gradings on simple lie algebras · 2019-02-12 · [bou98] n.bourbaki,lie groupsand lie...

32
Mathematical Surveys and Monographs Volume 189 Gradings on Simple Lie Algebras Alberto Elduque Mikhail Kochetov American Mathematical Society Atlantic Association for Research in the Mathematical Sciences

Upload: others

Post on 12-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Gradings on Simple Lie Algebras · 2019-02-12 · [Bou98] N.Bourbaki,Lie groupsand Lie algebras.Chapters 1–3,ElementsofMathematics (Berlin), Springer-Verlag, Berlin, 1998,Translatedfromthe

Mathematical Surveys

and Monographs

Volume 189

Gradings on SimpleLie Algebras

Alberto ElduqueMikhail Kochetov

American Mathematical Society

Atlantic Association for Researchin the Mathematical Sciences

Page 2: Gradings on Simple Lie Algebras · 2019-02-12 · [Bou98] N.Bourbaki,Lie groupsand Lie algebras.Chapters 1–3,ElementsofMathematics (Berlin), Springer-Verlag, Berlin, 1998,Translatedfromthe

Gradings on Simple Lie Algebras

http://dx.doi.org/10.1090/surv/189

Page 3: Gradings on Simple Lie Algebras · 2019-02-12 · [Bou98] N.Bourbaki,Lie groupsand Lie algebras.Chapters 1–3,ElementsofMathematics (Berlin), Springer-Verlag, Berlin, 1998,Translatedfromthe
Page 4: Gradings on Simple Lie Algebras · 2019-02-12 · [Bou98] N.Bourbaki,Lie groupsand Lie algebras.Chapters 1–3,ElementsofMathematics (Berlin), Springer-Verlag, Berlin, 1998,Translatedfromthe

Mathematical Surveys

and Monographs

Volume 189

Gradings on Simple Lie Algebras

Alberto Elduque Mikhail Kochetov

American Mathematical SocietyProvidence, RI

Atlantic Association for Researchin the Mathematical SciencesHalifax, Nova Scotia, Canada

Page 5: Gradings on Simple Lie Algebras · 2019-02-12 · [Bou98] N.Bourbaki,Lie groupsand Lie algebras.Chapters 1–3,ElementsofMathematics (Berlin), Springer-Verlag, Berlin, 1998,Translatedfromthe

Editorial Committee of Mathematical Surveys and Monographs

Ralph L. Cohen, Chair

Robert GuralnickMichael A. Singer

Benjamin SudakovMichael I. Weinstein

Editorial Board of the Atlantic Association forResearch in the Mathematical Sciences

Jeannette Janssen, DirectorDavid Langstroth, Managing Editor

Yuri Bahturin Theodore KolokolnikovRobert Dawson Lin Wang

2010 Mathematics Subject Classification. Primary 17B70;Secondary 17B60, 16W50, 17A75, 17C50.

For additional information and updates on this book, visitwww.ams.org/bookpages/surv-189

Library of Congress Cataloging-in-Publication Data

Elduque, Alberto.Gradings on simple Lie algebras / Alberto Elduque, Mikhail Kochetov.

pages cm. — (Mathematical surveys and monographs ; volume 189)Includes bibliographical references and index.ISBN 978-0-8218-9846-8 (alk. paper)1. Lie algebras 2. Rings (Algebra) 3. Jordan algebras. I. Kochetov, Mikhail, 1977–

II. Title.

QA252.3.E43 2013512′.482—dc23

2013007217

Copying and reprinting. Individual readers of this publication, and nonprofit librariesacting for them, are permitted to make fair use of the material, such as to copy a chapter for usein teaching or research. Permission is granted to quote brief passages from this publication inreviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publicationis permitted only under license from the American Mathematical Society. Requests for suchpermission should be addressed to the Acquisitions Department, American Mathematical Society,201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made bye-mail to [email protected].

c© 2013 by the American Mathematical Society. All rights reserved.The American Mathematical Society retains all rightsexcept those granted to the United States Government.

Printed in the United States of America.

©∞ The paper used in this book is acid-free and falls within the guidelinesestablished to ensure permanence and durability.

Visit the AMS home page at http://www.ams.org/

10 9 8 7 6 5 4 3 2 1 18 17 16 15 14 13

Page 6: Gradings on Simple Lie Algebras · 2019-02-12 · [Bou98] N.Bourbaki,Lie groupsand Lie algebras.Chapters 1–3,ElementsofMathematics (Berlin), Springer-Verlag, Berlin, 1998,Translatedfromthe

To Pili, a mathematician, and to Eva, a mathematician to be. (A.E.)To the memory of my parents. (M.K.)

Page 7: Gradings on Simple Lie Algebras · 2019-02-12 · [Bou98] N.Bourbaki,Lie groupsand Lie algebras.Chapters 1–3,ElementsofMathematics (Berlin), Springer-Verlag, Berlin, 1998,Translatedfromthe
Page 8: Gradings on Simple Lie Algebras · 2019-02-12 · [Bou98] N.Bourbaki,Lie groupsand Lie algebras.Chapters 1–3,ElementsofMathematics (Berlin), Springer-Verlag, Berlin, 1998,Translatedfromthe

Contents

List of Figures ix

Preface xi

Conventions and Dependence among Chapters xiii

Introduction 1

Chapter 1. Gradings on Algebras 91.1. General gradings and group gradings 91.2. The universal group of a grading 151.3. Fine gradings 161.4. Duality between gradings and actions 191.5. Exercises 25

Chapter 2. Associative Algebras 272.1. Graded simple algebras with minimality condition 282.2. Graded division algebras over algebraically closed fields 332.3. Classification of gradings on matrix algebras 382.4. Anti-automorphisms and involutions of graded matrix algebras 492.5. Exercises 60

