glass 1 radiative heat transfer and applications for glass production processes axel klar and...

39
Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern Fraunhofer ITWM Abteilung Transport processes Montecatini, 15. – 19. October 2008

Post on 18-Dec-2015

224 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 1

Radiative Heat transfer and Applications for Glass Production Processes

Axel Klar and Norbert Siedow

Department of Mathematics, TU Kaiserslautern

Fraunhofer ITWM Abteilung Transport processes

Montecatini, 15. – 19. October 2008

Page 2: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 2

Radiative Heat transfer and Applications for Glass Production Processes Planning of the Lectures

1. Models for fast radiative heat transfer simulation

2. Indirect Temperature Measurement of Hot Glasses

3. Parameter Identification Problems

Page 3: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 3

Parameter Identification Problems

N. Siedow

Fraunhofer-Institute for Industrial Mathematics,

Kaiserslautern, Germany

Montecatini, 15. – 19. October 2008

Page 4: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 4

Parameter Identification ProblemsOutline

1. Introduction

2. Some Basics

3. Shape Optimization of Pipe Flanges

4. Impedance Tomography

5. Further Examples

6. Optimization of Thermal Stresses

7. Conclusions

Page 5: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 5

Example 2: Parameter Identification

0 1( ) ( ) ( ), 0 , (0) (0) , ( )u u

a x x f x x l a g u l gx x x

Conductivity is unknown

Additional information: ( ) , 1, 2,...,i iu x u i n Measurement , 1, 2,...,

iu i n

Formally we can write ( )F a u or2

( ) minF a u

We have to calculate derivatives!

'( ) 2 ( ) 0J a F a u *'( )F a

Parameter Identification Problems 1. Some Basics

Page 6: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 6

A very convenient way of calculating derivatives is the Adjoint Method

2minu u subject to ( ; ) 0e u a (Partial Differential Equation)

Lagrangian:2

( , , ) ( ; ),L a u p u u e u a p

Derivatives:

( ; ) 0L

e u ap

*

2( ) ( ; ) 0L e

u u u a pu u

*

( ; ) ...L e

u a pa a

*'( ) ( ) 0F a F a u

State Equation

Adjoint Equation

Parameter Equation

Parameter Identification Problems 1. Some Basics

Page 7: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 7

Example 2:

2minu u subject to ( ; ) 0e u a (Partial Differential Equation)

Lagrangian: 20 0

( , , ) ( ) ( ) ( ) ( ) ( )l l u

L a u p u x u x dx a x x p x dxx x

Derivatives:

( ) ( ) ( )u

a x x f xx x

( ) ( ) 2( ( ) ( ))p

a x x u x u xx x

( ) ( ) ( ) ( )new u pa x a x x x

x x

State Equation

Adjoint Equation

Parameter Equation

+ b. c.

+ b. c.

Parameter Identification Problems 1. Some Basics

Page 8: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 8

Example 2:

2minu u subject to ( ; ) 0e u a (Partial Differential Equation)

1%

Parameter Identification Problems 1. Some Basics

Page 9: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 9

Example 2:

subject to ( ; ) 0e u a (Partial Differential Equation)2

minu u 2u c

1%

Parameter Identification Problems 1. Some Basics

Page 10: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 10

Electric heating to keep the glass at desired temperature

• Control temperature (e.g. to avoid solidification)

• Control the input current (hot spots, cold shocks)

Shape Optimization

Constraints:

Objective:

gT

Parameter Identification Problems 2. Shape Optimization of Pipe Flanges

Page 11: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 11

min)(2

1 2 dxTxT

S

g

Find a surface shape of the flange so, that in a small section near the pipe boundary:

Under certain constraints:

• Equation of electrical potential (1)

• Heat transfer equation (2)

• . . .

