronized

(We could possibly get beams equivalent to

1036 W/cm2)

Page 36: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Nuclear Physics

Page 37: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Nuclear Physics

• Exploring the Structure of the Nucleon;

Ralph Kaiser

• Gamma ray Spectroscopy Study of Exotic Nuclei; Mike Bentley

• Relativistic Heavy ions; Peter Jones

Page 38: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Possibilité de fission nucléaire par impulsion laser

Fission d’uranium 238 : réacteurs sous critiques?T. Cowan et al. LLNL 1999, Phys. News, USA (238U)

In experiments conducted recently at Lawrence Livemore National Lab, an intense laser beam (from the Petawatt laser, the most powerful in the world) strikes a gold foil (backed with a layer of lead). This results in (1) the highest

energy electrons (up to 100 MeV) ever to emerge from a laser-solid interaction, (2) the first laser-induced fission, and (3) the first creation of antimatter (positrons)

using lasers. (Tom Cowan LLNL 1999)238U = matière fertile

0,7% 238U dans U naturel

Bilan énergétique? :Fission d’uranium 238 =

200MeVSection efficace?

Rendement?

Page 39: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure
Page 40: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure
Page 41: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure
Page 42: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure
Page 43: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure
Page 44: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Transmutation des déchets : fission par impulsion laser Transmutation de l’iode 129 (fission)

* K. Ledingham et al. J. Phys. D : Appl. Phys. 36, L79 (2003), UK

•JRC Karlsruhe, Univ. Jena, Univ. Strathclyde, Imperial College, Rutherford Appleton Lab.

Laser : 1020W/cm2 champ élect. 1011V/cm champ mag. 105T

Impulsion : plasma électrons 1,6 . 1024m/s2 : e- <100MeV

gamma par freinage dans Pb ou Ta <10MeV

fission : 129I (15,7 . 106ans) 128I (25mn)

laser énergie

J durée

fs puissance

TW

Intensité

W/cm2

# tirs # fissions

Nd:verre Vulcan

75 1 000 100 1019 2/h 103/s

Ti:Saphire Jena loa

0,5 80 15 1020 10/s 104/s

Page 45: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

IntroductionTRANSMUTATION

Page 46: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

High-resolution High-resolution -Spectroscopy in hyperdeformed -Spectroscopy in hyperdeformed actinide nucleiactinide nuclei

Motivation: explore the multiple-humped potential energy landscape of hyperdeformed heavy actinide nuclei with unprecedented resolution

Example:

Experimental approach: photofission (,f) using brilliant photon beams of ~3-10 MeV individually resolve resonances in prompt fission cross section laser-generated high-energy photon flux exceeds conventional facilities by ~ 104-108

238U(,f):

hyperdeformed 3rd potentialminimum has not yet beenstudied at all

Page 47: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Nuclear transitions and parity-violating Nuclear transitions and parity-violating meson-nucleon couplingmeson-nucleon coupling

Motivation: study mirror asymmetries in the nuclear resonance fluorescence process (NRF): parity non-conservation as indication of fundamental role of exchange processes of weakly interacting bosons in nucleon-nucleon interaction

Experimental approach:

use ultra-brilliant, (circular) polarized, monochromatic ray beams (typ.: 102-103 keV) switch polarization measure NRF asymmetry

Example: 19F (parity doublet: E=109.9 keV)

RL

RLRLA

σσσσ

+−

=⟩⟨

Page 48: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Nonlinear QED

Page 49: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Rel

ativ

istic

Ultr

a R

elat

ivis

tic

Rel

ativ

istic

Com

pres

sion

EQ=mpc2

Ultra-relativistic intensity isdefined with respect to the proton EQ=mpc2, intensity~1024W/cm2

NL Optics

Page 50: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Laser-induced Nonlinear QED

1023W/cm2

1023W/cm2

GeV electrons

e-

e+

e− +ω → e−' +e+e−G. Mourou, S. Bulanov, T. Tajima Review of Modern Physics (2006)

You can enhance the laser field by the electron factor.

Page 51: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Laser-induced Nonlinear QED

1023W/cm2

1023 cm2 1023W/cm2

GeV electrons -photon

e-

e+Gas Jet

γ +ω → e+ +e−

G. Mourou, S. Bulanov, T. Tajima Review of Modern Physics (2006)

hωm =x

x +1E0 x≈

4E0hω0

m2c4

for E0 =10GeV and hω0 =1.5eV x =.24

and hωm =7.GeV

Page 52: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Ultra-high Intensity

General Relativity

and Black Holes

Page 53: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Equivalent to be near

a Black Hole of

Dimension?

Temperature?

