giulio tiozzo harvard university june 21, 2013 · an entropic tour of the mandelbrot set giulio...

123
An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Upload: others

Post on 05-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

An entropic tour of the Mandelbrot set

Giulio TiozzoHarvard University

June 21, 2013

Page 2: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Summary

1. Topological entropy

2. External rays3. Main theorem, real version4. Complex version5. Sketch of proof (maybe)6. Remarks and conjectures

Page 3: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Summary

1. Topological entropy2. External rays

3. Main theorem, real version4. Complex version5. Sketch of proof (maybe)6. Remarks and conjectures

Page 4: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Summary

1. Topological entropy2. External rays3. Main theorem, real version

4. Complex version5. Sketch of proof (maybe)6. Remarks and conjectures

Page 5: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Summary

1. Topological entropy2. External rays3. Main theorem, real version4. Complex version

5. Sketch of proof (maybe)6. Remarks and conjectures

Page 6: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Summary

1. Topological entropy2. External rays3. Main theorem, real version4. Complex version5. Sketch of proof (maybe)

6. Remarks and conjectures

Page 7: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Summary

1. Topological entropy2. External rays3. Main theorem, real version4. Complex version5. Sketch of proof (maybe)6. Remarks and conjectures

Page 8: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Topological entropy of real maps

Let f : I → I, continuous.

htop(f ,R) := limn→∞

log #{laps(f n)}n

Page 9: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Topological entropy of real maps

Let f : I → I, continuous.

htop(f ,R) := limn→∞

log #{laps(f n)}n

Page 10: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Topological entropy of real maps

Let f : I → I, continuous.

htop(f ,R) := limn→∞

log #{laps(f n)}n

Page 11: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Topological entropy of real maps

Let f : I → I, continuous.

htop(f ,R) := limn→∞

log #{laps(f n)}n

Page 12: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Topological entropy of real maps

Let f : I → I, continuous.

htop(f ,R) := limn→∞

log #{laps(f n)}n

Page 13: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Topological entropy of real maps

Let f : I → I, continuous.

htop(f ,R) := limn→∞

log #{laps(f n)}n

Page 14: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Topological entropy of real maps

Let f : I → I, continuous.

htop(f ,R) := limn→∞

log #{laps(f n)}n

Page 15: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Topological entropy of real maps

Let f : I → I, continuous.

htop(f ,R) := limn→∞

log #{laps(f n)}n

Page 16: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Topological entropy of real maps

Let f : I → I, continuous.

htop(f ,R) := limn→∞

log #{laps(f n)}n

Page 17: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Topological entropy of real maps

Let f : I → I, continuous.

htop(f ,R) := limn→∞

log #{laps(f n)}n

Entropy measures the randomness of the dynamics.

Page 18: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Example: the airplane map

A 7→ A ∪ BB 7→ A

⇒(

1 11 0

)⇒ λ =

√5+12 = ehtop(fc ,R)

Page 19: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Example: the airplane map

A 7→ A ∪ BB 7→ A

⇒(

1 11 0

)⇒ λ =

√5+12 = ehtop(fc ,R)

Page 20: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Example: the airplane map

A 7→ A ∪ BB 7→ A

⇒(

1 11 0

)

⇒ λ =√

5+12 = ehtop(fc ,R)

Page 21: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Example: the airplane map

A 7→ A ∪ BB 7→ A

⇒(

1 11 0

)⇒ λ =

√5+12

= ehtop(fc ,R)

Page 22: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Example: the airplane map

A 7→ A ∪ BB 7→ A

⇒(

1 11 0

)⇒ λ =

√5+12 = ehtop(fc ,R)

Page 23: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Topological entropy of real maps

htop(f ,R) := limn→∞

log #{laps(f n)}n

Consider the real quadratic family

fc(z) := z2 + c c ∈ [−2,1/4]

How does entropy change with the parameter c?

Page 24: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Topological entropy of real maps

htop(f ,R) := limn→∞

log #{laps(f n)}n

Consider the real quadratic family

fc(z) := z2 + c c ∈ [−2,1/4]

How does entropy change with the parameter c?

Page 25: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

The function c → htop(fc ,R):

I is continuous and monotone (Milnor-Thurston, 1977).I 0 ≤ htop(fc ,R) ≤ log 2.

Page 26: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

The function c → htop(fc ,R):

I is continuous

and monotone (Milnor-Thurston, 1977).I 0 ≤ htop(fc ,R) ≤ log 2.

Page 27: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

The function c → htop(fc ,R):

I is continuous and monotone (Milnor-Thurston, 1977).

I 0 ≤ htop(fc ,R) ≤ log 2.

Page 28: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

The function c → htop(fc ,R):

I is continuous and monotone (Milnor-Thurston, 1977).I 0 ≤ htop(fc ,R) ≤ log 2.