Chapter 3. Classical Lie Algebras 633.1. Classical Lie algebras and their automorphism group schemes 643.2. ϕ-Gradings on matrix algebras 853.3. Type A 1053.4. Type B 1163.5. Type C 1183.6. Type D 1193.7. Exercises 121

Chapter 4. Composition Algebras and Type G2 1234.1. Hurwitz algebras 1234.2. Gradings on Cayley algebras 1304.3. Gradings on psl3(F), charF = 3 1374.4. Derivations of Cayley algebras and simple Lie algebras of type G2 1404.5. Gradings on the simple Lie algebras of type G2 1464.6. Symmetric composition algebras 1494.7. Exercises 160

Chapter 5. Jordan Algebras and Type F4 1635.1. The Albert algebra 164

vii

Page 9: Gradings on Simple Lie Algebras · 2019-02-12 · [Bou98] N.Bourbaki,Lie groupsand Lie algebras.Chapters 1–3,ElementsofMathematics (Berlin), Springer-Verlag, Berlin, 1998,Translatedfromthe

viii CONTENTS

5.2. Construction of fine gradings on the Albert algebra 1695.3. Weyl groups of fine gradings 1785.4. Classification of gradings on the Albert algebra 1845.5. Gradings on the simple Lie algebra of type F4 1905.6. Gradings on simple special Jordan algebras 1975.7. Exercises 206

Chapter 6. Other Simple Lie Algebras in Characteristic Zero 2076.1. Fine gradings on the simple Lie algebra of type D4 2076.2. Freudenthal’s Magic Square 2246.3. Some nice gradings on the exceptional simple Lie algebras 2396.4. Fine gradings on the simple Lie algebra of type E6 2446.5. Fine gradings and gradings by root systems 2596.6. Summary of known fine gradings for types E6, E7 and E8 2656.7. Exercises 269

Chapter 7. Lie Algebras of Cartan Type in Prime Characteristic 2717.1. Restricted Lie algebras 2717.2. Construction of Cartan type Lie algebras 2737.3. Automorphism group schemes 2767.4. Gradings 2877.5. Exercises 297

Appendix A. Affine Group Schemes 299A.1. Affine group schemes and commutative Hopf algebras 299A.2. Morphisms of group schemes 305A.3. Linear representations 307A.4. Affine algebraic groups 310A.5. Infinitesimal theory 314

Appendix B. Irreducible Root Systems 321

Bibliography 323

Index of Notation 331

Index 333

Page 10: Gradings on Simple Lie Algebras · 2019-02-12 · [Bou98] N.Bourbaki,Lie groupsand Lie algebras.Chapters 1–3,ElementsofMathematics (Berlin), Springer-Verlag, Berlin, 1998,Translatedfromthe

List of Figures

2.1 Gradings, up to equivalence, on M2(F) where F is an algebraically closedfield, charF �= 2. 44

2.2 Gradings, up to equivalence, on M3(F) where F is an algebraically closedfield, charF �= 3. 46

4.1 Multiplication table of the split Cayley algebra 129

4.2 Gradings on the Cayley algebra over an algebraically closed field ofcharacteristic different from 2 134

4.3 Gradings, up to equivalence, on the simple Lie algebra of type G2 over analgebraically closed field 149

4.4 Multiplication table of the split Okubo algebra 151

6.1 Dynkin diagram of D4 211

6.2 Fine gradings on the E-series. 268

ix

Page 11: Gradings on Simple Lie Algebras · 2019-02-12 · [Bou98] N.Bourbaki,Lie groupsand Lie algebras.Chapters 1–3,ElementsofMathematics (Berlin), Springer-Verlag, Berlin, 1998,Translatedfromthe
Page 12: Gradings on Simple Lie Algebras · 2019-02-12 · [Bou98] N.Bourbaki,Lie groupsand Lie algebras.Chapters 1–3,ElementsofMathematics (Berlin), Springer-Verlag, Berlin, 1998,Translatedfromthe

Preface

The aim of this book is to introduce the reader to the theory of gradings on Liealgebras, with a focus on the classification of gradings on simple finite-dimensionalLie algebras over algebraically closed fields. The classic example of such a gradingis the Cartan decomposition with respect to a Cartan subalgebra in characteristiczero, which is a grading by a free abelian group. Since the 1960’s, there has beenmuch work on gradings by other groups, starting with finite cyclic groups, andapplications of such gradings to the theory of Lie algebras and their representations.We do not attempt to give a comprehensive survey of these results but ratherto present a self-contained exposition of the classification of gradings on classicalsimple Lie algebras in characteristic different from 2 and on some non-classicalsimple Lie algebras in prime characteristic greater than 3. Other important algebrasalso enter the stage: matrix algebras, the octonions and the simple exceptionalJordan algebra. Most of the classification results presented here are recent andhave not yet appeared in book form.

This work started with the notes of two courses that the authors gave for theAtlantic Algebra Centre at Memorial University of Newfoundland: “Introductionto affine group schemes” (M. Kochetov, November–December 2008) and “Compo-sition algebras and their gradings” (A. Elduque, May 2009). Affine group schemesare an important tool for the study of gradings on finite-dimensional algebras inarbitrary characteristic, as we explain in Chapter 1. We give a brief expositionof the background on affine group schemes in Appendix A, with references to theliterature on this subject. A reader who is interested exclusively in the case ofcharacteristic zero will only need affine algebraic groups (in the “naıve” sense) tofollow this book. Apart from this, we assume that the reader is familiar with lin-ear algebra and with the basics on groups and algebras. The book is intended forspecialists in Lie theory but may also serve as a textbook for graduate students(in conjunction with an introductory textbook on Lie algebras). In every chapter,at the beginning, we give a brief description of its main results and references tooriginal works; at the end, we give a list of exercises on the covered material.