Laboratory Black HoleT. Tajima and G. Mourou Review of Modern Physics

Page 54: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Is Optics in General Relativity? GM

Rsc2 =1Using the gravitational shift near a black hole:

.

a0 =1→ Rs =λ laser =1μm

a0 =106 → Rs =.01A ~λc

BH radius Rs =1a0

λ laser

As we increase a0 the Swartzschild radius can become equal to the Compton wavelength.

kT =hae

2πc

Page 55: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Optics and General Relativity:

Hawking Radiation

c

Rs

e+

e-

gm0λc =2m0c2

Rs =λc

Rs =λ

2πa0

=λc → a0 =106

I =1030W / cm2

In order to have Hawking radiationYou need the gravitational fieldstrong enough to break pairs

h

Page 56: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Finite Horizon and extra-dimensions

d =c2

ae

≈λ2π

1a0

4+nD Gauss Law

for Planck distance

MP4

2 ~ rn( )nMP4+n

n+2

rn ~1030n

−17cm

a d

3 + 1 D“gravitational”

leakage

nD

N. Arkani-Hamed et al. (1999)

The distance to finite horizon is

Up to n=4 extra-dimensions could betested.

T. Tajima phone # 81 90 34 96 64 21

Page 57: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

ELI: from the Atomic Structure to the Vacuum Structure

Vacuum structure

Page 58: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

100 m

The Extreme Light Infrastructure exploded view

Page 59: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

ELI Infrastructure

Page 61: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Control & 4D imaging of valence & core electrons with sub-atomic resolution

sub-fselectron

bunch 0.1-1 GeV

5-10 MeV

sub-fs x-raypulse

4D imaging of electronic motion in atoms,

molecules and solidsby means of attosecond

electron or X-raydiffraction

4D imaging of electronic motion in atoms,

molecules and solidsby means of attosecond

electron or X-raydiffraction

Probe

Probe

attosecondxuv / sxr

pulse

PetawattField

Synthesizer

Friedrich-Schiller-UniversitätJena, Germany Friedrich-Schiller-UniversitätJena, Germany

Page 62: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

The ELI facilty could be usedto produce « real » X-ray lasers

Shorter wavelengths lasersthan never obtained : < nm range

How : investigate new schemes - inner-shell of heavy ions- transitions in nuclear transitions

Page 63: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

HHG and Subfemtosecond Pulses from Surfaces HHG and Subfemtosecond Pulses from Surfaces of Overdense Plasmasof Overdense Plasmas

S.V. Bulanov, Naumova N M and Pegoraro F, Phys. Plasmas

1 745(1994)

D. Von der linde et al Phys. Rev. A52 R 25, 1995

L. Plaja et al. JOSA B, 15, 1904 (1998)

S. Gordienko et al PRL 93, 115002 (2004)

N.M. Naumova et.al., PRL 92, 063902 (2004)

Tsakiris, G., et al., New Journal of Physics, 8, 19 (2006)

Page 64: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Reflected radiation spectra: the slow power-law decay

1 10 100 1000

8/3a0=20a0=10a0=5

102

104

106

108

1010

1012

Inte

nsit

y, a

.u.

The Gaussian laser pulse a=a0exp[-(t/)2]cost is incident onto an overdense plasma layer with n=30nc. The color lines correspond to laser amplitudes a0=5,10,20.The broken line marks the analytical scaling -8/3.

Gordienko, et al., Phys. Rev. Lett. 2004

1D simulation

Possibility to produce zeptosecond pulses!!!

Page 65: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Multi-keV Harmonics

B. Dromey, M. Zepf et. al. Phys. Rev. Lett. 99, 085001 (2007)

Page 66: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Relativistic High Harmonics: Train of Attosecond Pulses

Yet some applications require single attosecond pulses!

Can we extract one pulse from the train?

Page 67: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Two large Laser Infrastructures Have Been Selected to be on the ESFRI (European

Strategic Forum on Research Infrastructures) Roadmap

•a - HIPER, civilian laser fusion research (using the “fast ignition scheme”) and all applications of ultra high energy laser •b - ELI, reaching highest intensities (Exawatt) and applications

ELI has been the first Infrastructure launched by Brussels November 1st 2007

Page 68: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure
Page 69: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Towards the Critical Field

For I=1022W/cm2 a02 =104

The pulse duration /a0 ~ 6asThe wavelength ~ The Focal volume decreases ~ 10-8

The Efficiency~ 10%

Intensity I=1022W/cm2 I=1028W/cm2

Page 70: Gérard A. MOUROU Laboratoire dOptique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France gerard.mourou@ensta.fr Extreme Light Infrastructure

Gérard A. MOUROULaboratoire d’Optique Appliquée – LOA

ENSTA – Ecole Polytechnique – CNRSPALAISEAU, France

[email protected]

Extreme Light InfrastructureELI

ELI Workshop on “Fundamental Physics with Ultra-

High Fields”

FrauenworthSept.28-Oct.2,2008