Page 29: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

The function c → htop(fc ,R):

I is continuous and monotone (Milnor-Thurston, 1977).I 0 ≤ htop(fc ,R) ≤ log 2.

Remark. If we consider fc : C→ C entropy is constanthtop(fc , C) = log 2.

Page 30: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Mandelbrot set

The Mandelbrot setM is the connectedness locus of thequadratic family

M = {c ∈ C : f nc (0) 9∞}

Page 31: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

External rays

Since C \M is simply-connected, it can be uniformized by theexterior of the unit disk

ΦM : C \ D→ C \M

Page 32: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

External rays

Since C \M is simply-connected, it can be uniformized by theexterior of the unit disk

ΦM : C \ D→ C \M

Page 33: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

External raysSince C \M is simply-connected, it can be uniformized by theexterior of the unit disk

ΦM : C \ D→ C \MThe images of radial arcs in the disk are called external rays.Every angle θ ∈ S1 determines an external ray

R(θ) := ΦM({ρe2πiθ : ρ > 1})

An external ray R(θ) is said to land at x if

limρ→1

ΦM(ρe2πiθ) = x

Page 34: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

External raysSince C \M is simply-connected, it can be uniformized by theexterior of the unit disk

ΦM : C \ D→ C \MThe images of radial arcs in the disk are called external rays.Every angle θ ∈ S1 determines an external ray

R(θ) := ΦM({ρe2πiθ : ρ > 1})An external ray R(θ) is said to land at x if

limρ→1

ΦM(ρe2πiθ) = x

Page 35: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

External raysSince C \M is simply-connected, it can be uniformized by theexterior of the unit disk

ΦM : C \ D→ C \MThe images of radial arcs in the disk are called external rays.Every angle θ ∈ S1 determines an external ray

R(θ) := ΦM({ρe2πiθ : ρ > 1})An external ray R(θ) is said to land at x if

limρ→1

ΦM(ρe2πiθ) = x

Page 36: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Rays landing on the real slice of the Mandelbrot set

Page 37: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Harmonic measureGiven a subset A of ∂M, the harmonic measure νM is theprobability that a random ray lands on A:

νM(A) := Leb({θ ∈ S1 : R(θ) lands on A})

For instance, take A =M∩R the real section of the Mandelbrotset. How common is it for a ray to land on the real axis?

Page 38: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Harmonic measureGiven a subset A of ∂M, the harmonic measure νM is theprobability that a random ray lands on A:

νM(A) := Leb({θ ∈ S1 : R(θ) lands on A})

For instance, take A =M∩R the real section of the Mandelbrotset.

How common is it for a ray to land on the real axis?

Page 39: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Harmonic measureGiven a subset A of ∂M, the harmonic measure νM is theprobability that a random ray lands on A:

νM(A) := Leb({θ ∈ S1 : R(θ) lands on A})

For instance, take A =M∩R the real section of the Mandelbrotset. How common is it for a ray to land on the real axis?

Page 40: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Real section of the Mandelbrot setTheorem (Zakeri, 2000)The harmonic measure of the real axis is 0.

However,the Hausdorff dimension of the set of rays landing on the realaxis is 1.

Page 41: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Real section of the Mandelbrot setTheorem (Zakeri, 2000)The harmonic measure of the real axis is 0. However,

the Hausdorff dimension of the set of rays landing on the realaxis is 1.

Page 42: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Real section of the Mandelbrot setTheorem (Zakeri, 2000)The harmonic measure of the real axis is 0. However,the Hausdorff dimension of the set of rays landing on the realaxis is 1.

Page 43: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Real section of the Mandelbrot setTheorem (Zakeri, 2000)The harmonic measure of the real axis is 0. However,the Hausdorff dimension of the set of rays landing on the realaxis is 1.

Page 44: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

SectioningMGiven c ∈ [−2,1/4], we can consider the set of external rayswhich land on the real axis to the right of c:

Pc := {θ ∈ S1 : R(θ) lands on ∂M∩ [c,1/4]}

Page 45: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

SectioningMGiven c ∈ [−2,1/4], we can consider the set of external rayswhich land on the real axis to the right of c:

Pc := {θ ∈ S1 : R(θ) lands on ∂M∩ [c,1/4]}

Page 46: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

SectioningMGiven c ∈ [−2,1/4], we can consider the set of external rayswhich land on the real axis to the right of c:

Pc := {θ ∈ S1 : R(θ) lands on ∂M∩ [c,1/4]}

Page 47: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

SectioningMGiven c ∈ [−2,1/4], we can consider the set of external rayswhich land on the real axis to the right of c:

Pc := {θ ∈ S1 : R(θ) lands on ∂M∩ [c,1/4]}

Page 48: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

SectioningMGiven c ∈ [−2,1/4], we can consider the set of external rayswhich land on the real axis to the right of c:

Pc := {θ ∈ S1 : R(θ) lands on ∂M∩ [c,1/4]}

Page 49: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Pc := {θ ∈ S1 : R(θ) lands on ∂M∩ [c,1/4]}The function

c 7→ H.dim Pc

decreases with c, taking values between 0 and 1.