This book would not have been written without the constant support, adviceand encouragement of Yuri Bahturin, who himself greatly contributed to the studyof gradings by arbitrary groups. It was his enthusiasm that convinced the authorsto join efforts in the task of collecting, understanding, unifying and expanding theknowledge about gradings on simple Lie algebras. The second author would alsolike to use this opportunity to express his gratitude for all the help in his life andcareer given so generously by Professor Bahturin since becoming his thesis advisora decade and a half ago.

xi

Page 13: Gradings on Simple Lie Algebras · 2019-02-12 · [Bou98] N.Bourbaki,Lie groupsand Lie algebras.Chapters 1–3,ElementsofMathematics (Berlin), Springer-Verlag, Berlin, 1998,Translatedfromthe

xii PREFACE

The authors have benefited from discussions with many colleagues. Amongthem, our special thanks are due to Cristina Draper, who explained her results ongradings on exceptional simple Lie algebras long before they were publicly available.

The first author acknowledges the support of the former Spanish Ministerio deCiencia e Innovacion—Fondo Europeo de Desarrollo Regional (FEDER)1 and of theDiputacion General de Aragon—Fondo Social Europeo (Grupo de Investigacion de

Algebra). He would also like to thank Memorial University for hospitality duringhis visits to Newfoundland.

The second author acknowledges the support of the Natural Sciences and Engi-neering Research Council (NSERC)2 of Canada and the hospitality of the Universityof Zaragoza during his visits to Spain.

Both authors acknowledge the support of the Atlantic Association for Researchin the Mathematical Sciences (AARMS) of Canada in the preparation of this book.

Alberto Elduque and Mikhail Kochetov

Zaragoza, SpainFebruary 2013

1MTM2010-18370-C04-022Discovery Grant # 341792-07

Page 14: Gradings on Simple Lie Algebras · 2019-02-12 · [Bou98] N.Bourbaki,Lie groupsand Lie algebras.Chapters 1–3,ElementsofMathematics (Berlin), Springer-Verlag, Berlin, 1998,Translatedfromthe

Conventions and Dependence among Chapters

The symbols Z, Q, R and C will denote, respectively, the integers, rationals,reals and complex numbers. The set of integers modulo m will be denoted by Zm,with individual elements written as numbers with a bar (0, 1, etc.)

Unless indicated otherwise, vector spaces, dimensions, linear maps, algebras,tensor products, etc. will be understood over a ground field F. The assumptions onF will vary from section to section and will be stated explicitly. In particular, thecharacteristic of F will be written as charF. In most cases, we will use italic capitals(U , V , W , etc.) to denote sets and vector spaces, and calligraphic capitals (A, B,C, etc.) to denote algebras. Direct sums of vector spaces will be written as ⊕, andtensor products as ⊗. The trace and determinant of a matrix or an endomorphismwill be denoted by tr and det, respectively. An endomorphism whose minimalpolynomial has no multiple roots will be called semisimple or (if the ground field isalgebraically closed) diagonalizable.

Cyclic groups will often be written as Z or Zm. The symmetric group onn symbols will be denoted by Sym(n). Direct and semidirect product of groupswill be written as × and �, respectively. The stabilizer of an object x underan action of a group G will be denoted by StabG(x), with StabG(x, y) meaningStabG(x)∩StabG(y), etc. In the special case of G acting on itself or its power set byconjugation, we will use CG(x) (centralizer) and NG(x) (normalizer), respectively.Thus, for X ⊂ G, we have:

CG(X) := {g ∈ G | gx = xg ∀x ∈ X} and NG(X) := {g ∈ G | gXg−1 = X}.The center of G will be denoted by Z(G). The same notation for centralizers,normalizers and center will also be used for Lie algebras.

We will use standard notation for classical groups: GLn(F) or GL(V ) for thegeneral linear group and similarly SL for the special linear group, O for the orthog-onal group (with respect to a nondegenerate quadratic form), SO for the specialorthogonal group, and Sp for the symplectic group (with respect to a nondegener-ate symplectic form). If F is finite, its symbol may be replaced by the order: forexample, we will write GL3(2) for GL3(F) where F is the field of two elements. Themultiplicative group of F will be denoted by F×.

Throughout the book, more notation will be introduced, especially for gradingson various algebras. As a general rule, a grading on an algebra will be denoted byΓ with a subscript indicating the algebra or its type. We have made an effort tocollect all such symbols in a separate notation index at the end of the book.

The terminology and basic constructions concerning gradings are introducedin Chapter 1. They will be used throughout the book. The chapters depend oneach other (in addition to Chapter 1) as follows: Chapter 3 depends on Chapter 2;Chapter 5 depends on Chapter 4 and, to some extent, Chapters 2 and 3; Chapter6 depends on all preceding chapters.

xiii

Page 15: Gradings on Simple Lie Algebras · 2019-02-12 · [Bou98] N.Bourbaki,Lie groupsand Lie algebras.Chapters 1–3,ElementsofMathematics (Berlin), Springer-Verlag, Berlin, 1998,Translatedfromthe
Page 16: Gradings on Simple Lie Algebras · 2019-02-12 · [Bou98] N.Bourbaki,Lie groupsand Lie algebras.Chapters 1–3,ElementsofMathematics (Berlin), Springer-Verlag, Berlin, 1998,Translatedfromthe

Bibliography

[AEMN02] P. Alberca Bjerregaard, A. Elduque, C. Martın Gonzalez, and F. J.Navarro Marquez, On the Cartan-Jacobson theorem, J. Algebra 250 (2002), no. 2,397–407. MR 1899296 (2003b:17025)