S

Parameter Identification Problems 2. Shape Optimization of Pipe Flanges

Page 12: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 12

xxe

,0)(

1

eaae

xxxCxn

,0)(,,)(1

xxTke

t

,

)()(

2

aaeggt xxTxTxTxTxn

Tk

),()(,),)(()(

(2)

(1)

Parameter Identification Problems 2. Shape Optimization of Pipe Flanges

3D Model

Page 13: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 13

• Flange is very thin compared to the other dimensions

• Assume: the shape of the flange is symmetric with respect to z

electrical potential: 01

2

2

2

2

2

2

zyx ee

,,, zzyyxx - small parameter 1

Parameter Identification Problems 2. Shape Optimization of Pipe Flanges

Asymptotic Approach

Page 14: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 14

Electrical potential: ...),,(),(),,( 10 zyxyxzyx

),(,0),(),( 00 yxy

yxhyx

yxhx

+ boundary

conditions

),(,)(),(

),(),(2

000 yxk

yxh

y

Tyxh

yx

Tyxh

x et

+ boundary conditions

Heat transfer: ...),,(),(),,( 10 zyxTyxTzyxT

(3)

(4)

Parameter Identification Problems 2. Shape Optimization of Pipe Flanges

Asymptotic Approach

Page 15: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 15

Find of the flange so, that in near the pipe

Under certain constraints:

• Equation of electrical potential (3)

• Heat transfer equation (4)

• . . .

S),( yxh

xdTyxTS

g

2

0 ),(2

1 minxdyxh

),(2

2

• Minimal material

Parameter Identification Problems 2. Shape Optimization of Pipe Flanges

Parameter Optimization

Page 16: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 16

Lagrangian method:

• Potential equation (3)

• Heat transfer equation (4)

• Total Lagrangian

• Necessity condition

),...,,,,( 00 ThL p v

0L

• Adjoint potential equation

• Adjoint heat transfer equation

Parameter Identification Problems 2. Shape Optimization of Pipe Flanges

Page 17: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 17

Before optimization After optimization

Thickness

Parameter Identification Problems 2. Shape Optimization of Pipe Flanges

Example

Page 18: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 18

Before optimization After optimization

Temperature

Parameter Identification Problems 2. Shape Optimization of Pipe Flanges

Example

Page 19: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 19

Before optimization After optimization

Heat Flux

Parameter Identification Problems 2. Shape Optimization of Pipe Flanges

Example

Page 20: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 20

The knowledge of the temperature of the glass melt is important to control the homogeneity of the glass

Glass melting in a glass tank

Parameter Identification Problems 3. Impedance Tomography

Page 21: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 21

• Thermocouples at the bottom and the sides of the furnace

• Use of pyrometers is limited due to the atmosphere above the glass melt

Parameter Identification Problems 3. Impedance Tomography

Page 22: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 22

Glass melt

Determine the temperature of the glass melt during the melting process

23.2))(lg(890353)(

x

xT

( )x

applyElectric current

measure Voltage

Neutral wire

Experiment

electrode

Parameter Identification Problems 3. Impedance Tomography

Page 23: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 23

Parameter Identification Problems 3. Impedance Tomography

The forward Problem

1

0

( ) ( ) 0,

( ) ( ) ,

( ) ( ) ,

( ) 0,

( ) ( ) 0,

j

j

j

j

j

j

j

x x x

Ix x x

n r

Ix x x

n r

x x

x x xn

1 0( )j j

0

( )

( )j

x

x

I

r

Page 24: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 24

Parameter Identification Problems 3. Impedance Tomography

The forward Problem

Electric potential Electric current density

Page 25: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 25

Parameter Identification Problems 3. Impedance Tomography

The inverse Problem

Find so that( )x 2, 2

1 1

1( ) ( ) ( ) min

2 2

NP NEXPj j mes

ii j

E x dx g x dx

under the constraints that

2. is solution of the (so-called) form equation( )x

1. is solution of the potential equation( )j x

0

( ) ( ),

( ) ( ),

x g x x

x x x

Looking for a smooth solution

Page 26: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 26

Parameter Identification Problems 3. Impedance Tomography

The inverse Problem

• Potential Equation

( ) ( ) ( ),

( ) 0,

j j

j

w x x v x x

w x x

• Adjoint Potential Equation

,

0

( ) 0,

( ) ( ) ,

( ) 0,

( ) 0,

j

jj j mes

i i

j

j

v x x

vx x x

n

v x x

vx x

n

0i

• Adjoint Form Equation

• New Form Function

( ) ( ) ( ) ( ) ,newg x g x g x w x x

Page 27: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 27

)2

1()