Page 50: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Pc := {θ ∈ S1 : R(θ) lands on ∂M∩ [c,1/4]}The function

c 7→ H.dim Pc

decreases with c, taking values between 0 and 1.

Page 51: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Pc := {θ ∈ S1 : R(θ) lands on ∂M∩ [c,1/4]}The function

c 7→ H.dim Pc

decreases with c, taking values between 0 and 1.

Page 52: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Pc := {θ ∈ S1 : R(θ) lands on ∂M∩ [c,1/4]}The function

c 7→ H.dim Pc

decreases with c, taking values between 0 and 1.

Page 53: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Main theoremTheoremLet c ∈ [−2,1/4]. Then

htop(fc ,R)

log 2= H.dim Pc

Page 54: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Main theoremTheoremLet c ∈ [−2,1/4]. Then

htop(fc ,R)

log 2= H.dim Pc

Page 55: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Main theorem

TheoremLet c ∈ [−2,1/4]. Then

htop(fc ,R)

log 2= H.dim Pc

I It relates dynamical properties of a particular map to thegeometry of parameter space near the chosen parameter.

I Entropy formula: relates dimension, entropy and Lyapunovexponent (Manning, Bowen, Ledrappier, Young, ...).

I The proof is purely combinatorial.I It does not depend on MLC.I It can be generalized to (some) non-real veins.

Page 56: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Main theorem

TheoremLet c ∈ [−2,1/4]. Then

htop(fc ,R)

log 2= H.dim Pc

I It relates dynamical properties of a particular map to thegeometry of parameter space near the chosen parameter.

I Entropy formula: relates dimension, entropy and Lyapunovexponent (Manning, Bowen, Ledrappier, Young, ...).

I The proof is purely combinatorial.I It does not depend on MLC.I It can be generalized to (some) non-real veins.

Page 57: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Main theorem

TheoremLet c ∈ [−2,1/4]. Then

htop(fc ,R)

log 2= H.dim Pc

I It relates dynamical properties of a particular map to thegeometry of parameter space near the chosen parameter.

I Entropy formula: relates dimension, entropy and Lyapunovexponent (Manning, Bowen, Ledrappier, Young, ...).

I The proof is purely combinatorial.I It does not depend on MLC.I It can be generalized to (some) non-real veins.

Page 58: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Main theorem

TheoremLet c ∈ [−2,1/4]. Then

htop(fc ,R)

log 2= H.dim Pc

I It relates dynamical properties of a particular map to thegeometry of parameter space near the chosen parameter.

I Entropy formula: relates dimension, entropy and Lyapunovexponent (Manning, Bowen, Ledrappier, Young, ...).

I The proof is purely combinatorial.

I It does not depend on MLC.I It can be generalized to (some) non-real veins.

Page 59: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Main theorem

TheoremLet c ∈ [−2,1/4]. Then

htop(fc ,R)

log 2= H.dim Pc

I It relates dynamical properties of a particular map to thegeometry of parameter space near the chosen parameter.

I Entropy formula: relates dimension, entropy and Lyapunovexponent (Manning, Bowen, Ledrappier, Young, ...).

I The proof is purely combinatorial.I It does not depend on MLC.

I It can be generalized to (some) non-real veins.

Page 60: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Main theorem

TheoremLet c ∈ [−2,1/4]. Then

htop(fc ,R)

log 2= H.dim Pc

I It relates dynamical properties of a particular map to thegeometry of parameter space near the chosen parameter.

I Entropy formula: relates dimension, entropy and Lyapunovexponent (Manning, Bowen, Ledrappier, Young, ...).

I The proof is purely combinatorial.I It does not depend on MLC.I It can be generalized to (some) non-real veins.

Page 61: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

In the dynamical planeDouady’s principle : “sow in dynamical plane and reap inparameter space”.

Each fc has a Julia set Jc .

Page 62: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

In the dynamical planeDouady’s principle : “sow in dynamical plane and reap inparameter space”.Each fc has a Julia set Jc .

Page 63: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

In the dynamical plane

Douady’s principle : “sow in dynamical plane and reap inparameter space”Each fc has a Julia set Jc .Let

Sc := {θ ∈ S1 : R(θ) lands on Jc ∩ R}

the set of rays landing on the real section (spine) of the Juliaset.