[ABG02] B. Allison, G. Benkart, and Y. Gao, Lie algebras graded by the root systemsBCr, r ≥ 2, Mem. Amer. Math. Soc. 158 (2002), no. 751, x+158. MR 1902499(2003h:17038)

[AF93] B. N. Allison and J. R. Faulkner, Nonassociative coefficient algebras for Steinbergunitary Lie algebras, J. Algebra 161 (1993), no. 1, 1–19. MR 1245840 (94j:17004)

[Ale74] A. V. Alekseevskiı, Jordan finite commutative subgroups of simple complex Liegroups, Funkcional. Anal. i Prilozen. 8 (1974), no. 4, 1–4. MR MR0379748 (52#653)

[AM99] H. Albuquerque and S. Majid, Quasialgebra structure of the octonions, J. Algebra220 (1999), no. 1, 188–224. MR 1713433 (2000h:16048)

[AS69] H. P. Allen and M. E. Sweedler, A theory of linear descent based upon Hopf algebraic

techniques, J. Algebra 12 (1969), 242–294. MR 0242906 (39 #4233)[Bah12] Y. Bahturin, Group gradings on free algebras of nilpotent varieties of algebras,

Serdica Math. J. 38 (2012), 1–6.[BB09] Y. Bahturin and M. Bresar, Lie gradings on associative algebras, J. Algebra 321

(2009), no. 1, 264–283. MR MR2469360 (2009k:16081)[BBCM01a] K. I. Beidar, M. Bresar, M. A. Chebotar, and W. S. Martindale, 3rd, On Herstein’s

Lie map conjectures. I, Trans. Amer. Math. Soc. 353 (2001), no. 10, 4235–4260(electronic). MR MR1837230 (2002e:16049)

[BBCM01b] , On Herstein’s Lie map conjectures. II, J. Algebra 238 (2001), no. 1, 239–264. MR MR1822191 (2002e:16050)

[BBCM02] , On Herstein’s Lie map conjectures. III, J. Algebra 249 (2002), no. 1, 59–94.MR MR1887985 (2003c:16042)

[BBK12] Y. Bahturin, M. Bresar, and M. Kochetov, Group gradings on finitary simple Liealgebras, Internat. J. Algebra Comput. 22 (2012), no. 5, 1250046, 46. MR 2949212

[BCM07] M. Bresar, M. A. Chebotar, and W. S. Martindale, 3rd, Functional identities, Fron-tiers in Mathematics, Birkhauser Verlag, Basel, 2007. MR 2332350 (2008j:16068)

[BG08a] Y. Bahturin and A. Giambruno, Group grading on associative algebras with involu-tion, Canad. Math. Bull. 51 (2008), no. 2, 182–194. MR MR2414206 (2010c:16044)

[BG08b] Y. Bahturin and M. Goze, Z2 × Z2-symmetric spaces, Pacific J. Math. 236 (2008),no. 1, 1–21. MR MR2398984 (2009c:17052)

[BK09] Y. Bahturin and M. Kochetov, Group gradings on the Lie algebra psln in positivecharacteristic, J. Pure Appl. Algebra 213 (2009), no. 9, 1739–1749. MR MR2518173(2010c:17025)

[BK10] , Classification of group gradings on simple Lie algebras of types A,B,C andD, J. Algebra 324 (2010), no. 11, 2971–2989. MR 2732982

[BK11] , Group gradings on restricted Cartan-type Lie algebras, Pacific J. Math.253 (2011), no. 2, 289–319. MR 2878812

[BKM09] Y. Bahturin, M. Kochetov, and S. Montgomery, Group gradings on simple Lie alge-bras in positive characteristic, Proc. Amer. Math. Soc. 137 (2009), no. 4, 1245–1254.MR MR2465646 (2009j:17027)

[BL07] Y. Billig and M. Lau, Thin coverings of modules, J. Algebra 316 (2007), no. 1,147–173. MR 2354857 (2008k:16066)

323

Page 17: Gradings on Simple Lie Algebras · 2019-02-12 · [Bou98] N.Bourbaki,Lie groupsand Lie algebras.Chapters 1–3,ElementsofMathematics (Berlin), Springer-Verlag, Berlin, 1998,Translatedfromthe

324 BIBLIOGRAPHY

[BM92] S. Berman and R. V. Moody, Lie algebras graded by finite root systems and theintersection matrix algebras of Slodowy, Invent. Math. 108 (1992), no. 2, 323–347.MR 1161095 (93e:17031)

[BM99] Y. Bahturin and S. Montgomery, PI-envelopes of Lie superalgebras, Proc. Amer.Math. Soc. 127 (1999), no. 10, 2829–2839. MR MR1600092 (2000a:17029)

[Bou98] N. Bourbaki, Lie groups and Lie algebras. Chapters 1–3, Elements of Mathematics(Berlin), Springer-Verlag, Berlin, 1998, Translated from the French, Reprint of the

1989 English translation. MR 1728312 (2001g:17006)[Bou02] , Lie groups and Lie algebras. Chapters 4–6, Elements of Mathematics

(Berlin), Springer-Verlag, Berlin, 2002, Translated from the 1968 French originalby Andrew Pressley. MR 1890629 (2003a:17001)

[BP09] Y. Bahturin and D. Pagon, Classifying simple color Lie superalgebras, Algebras, rep-resentations and applications, Contemp. Math., vol. 483, Amer. Math. Soc., Provi-dence, RI, 2009, pp. 37–54. MR 2497949 (2010b:17036)

[BS01] Y. Bahturin and I. Shestakov, Gradings of simple Jordan algebras and their relationto the gradings of simple associative algebras, Comm. Algebra 29 (2001), no. 9,4095–4102, Special issue dedicated to Alexei Ivanovich Kostrikin. MR 1857029(2002h:17033)