2

1()3sin(25625 zzyyx

CxTC 1445)(1400

Example

CxTC 1445)(1401

99.25)(02.24 x26)(24 x

original

Reconstruction

Parameter Identification Problems 3. Impedance Tomography

Page 28: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 28

Heat Transfer Coefficient

0( , ) ( , ) , ( , ) ( ( , ) ( , )), ( ,0) ( )t au x t a u x t f an u x t u x t u x t u x u x

Dip Experiment

Parameter Identification Problems 4. Further Examples

Page 29: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 29

Brinkmann, Siedow. „Heat Transfer between Glass and Mold During Hot Forming.“ In Krause, Loch: Mathematical Simulation in Glass Technology; Springer 2002

Heat Transfer Coefficient

Parameter Identification Problems 4. Further Examples

Page 30: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 30

Initial condition

( , ) ( , ) , ( , ) ( ( , ) ( , )), ( ,0)t au x t a u x t f a u x t u x t u x t u x

0 ( )u x

Boundary condition

( , ) ( , ) , ( , ) ( ( , ) ), ( ,0) ( )tu x t a u x t f a u x t u x t u x u x

( , )au x t

Control Problem

Parameter Identification Problems 4. Further Examples

Page 31: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 31

Wrong cooling of glass and glass products causes large thermal stresses

Undesired crack

Parameter Identification Problems 6. Optimization of Thermal Stresses

Page 32: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 32

Thermal tempering consists of:

1. Heating of the glass at a temperature higher the transition temperature

2. Very rapid cooling by an air jet

Better mechanical and thermal strengthening to the glass by way of the residual stresses generated along the thickness

N. Siedow, D. Lochegnies, T. Grosan, E. Romero, J. Am. Ceram. Soc., 88 [8] 2181-2187 (2005)

Parameter Identification Problems 6. Optimization of Thermal Stresses

Page 33: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 33

How to control the heating to achieve a predefined temperature profile inside the glass products?

Parameter Identification Problems 6. Optimization of Thermal Stresses

Page 34: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 34

Linear Cooling Optimized Cooling

Minimize thermal stresses during the cooling process

Parameter Identification Problems 6. Optimization of Thermal Stresses

Page 35: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 35

Used Cooling Thermal Stress

Minimize the cooling time with constraint that permanent thermal stress < 3.5 Mpa

Parameter Identification Problems 6. Optimization of Thermal Stresses

Page 36: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 36

-24%691s

915s

Used Cooling Thermal Stress

Minimize the cooling time with constraint that permanent thermal stress < 3.5 Mpa

Parameter Identification Problems 6. Optimization of Thermal Stresses

Page 37: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 37

Optimal Mould Design during Pressing

How to design the mould that after cooling the glass lens has the desired shape?

Sellier, Breitbach, Loch, Siedow.“An iterative algorithm for optimal mould design in high-precision compression moulding.“ JEM606, IMechE Vol.221,2007, 25-33

Parameter Identification Problems 6. Optimization of Thermal Stresses

Page 38: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 38

Deviation of the upper glass side from the desired shape

Parameter Identification Problems 6. Optimization of Thermal Stresses

Deviation of the lower glass side from the desired shape

Page 39: Glass 1 Radiative Heat transfer and Applications for Glass Production Processes Axel Klar and Norbert Siedow Department of Mathematics, TU Kaiserslautern

Glass 39

Parameter Identification Problems are inverse problems

• Ill-posed Regularization

We have discussed different Parameter Identification Problems

For constraint optimization problems the Lagrangian approach is very convenient for calculating derivatives

Parameter Identification Problems 7. Conclusions