Page 64: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Main theoremTheoremLet c ∈ [−2,1/4]. Then

htop(fc ,R)

log 2= H.dim Sc = H.dim Pc

Page 65: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Main theoremTheoremLet c ∈ [−2,1/4]. Then

htop(fc ,R)

log 2= H.dim Sc = H.dim Pc

Page 66: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

It also equals:I The entropy of the induced action on the Hubbard tree Tc

(minimal forward-invariant set containing the critical orbit),divided by log 2.

I The dimension of the set of biaccessible angles (Zakeri,Smirnov, Zdunik, Bruin-Schleicher ...)

CorollaryThe set of biaccessible angles for the Feigenbaum parameter(limit of period doubling cascades) cFeig has Hausdorffdimension 0.

Page 67: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

It also equals:I The entropy of the induced action on the Hubbard tree Tc

(minimal forward-invariant set containing the critical orbit),divided by log 2.

I The dimension of the set of biaccessible angles (Zakeri,Smirnov, Zdunik, Bruin-Schleicher ...)

CorollaryThe set of biaccessible angles for the Feigenbaum parameter(limit of period doubling cascades) cFeig has Hausdorffdimension 0.

Page 68: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

It also equals:I The entropy of the induced action on the Hubbard tree Tc

(minimal forward-invariant set containing the critical orbit),divided by log 2.

I The dimension of the set of biaccessible angles (Zakeri,Smirnov, Zdunik, Bruin-Schleicher ...)

CorollaryThe set of biaccessible angles for the Feigenbaum parameter(limit of period doubling cascades) cFeig has Hausdorffdimension 0.

Page 69: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

The complex case: Hubbard treesThe Hubbard tree Tc of a quadratic polynomial is a forwardinvariant subset of the filled Julia set which contains the criticalorbit.

Page 70: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

The complex case: Hubbard treesThe Hubbard tree Tc of a quadratic polynomial is a forwardinvariant subset of the filled Julia set which contains the criticalorbit.

Page 71: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Complex Hubbard treesThe Hubbard tree Tc of a quadratic polynomial is a forwardinvariant subset of the filled Julia set which contains the criticalorbit.

Page 72: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Complex Hubbard treesThe Hubbard tree Tc of a quadratic polynomial is a forwardinvariant subset of the filled Julia set which contains the criticalorbit. The map fc acts on it.

Page 73: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Topologically finite parameters

DefinitionA parameter c is topologically finite if its Hubbard tree ishomeomorphic to a finite tree.

Postcritically finite⇒ Topologically finite (but many more!)

PropositionIf c is biaccessible in parameter space (there are two distinctrays landing on c), then fc is topologically finite (i.e. on all veinsofM).

Page 74: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Topologically finite parameters

DefinitionA parameter c is topologically finite if its Hubbard tree ishomeomorphic to a finite tree.Postcritically finite⇒ Topologically finite

(but many more!)

PropositionIf c is biaccessible in parameter space (there are two distinctrays landing on c), then fc is topologically finite (i.e. on all veinsofM).

Page 75: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Topologically finite parameters

DefinitionA parameter c is topologically finite if its Hubbard tree ishomeomorphic to a finite tree.Postcritically finite⇒ Topologically finite (but many more!)

PropositionIf c is biaccessible in parameter space (there are two distinctrays landing on c), then fc is topologically finite (i.e. on all veinsofM).

Page 76: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Topologically finite parameters

DefinitionA parameter c is topologically finite if its Hubbard tree ishomeomorphic to a finite tree.Postcritically finite⇒ Topologically finite (but many more!)

PropositionIf c is biaccessible in parameter space (there are two distinctrays landing on c), then fc is topologically finite

(i.e. on all veinsofM).

Page 77: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Topologically finite parameters

DefinitionA parameter c is topologically finite if its Hubbard tree ishomeomorphic to a finite tree.Postcritically finite⇒ Topologically finite (but many more!)

PropositionIf c is biaccessible in parameter space (there are two distinctrays landing on c), then fc is topologically finite (i.e. on all veinsofM).

Page 78: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Entropy of topologically finite parameters

Let c be topologically finite, with Hubbard tree Tc .

Let

Hc := {θ ∈ S1 : Rc(θ) lands on Tc}

TheoremLet fc be topologically finite. Then

h(fc ,Tc)

log 2= H.dim Hc

Page 79: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Entropy of topologically finite parameters

Let c be topologically finite, with Hubbard tree Tc . Let

Hc := {θ ∈ S1 : Rc(θ) lands on Tc}

TheoremLet fc be topologically finite. Then

h(fc ,Tc)

log 2= H.dim Hc

Page 80: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Entropy of topologically finite parameters

Let c be topologically finite, with Hubbard tree Tc . Let

Hc := {θ ∈ S1 : Rc(θ) lands on Tc}

TheoremLet fc be topologically finite. Then

h(fc ,Tc)

log 2= H.dim Hc

Page 81: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Entropy of Hubbard trees as a function of externalangle (W. Thurston)

Can you see the Mandelbrot set in this picture?