[BS03] C. H. Barton and A. Sudbery, Magic squares and matrix models of Lie algebras,Adv. Math. 180 (2003), no. 2, 596–647. MR 2020553 (2005b:17017)

[BSZ01] Y. A. Bahturin, S. K. Sehgal, and M. V. Zaicev, Group gradings on associativealgebras, J. Algebra 241 (2001), no. 2, 677–698. MR MR1843319 (2002h:16067)

[BSZ05] Y. A. Bahturin, I. P. Shestakov, and M. V. Zaicev, Gradings on simple Jordan andLie algebras, J. Algebra 283 (2005), no. 2, 849–868. MR MR2111225 (2005i:17038)

[BT09] Y. A. Bahturin and M. V. Tvalavadze, Group gradings on G2, Comm. Algebra 37(2009), no. 3, 885–893. MR MR2503183 (2010a:17021)

[BW88] R. E. Block and R. L. Wilson, Classification of the restricted simple Lie algebras,J. Algebra 114 (1988), no. 1, 115–259. MR 931904 (89e:17014)

[BZ96] G. Benkart and E. Zel′manov, Lie algebras graded by finite root systems and in-tersection matrix algebras, Invent. Math. 126 (1996), no. 1, 1–45. MR 1408554

(97k:17044)[BZ02] Y. A. Bahturin and M. V. Zaicev, Group gradings on matrix algebras, Canad. Math.

Bull. 45 (2002), no. 4, 499–508, Dedicated to Robert V. Moody. MR MR1941224(2003h:16046)

[BZ03] , Graded algebras and graded identities, Polynomial identities and combina-torial methods (Pantelleria, 2001), Lecture Notes in Pure and Appl. Math., vol. 235,Dekker, New York, 2003, pp. 101–139. MR MR2021796 (2005a:16059)

[BZ06] , Group gradings on simple Lie algebras of type “A”, J. Lie Theory 16 (2006),no. 4, 719–742. MR MR2270657 (2007i:17037)

[BZ07] , Involutions on graded matrix algebras, J. Algebra 315 (2007), no. 2, 527–540. MR MR2351876 (2008h:16027)

[BZ10] Y. Bahturin and M. Zaicev, Gradings on simple algebras of finitary matrices, J.Algebra 324 (2010), no. 6, 1279–1289. MR 2671805 (2011g:16044)

[Car62] P. Cartier, Groupes algebriques et groupes formels, Colloq. Theorie des GroupesAlgebriques (Bruxelles, 1962), Librairie Universitaire, Louvain, 1962, pp. 87–111.MR MR0148665 (26 #6172)

[Che55] C. Chevalley, Sur certains groupes simples, Tohoku Math. J. (2) 7 (1955), 14–66.MR 0073602 (17,457c)

[Dem70] S. P. Demuskin, Cartan subalgebras of the simple Lie p-algebras Wn and Sn, Sibirsk.

Mat. Z. 11 (1970), 310–325. MR 0262310 (41 #6919)[Dem72] , Cartan subalgebras of simple non-classical Lie p-algebras, Izv. Akad. Nauk

SSSR Ser. Mat. 36 (1972), 915–932. MR 0327854 (48 #6196)[DG80] M. Demazure and P. Gabriel, Introduction to algebraic geometry and algebraic

groups, North-Holland Mathematics Studies, vol. 39, North-Holland Publishing Co.,Amsterdam, 1980, Translated from the French by J. Bell. MR 563524 (82e:14001)

[Die73] J. Dieudonne, Introduction to the theory of formal groups, Marcel Dekker Inc., New

York, 1973, Pure and Applied Mathematics, 20. MR MR0332802 (48 #11128)

Page 18: Gradings on Simple Lie Algebras · 2019-02-12 · [Bou98] N.Bourbaki,Lie groupsand Lie algebras.Chapters 1–3,ElementsofMathematics (Berlin), Springer-Verlag, Berlin, 1998,Translatedfromthe

BIBLIOGRAPHY 325

[DM96] J. D. Dixon and B. Mortimer, Permutation groups, Graduate Texts in Mathematics,vol. 163, Springer-Verlag, New York, 1996. MR 1409812 (98m:20003)

[DM06] C. Draper and C. Martın, Gradings on g2, Linear Algebra Appl. 418 (2006), no. 1,85–111. MR MR2257580 (2007e:17026)

[DM09] , Gradings on the Albert algebra and on f4, Rev. Mat. Iberoam. 25 (2009),no. 3, 841–908. MR 2590049 (2010m:17023)

[DM10] , A non-computational approach to the gradings on f4, Rev. Mat. Iberoam.,

28 (2012), no. 1, 273–296. MR 2904141[DMV10] C. Draper, C. Martın, and A. Viruel, Fine gradings on the Lie algebra d4, Forum

Math. 22 (2010), no. 5, 863–877. MR 2719760[DV08] C. Draper and A. Viruel, Group gradings on o(8,C), Rep. Math. Phys. 61 (2008),

no. 2, 265–280. MR 2424094 (2009d:17041)[DV12] , Fine gradings on e6, 2012.[EK12a] A. Elduque and M. Kochetov, Gradings on the exceptional Lie algebras F4 and G2

revisited, Rev. Mat. Iberoam. 28 (2012), no. 3, 773–813. MR 2949619[EK12b] , Weyl groups of fine gradings on matrix algebras, octonions and the Albert

algebra, J. Algebra 366 (2012), 165–186. MR 2942648[EK12c] , Weyl groups of fine gradings on simple Lie algebras of types A, B, C and

D, Serdica Math. J. 38 (2012), 7–36.[EKM08] R. Elman, N. Karpenko, and A. Merkurjev, The algebraic and geometric theory of

quadratic forms, American Mathematical Society Colloquium Publications, vol. 56,American Mathematical Society, Providence, RI, 2008. MR 2427530 (2009d:11062)