Page 82: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Entropy of Hubbard trees as a function of externalangle (W. Thurston)

Can you see the Mandelbrot set in this picture?

Page 83: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

The complex caseA vein is an embedded arc in the Mandelbrot set.

Page 84: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

The complex case

A vein is an embedded arc in the Mandelbrot set.

Given a parameter c along a vein, we can look at the set Pc ofparameter rays which land on the vein “below” c.

Page 85: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

VeinsExistence of veins converging to dyadic angles[Branner-Douady, Kahn, Riedl].

For each p/q ∈ Q ∩ (0,1), there exists a unique parameter cp/qfor which:

I the rotation number around the α fixed point is p/q;I the critical point maps to the β fixed point after exactly q

iterates: f q(0) = β.

DefinitionThe principal vein vp/q in the p/q limb is the vein joining cp/q tothe center of the main cardioid.

I v1/2 = real axis;I v1/3 = Branner-Douady vein

The Hubbard tree for all parameters along vp/q is a q-prongedstar.

Pc := {θ ∈ S1 : RM(θ) lands on [0, c]}

Page 86: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

VeinsExistence of veins converging to dyadic angles[Branner-Douady, Kahn, Riedl].For each p/q ∈ Q ∩ (0,1), there exists a unique parameter cp/qfor which:

I the rotation number around the α fixed point is p/q;I the critical point maps to the β fixed point after exactly q

iterates: f q(0) = β.

DefinitionThe principal vein vp/q in the p/q limb is the vein joining cp/q tothe center of the main cardioid.

I v1/2 = real axis;I v1/3 = Branner-Douady vein

The Hubbard tree for all parameters along vp/q is a q-prongedstar.

Pc := {θ ∈ S1 : RM(θ) lands on [0, c]}

Page 87: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

VeinsExistence of veins converging to dyadic angles[Branner-Douady, Kahn, Riedl].For each p/q ∈ Q ∩ (0,1), there exists a unique parameter cp/qfor which:

I the rotation number around the α fixed point is p/q;

I the critical point maps to the β fixed point after exactly qiterates: f q(0) = β.

DefinitionThe principal vein vp/q in the p/q limb is the vein joining cp/q tothe center of the main cardioid.

I v1/2 = real axis;I v1/3 = Branner-Douady vein

The Hubbard tree for all parameters along vp/q is a q-prongedstar.

Pc := {θ ∈ S1 : RM(θ) lands on [0, c]}

Page 88: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

VeinsExistence of veins converging to dyadic angles[Branner-Douady, Kahn, Riedl].For each p/q ∈ Q ∩ (0,1), there exists a unique parameter cp/qfor which:

I the rotation number around the α fixed point is p/q;I the critical point maps to the β fixed point after exactly q

iterates: f q(0) = β.

DefinitionThe principal vein vp/q in the p/q limb is the vein joining cp/q tothe center of the main cardioid.

I v1/2 = real axis;I v1/3 = Branner-Douady vein

The Hubbard tree for all parameters along vp/q is a q-prongedstar.

Pc := {θ ∈ S1 : RM(θ) lands on [0, c]}

Page 89: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

VeinsExistence of veins converging to dyadic angles[Branner-Douady, Kahn, Riedl].For each p/q ∈ Q ∩ (0,1), there exists a unique parameter cp/qfor which:

I the rotation number around the α fixed point is p/q;I the critical point maps to the β fixed point after exactly q

iterates: f q(0) = β.

DefinitionThe principal vein vp/q in the p/q limb is the vein joining cp/q tothe center of the main cardioid.

I v1/2 = real axis;I v1/3 = Branner-Douady vein

The Hubbard tree for all parameters along vp/q is a q-prongedstar.

Pc := {θ ∈ S1 : RM(θ) lands on [0, c]}

Page 90: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

VeinsExistence of veins converging to dyadic angles[Branner-Douady, Kahn, Riedl].For each p/q ∈ Q ∩ (0,1), there exists a unique parameter cp/qfor which:

I the rotation number around the α fixed point is p/q;I the critical point maps to the β fixed point after exactly q

iterates: f q(0) = β.

DefinitionThe principal vein vp/q in the p/q limb is the vein joining cp/q tothe center of the main cardioid.

I v1/2 = real axis;

I v1/3 = Branner-Douady vein

The Hubbard tree for all parameters along vp/q is a q-prongedstar.

Pc := {θ ∈ S1 : RM(θ) lands on [0, c]}

Page 91: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

VeinsExistence of veins converging to dyadic angles[Branner-Douady, Kahn, Riedl].For each p/q ∈ Q ∩ (0,1), there exists a unique parameter cp/qfor which:

I the rotation number around the α fixed point is p/q;I the critical point maps to the β fixed point after exactly q

iterates: f q(0) = β.

DefinitionThe principal vein vp/q in the p/q limb is the vein joining cp/q tothe center of the main cardioid.

I v1/2 = real axis;I v1/3 = Branner-Douady vein

The Hubbard tree for all parameters along vp/q is a q-prongedstar.

Pc := {θ ∈ S1 : RM(θ) lands on [0, c]}

Page 92: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

VeinsExistence of veins converging to dyadic angles[Branner-Douady, Kahn, Riedl].For each p/q ∈ Q ∩ (0,1), there exists a unique parameter cp/qfor which:

I the rotation number around the α fixed point is p/q;I the critical point maps to the β fixed point after exactly q

iterates: f q(0) = β.

DefinitionThe principal vein vp/q in the p/q limb is the vein joining cp/q tothe center of the main cardioid.

I v1/2 = real axis;I v1/3 = Branner-Douady vein

The Hubbard tree for all parameters along vp/q is a q-prongedstar.

Pc := {θ ∈ S1 : RM(θ) lands on [0, c]}

Page 93: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

VeinsExistence of veins converging to dyadic angles[Branner-Douady, Kahn, Riedl].For each p/q ∈ Q ∩ (0,1), there exists a unique parameter cp/qfor which:

I the rotation number around the α fixed point is p/q;I the critical point maps to the β fixed point after exactly q

iterates: f q(0) = β.

DefinitionThe principal vein vp/q in the p/q limb is the vein joining cp/q tothe center of the main cardioid.

I v1/2 = real axis;I v1/3 = Branner-Douady vein

The Hubbard tree for all parameters along vp/q is a q-prongedstar.

Pc := {θ ∈ S1 : RM(θ) lands on [0, c]}

Page 94: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Complex versionTheoremLet vp/q be the principal vein in the p/q-limb of the Mandelbrotset, and let c ∈ vp/q. Then

htop(fc ,Tc)

log 2= H.dim Hc = H.dim Pc

Page 95: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Sketch of proof1. The rays landing on parameter space land also on the real

section of the Julia set:

Pc ⊆ Sc

2. In order to prove the reverse inequality, one would like toembed the rays landing on the Hubbard tree in parameterspace. This cannot be done in the renormalized copies.

3. However:

PropositionIf c is a non-renormalizable, real parameter, and c′ > c anotherreal parameter, there exists a non-constant, piecewise linearmap F : R/Z→ R/Z such that

F (Hc′) ⊆ Pc

Page 96: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Sketch of proof1. The rays landing on parameter space land also on the real

section of the Julia set:

Pc ⊆ Sc

2. In order to prove the reverse inequality, one would like toembed the rays landing on the Hubbard tree in parameterspace. This cannot be done in the renormalized copies.

3. However:

PropositionIf c is a non-renormalizable, real parameter, and c′ > c anotherreal parameter, there exists a non-constant, piecewise linearmap F : R/Z→ R/Z such that

F (Hc′) ⊆ Pc

Page 97: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Sketch of proof1. The rays landing on parameter space land also on the real

section of the Julia set:

Pc ⊆ Sc

2. In order to prove the reverse inequality, one would like toembed the rays landing on the Hubbard tree in parameterspace. This cannot be done in the renormalized copies.

3. However:

PropositionIf c is a non-renormalizable, real parameter, and c′ > c anotherreal parameter, there exists a non-constant, piecewise linearmap F : R/Z→ R/Z such that

F (Hc′) ⊆ Pc

Page 98: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Sketch of proof (continues)

PropositionIf c is a non-renormalizable, real parameter, and c′ > c anotherreal parameter, there exists a non-constant, piecewise linearmap F : R/Z→ R/Z such that

F (Hc′) ⊆ Pc

4. By continuity,H.dim Hc = H.dim Pc

for non-renormalizable parameters.5. By renormalization, the same holds for all parameters

which are not infinitely renormalizable.6. By density of such parameters (in the space of angles), the

result holds.

Page 99: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Sketch of proof (continues)

PropositionIf c is a non-renormalizable, real parameter, and c′ > c anotherreal parameter, there exists a non-constant, piecewise linearmap F : R/Z→ R/Z such that

F (Hc′) ⊆ Pc

4. By continuity,H.dim Hc = H.dim Pc

for non-renormalizable parameters.

5. By renormalization, the same holds for all parameterswhich are not infinitely renormalizable.

6. By density of such parameters (in the space of angles), theresult holds.

Page 100: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Sketch of proof (continues)

PropositionIf c is a non-renormalizable, real parameter, and c′ > c anotherreal parameter, there exists a non-constant, piecewise linearmap F : R/Z→ R/Z such that

F (Hc′) ⊆ Pc

4. By continuity,H.dim Hc = H.dim Pc

for non-renormalizable parameters.5. By renormalization, the same holds for all parameters

which are not infinitely renormalizable.