[Eld97] A. Elduque, Symmetric composition algebras, J. Algebra 196 (1997), no. 1, 282–300.MR 1474173 (98m:17008)

[Eld98] , Gradings on octonions, J. Algebra 207 (1998), no. 1, 342–354.MR MR1643126 (99g:17055)

[Eld00] , On triality and automorphisms and derivations of composition algebras,Linear Algebra Appl. 314 (2000), no. 1-3, 49–74. MR 1769014 (2001f:17005)

[Eld04] , The magic square and symmetric compositions, Rev. Mat. Iberoamericana20 (2004), no. 2, 475–491. MR 2073128 (2005e:17017)

[Eld06a] , A Lie grading which is not a semigroup grading, Linear Algebra Appl. 418(2006), no. 1, 312–314. MR MR2257598 (2007g:17030)

[Eld06b] , New simple Lie superalgebras in characteristic 3, J. Algebra 296 (2006),no. 1, 196–233. MR 2192604 (2006i:17028)

[Eld09a] , Gradings on symmetric composition algebras, J. Algebra 322 (2009), no. 10,3542–3579. MR MR2568352

[Eld09b] , Jordan gradings on exceptional simple Lie algebras, Proc. Amer. Math.Soc. 137 (2009), no. 12, 4007–4017. MR MR2538561

[Eld09c] , More non-semigroup Lie gradings, Linear Algebra Appl. 431 (2009), no. 9,1603–1606. MR MR2555061

[Eld10] , Fine gradings on simple classical Lie algebras, J. Algebra 324 (2010),no. 12, 3532–3571. MR 2735398

[Eld13] , Fine gradings and gradings by root systems on simple Lie algebras, 2013.[EM90] A. Elduque and H. C. Myung, On Okubo algebras, From symmetries to strings:

forty years of Rochester Conferences (Rochester, NY, 1990), World Sci. Publ., RiverEdge, NJ, 1990, pp. 299–310. MR 1167011 (93f:17004)

[EM91] , Flexible composition algebras and Okubo algebras, Comm. Algebra 19(1991), no. 4, 1197–1227. MR 1102335 (92c:17004)

[EM93] , On flexible composition algebras, Comm. Algebra 21 (1993), no. 7, 2481–2505. MR 1218509 (94h:17001)

[EPI96] A. Elduque and J. M. Perez-Izquierdo, Composition algebras with associative bilin-ear form, Comm. Algebra 24 (1996), no. 3, 1091–1116. MR 1374659 (97b:17006)

[EPI97] , Infinite-dimensional quadratic forms admitting composition, Proc. Amer.Math. Soc. 125 (1997), no. 8, 2207–2216. MR 1376759 (97j:17003)

[Fil76] V. T. Filippov, Central simple Mal′cev algebras, Algebra i Logika 15 (1976), no. 2,235–242, 246. MR 0470009 (57 #9783)

[Fre64] H. Freudenthal, Lie groups in the foundations of geometry, Advances in Math. 1(1964), no. fasc. 2, 145–190 (1964). MR 0170974 (30 #1208)

Page 19: Gradings on Simple Lie Algebras · 2019-02-12 · [Bou98] N.Bourbaki,Lie groupsand Lie algebras.Chapters 1–3,ElementsofMathematics (Berlin), Springer-Verlag, Berlin, 1998,Translatedfromthe

326 BIBLIOGRAPHY

[Gri90] R. L. Griess, Jr., A Moufang loop, the exceptional Jordan algebra, and a cubic formin 27 variables, J. Algebra 131 (1990), no. 1, 281–293. MR 1055009 (91g:17044)

[Gro02] L. C. Grove, Classical groups and geometric algebra, Graduate Studies in Mathe-matics, vol. 39, American Mathematical Society, Providence, RI, 2002. MR 1859189(2002m:20071)

[Hes82] W. H. Hesselink, Special and pure gradings of Lie algebras, Math. Z. 179 (1982),no. 1, 135–149. MR 643052 (83c:17025)

[HPP98] M. Havlıcek, J. Patera, and E. Pelantova, On Lie gradings. II, Linear Algebra Appl.277 (1998), no. 1-3, 97–125. MR MR1624532 (99d:17032)

[HPP00] , On Lie gradings. III. Gradings of the real forms of classical Lie algebras,Linear Algebra Appl. 314 (2000), no. 1-3, 1–47. MR MR1769013 (2001g:17042)

[Hum75] J. E. Humphreys, Linear algebraic groups, Springer-Verlag, New York, 1975, Grad-uate Texts in Mathematics, No. 21. MR MR0396773 (53 #633)

[Hum78] , Introduction to Lie algebras and representation theory, Graduate Texts inMathematics, vol. 9, Springer-Verlag, New York, 1978, Second printing, revised.MR MR499562 (81b:17007)

[IW53] E. Inonu and E. P. Wigner, On the contraction of groups and their representations,Proc. Nat. Acad. Sci. U. S. A. 39 (1953), 510–524. MR 0055352 (14,1061c)

[Jac64] N. Jacobson, Structure of rings, American Mathematical Society Colloquium Publi-cations, Vol. 37. Revised edition, American Mathematical Society, Providence, R.I.,

1964. MR MR0222106 (36 #5158)[Jac68] , Structure and representations of Jordan algebras, American Mathematical

Society Colloquium Publications, Vol. XXXIX, American Mathematical Society,Providence, R.I., 1968. MR MR0251099 (40 #4330)

[Jac79] , Lie algebras, Dover Publications Inc., New York, 1979, Republication ofthe 1962 original. MR MR559927 (80k:17001)

[Jac89] , Basic algebra. II, second ed., W. H. Freeman and Company, New York,1989. MR 1009787 (90m:00007)

[Jan03] J. C. Jantzen, Representations of algebraic groups, second ed., Mathematical Sur-veys and Monographs, vol. 107, American Mathematical Society, Providence, RI,2003. MR 2015057 (2004h:20061)

[Kac68] V. G. Kac, Graded Lie algebras and symmetric spaces, Funkcional. Anal. i Prilozen.2 (1968), no. 2, 93–94. MR MR0231944 (38 #270)

[Kac90] , Infinite-dimensional Lie algebras, third ed., Cambridge University Press,Cambridge, 1990. MR MR1104219 (92k:17038)

[Kan64] I. L. Kantor, Classification of irreducible transitive differential groups, Dokl. Akad.Nauk SSSR 158 (1964), 1271–1274. MR 0175941 (31 #217)

[KMRT98] M.-A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol, The book of involutions,American Mathematical Society Colloquium Publications, vol. 44, American Math-ematical Society, Providence, RI, 1998, With a preface in French by J. Tits.MR MR1632779 (2000a:16031)

[Koe67] M. Koecher, Imbedding of Jordan algebras into Lie algebras. I, Amer. J. Math. 89(1967), 787–816. MR 0214631 (35 #5480)

[KT94] A. I. Kostrikin and P. H. Ti.ep, Orthogonal decompositions and integral lattices,

de Gruyter Expositions in Mathematics, vol. 15, Walter de Gruyter & Co., Berlin,1994. MR 1308713 (96f:17001)

[KY97] M. I. Kuznetsov and V. A. Yakovlev, Elementary proof of Demuskin’s theorem intori in special Lie p-algebras of Cartan type, Comm. Algebra 25 (1997), no. 12,3979–3983. MR 1481581

[LM02] J. M. Landsberg and L. Manivel, Triality, exceptional Lie algebras and Deligne di-mension formulas, Adv. Math. 171 (2002), no. 1, 59–85. MR 1933384 (2003i:17012)

[LM04] , Representation theory and projective geometry, Algebraic transformationgroups and algebraic varieties, Encyclopaedia Math. Sci., vol. 132, Springer, Berlin,2004, pp. 71–122. MR 2090671 (2005k:14106)

[Loo75] O. Loos, Jordan pairs, Lecture Notes in Mathematics, Vol. 460, Springer-Verlag,Berlin, 1975. MR 0444721 (56 #3071)

[LY79] R. A. Liebler and J. E. Yellen, In search of nonsolvable groups of central type, PacificJ. Math. 82 (1979), no. 2, 485–492. MR MR551705 (81g:20018)

Page 20: Gradings on Simple Lie Algebras · 2019-02-12 · [Bou98] N.Bourbaki,Lie groupsand Lie algebras.Chapters 1–3,ElementsofMathematics (Berlin), Springer-Verlag, Berlin, 1998,Translatedfromthe

BIBLIOGRAPHY 327

[McC04] K. McCrimmon, A taste of Jordan algebras, Universitext, Springer-Verlag, NewYork, 2004. MR 2014924 (2004i:17001)

[McG10] J. McGraw, Group Gradings on Simple Lie Algebras of Cartan and Melikyan Type,ProQuest LLC, Ann Arbor, MI, 2010, Thesis (D.Sc.)–Memorial University of New-foundland (Canada). MR 2822009

[McG11] , Gradings by finite groups of the Witt algebra, Comm. Algebra 39 (2011),no. 3, 947–954. MR 2782576

[Mon93] S. Montgomery, Hopf algebras and their actions on rings, CBMS Regional Con-ference Series in Mathematics, vol. 82, Published for the Conference Board of theMathematical Sciences, Washington, DC, 1993. MR MR1243637 (94i:16019)

[MP91] R. V. Moody and J. Patera, Discrete and continuous graded contractions of repre-sentations of Lie algebras, J. Phys. A 24 (1991), no. 10, 2227–2257. MR 1118531(92e:17043)

[Neh91] E. Neher, Review to the paper “a Moufang loop, the exceptional Jordan algebra,and a cubic form in 27 variables”, by r.l. griess jr., journal of algebra 131 (1990),no. 1, 281-293, 1991.

[NVO04] C. Nastasescu and F. Van Oystaeyen, Methods of graded rings, Lecture Notes inMathematics, vol. 1836, Springer-Verlag, Berlin, 2004. MR 2046303 (2005d:16075)

[Oku78] S. Okubo, Pseudo-quaternion and pseudo-octonion algebras, Hadronic J. 1 (1978),no. 4, 1250–1278. MR MR510100 (80a:17004)

[Oku95] , Introduction to octonion and other non-associative algebras in physics,Montroll Memorial Lecture Series in Mathematical Physics, vol. 2, Cambridge Uni-versity Press, Cambridge, 1995. MR 1356224 (96j:81052)

[OO81a] S. Okubo and J. M. Osborn, Algebras with nondegenerate associative symmetricbilinear forms permitting composition, Comm. Algebra 9 (1981), no. 12, 1233–1261.MR 618901 (82h:17005)

[OO81b] , Algebras with nondegenerate associative symmetric bilinear forms per-mitting composition, Comm. Algebra 9 (1981), no. 12, 1233–1261. MR 618901(82h:17005)

[OVG94] A. L. Onishchik, E. B. Vinberg, and V. V. Gorbatsevich, Lie groups and Lie algebras

III. Structure of Lie groups and Lie algebras. Transl. from the Russian by V. Mi-nachin., Encyclopaedia of Mathematical Sciences, vol. 41, Springer-Verlag, Berlin,1994, (Translation from “Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam.Napravleniya 41 (1990)”.).