6. By density of such parameters (in the space of angles), theresult holds.

Page 101: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Sketch of proof (continues)

PropositionIf c is a non-renormalizable, real parameter, and c′ > c anotherreal parameter, there exists a non-constant, piecewise linearmap F : R/Z→ R/Z such that

F (Hc′) ⊆ Pc

4. By continuity,H.dim Hc = H.dim Pc

for non-renormalizable parameters.5. By renormalization, the same holds for all parameters

which are not infinitely renormalizable.6. By density of such parameters (in the space of angles), the

result holds.

Page 102: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Pseudocenters

DefinitionThe (dyadic) pseudocenter of a real interval [a,b] with|a− b| < 1 is the unique dyadic rational number with shortestbinary expansion.

E.g., the pseudocenter of the interval [1315 ,

1415 ] is 7

8 = 0.111,since 13

15 = 0.1101 and 1415 = 0.1110.

Page 103: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Pseudocenters

DefinitionThe (dyadic) pseudocenter of a real interval [a,b] with|a− b| < 1 is the unique dyadic rational number with shortestbinary expansion.

E.g., the pseudocenter of the interval [1315 ,

1415 ] is 7

8 = 0.111,since 13

15 = 0.1101 and 1415 = 0.1110.

Page 104: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Bonus level: a bisection algorithm

TheoremLet c1 < c2 be two real parameters on the boundary ofM, withexternal angles 0 ≤ θ2 < θ1 ≤ 1

2 .

Let θ∗ be the dyadicpseudocenter of the interval (θ2, θ1), and let

θ∗ = 0.s1s2 . . . sn−1sn

be its binary expansion, with sn = 1. Then the hyperbolicwindow of least period in the interval (θ2, θ1) is the interval ofexternal angles (α2, α1) with

α2 := 0.s1s2 . . . sn−1

α1 := 0.s1s2 . . . sn−1s1s2 . . . sn−1

(where si := 1− si ). All hyperbolic windows are obtained byiteration of this algorithm, starting with θ2 = 0, θ1 = 1/2.

Page 105: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Bonus level: a bisection algorithm

TheoremLet c1 < c2 be two real parameters on the boundary ofM, withexternal angles 0 ≤ θ2 < θ1 ≤ 1

2 . Let θ∗ be the dyadicpseudocenter of the interval (θ2, θ1), and let

θ∗ = 0.s1s2 . . . sn−1sn

be its binary expansion, with sn = 1.

Then the hyperbolicwindow of least period in the interval (θ2, θ1) is the interval ofexternal angles (α2, α1) with

α2 := 0.s1s2 . . . sn−1

α1 := 0.s1s2 . . . sn−1s1s2 . . . sn−1

(where si := 1− si ). All hyperbolic windows are obtained byiteration of this algorithm, starting with θ2 = 0, θ1 = 1/2.

Page 106: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Bonus level: a bisection algorithm

TheoremLet c1 < c2 be two real parameters on the boundary ofM, withexternal angles 0 ≤ θ2 < θ1 ≤ 1

2 . Let θ∗ be the dyadicpseudocenter of the interval (θ2, θ1), and let

θ∗ = 0.s1s2 . . . sn−1sn

be its binary expansion, with sn = 1. Then the hyperbolicwindow of least period in the interval (θ2, θ1) is the interval ofexternal angles (α2, α1) with

α2 := 0.s1s2 . . . sn−1

α1 := 0.s1s2 . . . sn−1s1s2 . . . sn−1

(where si := 1− si ). All hyperbolic windows are obtained byiteration of this algorithm, starting with θ2 = 0, θ1 = 1/2.

Page 107: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Bonus level: a bisection algorithm

TheoremLet c1 < c2 be two real parameters on the boundary ofM, withexternal angles 0 ≤ θ2 < θ1 ≤ 1

2 . Let θ∗ be the dyadicpseudocenter of the interval (θ2, θ1), and let

θ∗ = 0.s1s2 . . . sn−1sn

be its binary expansion, with sn = 1. Then the hyperbolicwindow of least period in the interval (θ2, θ1) is the interval ofexternal angles (α2, α1) with

α2 := 0.s1s2 . . . sn−1

α1 := 0.s1s2 . . . sn−1s1s2 . . . sn−1

(where si := 1− si ). All hyperbolic windows are obtained byiteration of this algorithm, starting with θ2 = 0, θ1 = 1/2.

Page 108: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Bonus level: a bisection algorithm

TheoremLet c1 < c2 be two real parameters on the boundary ofM, withexternal angles 0 ≤ θ2 < θ1 ≤ 1

2 . Let θ∗ be the dyadicpseudocenter of the interval (θ2, θ1), and let

θ∗ = 0.s1s2 . . . sn−1sn

be its binary expansion, with sn = 1. Then the hyperbolicwindow of least period in the interval (θ2, θ1) is the interval ofexternal angles (α2, α1) with

α2 := 0.s1s2 . . . sn−1

α1 := 0.s1s2 . . . sn−1s1s2 . . . sn−1

(where si := 1− si ).

All hyperbolic windows are obtained byiteration of this algorithm, starting with θ2 = 0, θ1 = 1/2.

Page 109: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Bonus level: a bisection algorithm

TheoremLet c1 < c2 be two real parameters on the boundary ofM, withexternal angles 0 ≤ θ2 < θ1 ≤ 1

2 . Let θ∗ be the dyadicpseudocenter of the interval (θ2, θ1), and let

θ∗ = 0.s1s2 . . . sn−1sn

be its binary expansion, with sn = 1. Then the hyperbolicwindow of least period in the interval (θ2, θ1) is the interval ofexternal angles (α2, α1) with

α2 := 0.s1s2 . . . sn−1

α1 := 0.s1s2 . . . sn−1s1s2 . . . sn−1

(where si := 1− si ). All hyperbolic windows are obtained byiteration of this algorithm, starting with θ2 = 0, θ1 = 1/2.

Page 110: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Bonus level: a bisection algorithm

Page 111: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Pseudocenters and maxima of entropy

DefinitionThe pseudocenter of a real interval [a,b] with |a− b| < 1 is theunique dyadic rational number with shortest binary expansion.

ConjectureLet θ1 < θ2 be two external angles whose rays RM(θ1), RM(θ2)land on the same parameter. Then the maximum of entropy onthe interval [θ1, θ2] is attained at its pseudocenter θ∗:

maxθ∈[θ1,θ2]

h(θ) = h(θ∗)

Page 112: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Pseudocenters and maxima of entropy

DefinitionThe pseudocenter of a real interval [a,b] with |a− b| < 1 is theunique dyadic rational number with shortest binary expansion.

ConjectureLet θ1 < θ2 be two external angles whose rays RM(θ1), RM(θ2)land on the same parameter.

Then the maximum of entropy onthe interval [θ1, θ2] is attained at its pseudocenter θ∗:

maxθ∈[θ1,θ2]

h(θ) = h(θ∗)

Page 113: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Pseudocenters and maxima of entropy

DefinitionThe pseudocenter of a real interval [a,b] with |a− b| < 1 is theunique dyadic rational number with shortest binary expansion.

ConjectureLet θ1 < θ2 be two external angles whose rays RM(θ1), RM(θ2)land on the same parameter. Then the maximum of entropy onthe interval [θ1, θ2] is attained at its pseudocenter θ∗:

maxθ∈[θ1,θ2]

h(θ) = h(θ∗)

Page 114: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Thurston’s entropy plot

Page 115: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Thurston’s quadratic minor lamination

Page 116: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

A transverse measure on QML

Let `1 < `2 two leaves, and τ a transverse arc connecting them.

Then we defineµ(τ) := h(Tc2)− h(Tc1)

“Combinatorial bifurcation measure”?

Page 117: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

A transverse measure on QML

Let `1 < `2 two leaves, and τ a transverse arc connecting them.Then we define

µ(τ) := h(Tc2)− h(Tc1)

“Combinatorial bifurcation measure”?

Page 118: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

A transverse measure on QML

Let `1 < `2 two leaves, and τ a transverse arc connecting them.Then we define

µ(τ) := h(Tc2)− h(Tc1)

“Combinatorial bifurcation measure”?

Page 119: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

The end

Thank you!

Page 120: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Coda: from Farey to the tent map, via ?

Minkowski’s question-mark function conjugates the Farey mapwith the tent map

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Continued fractions ⇔ Binary expansions

Page 121: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

The dictionary

Continued fractions ⇔ Binary expansions

E ←?→ R

α− continued fractions unimodal maps

numbers of generalized external raysbounded type on Julia sets

cutting sequences for univoque numbersgeodesics on torus(Cassaigne, 1999)

Page 122: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

A unified approach

The dictionary yields a unified proof of the following results:

1. The real part of the boundary of the Mandelbrot set hasHausdorff dimension 1

H.dim(∂M∩ R) = 1

(Zakeri, 2000)2. The set of matching intervals for α-continued fractions has

zero measure and full Hausdorff dimension(Nakada-Natsui conjecture, Carminati-T. 2010)

3. The set of univoque numbers has zero measure and fullHausdorff dimension (Erdos-Horvath-Joo, Daroczy-Katai,Komornik-Loreti)

Page 123: Giulio Tiozzo Harvard University June 21, 2013 · An entropic tour of the Mandelbrot set Giulio Tiozzo Harvard University June 21, 2013

Entropy of α-continued fractions vs real hyperboliccomponents ofM