[Pet69] H. P. Petersson, Eine Identitat funften Grades, der gewisse Isotope vonKompositions-Algebren genugen, Math. Z. 109 (1969), 217–238. MR 0242910 (39#4237)

[PZ89] J. Patera and H. Zassenhaus, On Lie gradings. I, Linear Algebra Appl. 112 (1989),87–159. MR MR976333 (90h:17048)

[RZ61] A. Rosenberg and D. Zelinsky, Automorphisms of separable algebras, Pacific J. Math.11 (1961), 1109–1117. MR 0148709 (26 #6215)

[Sch79] M. Scheunert, Generalized Lie algebras, J. Math. Phys. 20 (1979), no. 4, 712–720.MR MR529734 (80f:17007)

[Sch95] R. D. Schafer, An introduction to nonassociative algebras, Dover Publications Inc.,New York, 1995, Corrected reprint of the 1966 original. MR 1375235 (96j:17001)

[Sel67] G. B. Seligman, Modular Lie algebras, Ergebnisse der Mathematik und ihrer Gren-zgebiete, Band 40, Springer-Verlag New York, Inc., New York, 1967. MR 0245627(39 #6933)

[Ser00] J.-P. Serre, Sous-groupes finis des groupes de Lie, Asterisque (2000), no. 266, Exp.No. 864, 5, 415–430, Seminaire Bourbaki, Vol. 1998/99. MR 1772682 (2001j:20075)

[Ser06] , Lie algebras and Lie groups, Lecture Notes in Mathematics, vol. 1500,Springer-Verlag, Berlin, 2006, 1964 lectures given at Harvard University, Corrected

fifth printing of the second (1992) edition. MR 2179691 (2006e:17001)[SF88] H. Strade and R. Farnsteiner, Modular Lie algebras and their representations, Mono-

graphs and Textbooks in Pure and Applied Mathematics, vol. 116, Marcel DekkerInc., New York, 1988. MR 929682 (89h:17021)

[Skr95] S. M. Skryabin, Modular Lie algebras of Cartan type over algebraically non-closedfields. II, Comm. Algebra 23 (1995), no. 4, 1403–1453. MR 1317407 (96a:17013)

Page 21: Gradings on Simple Lie Algebras · 2019-02-12 · [Bou98] N.Bourbaki,Lie groupsand Lie algebras.Chapters 1–3,ElementsofMathematics (Berlin), Springer-Verlag, Berlin, 1998,Translatedfromthe

328 BIBLIOGRAPHY

[Skr01] , On the automorphism group schemes of Lie algebras of Witt type, Comm.Algebra 29 (2001), no. 9, 4047–4077, Special issue dedicated to Alexei IvanovichKostrikin. MR 1857027 (2002k:17021)

[Smi97] O. N. Smirnov Simple associative algebras with finite Z-grading, J. Algebra 196(1997), no. 1, 171–184. MR 1474168 (98i:16045)

[Smi99] , Finite Z-gradings of Lie algebras and symplectic involutions, J. Algebra218 (1999), no. 1, 246–275. MR 1704686 (2000f:17034)

[Ste61] R. Steinberg, Automorphisms of classical Lie algebras, Pacific J. Math. 11 (1961),1119–1129. MR 0143845 (26 #1395)

[Str04] H. Strade, Simple Lie algebras over fields of positive characteristic. I, de GruyterExpositions in Mathematics, vol. 38, Walter de Gruyter & Co., Berlin, 2004, Struc-ture theory. MR 2059133 (2005c:17025)

[Str09] , Simple Lie algebras over fields of positive characteristic. II, de Gruyter Ex-positions in Mathematics, vol. 42, Walter de Gruyter & Co., Berlin, 2009, Classifyingthe absolute toral rank two case. MR 2573283

[SV00] T. A. Springer and F. D. Veldkamp, Octonions, Jordan algebras and excep-tional groups, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000.MR 1763974 (2001f:17006)

[Svo08] M. Svobodova, Fine gradings of low-rank complex Lie algebras and of their realforms, SIGMA Symmetry Integrability Geom. Methods Appl. 4 (2008), Paper 039,13. MR MR2393288 (2009b:17068)

[Swe67] M. E. Sweedler, Hopf algebras with one grouplike element, Trans. Amer. Math. Soc.127 (1967), 515–526. MR 0210748 (35 #1634)

[Swe69] , Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc.,New York, 1969. MR MR0252485 (40 #5705)

[Tho76] J. G. Thompson, A conjugacy theorem for E8, J. Algebra 38 (1976), no. 2, 525–530.MR 0399193 (53 #3044)

[Tit62] J. Tits, Une classe d’algebres de Lie en relation avec les algebres de Jordan, Nederl.Akad. Wetensch. Proc. Ser. A 65 = Indag. Math. 24 (1962), 530–535. MR 0146231(26 #3753)

[Tit66] , Algebres alternatives, algebres de Jordan et algebres de Lie exceptionnelles.I. Construction, Nederl. Akad. Wetensch. Proc. Ser. A 69 = Indag. Math. 28 (1966),223–237. MR 0219578 (36 #2658)

[Vin66] E. B. Vinberg, A construction of exceptional simple lie groups (russian), Tr. Semin.Vektorn. Tensorn. Anal. 13 (1966), 7–9.

[Vin05] , Short SO3-structures on simple Lie algebras and associated quasiellipticplanes, Lie groups and invariant theory, Amer. Math. Soc. Transl. Ser. 2, vol. 213,Amer. Math. Soc., Providence, RI, 2005, pp. 243–270. MR 2140726 (2006d:17008)

[Wat71] W. C. Waterhouse, Automorphism schemes and forms of Witt Lie algebras, J. Al-gebra 17 (1971), 34–40. MR MR0274542 (43 #305)

[Wat79] , Introduction to affine group schemes, Graduate Texts in Mathematics,vol. 66, Springer-Verlag, New York, 1979. MR MR547117 (82e:14003)

[Wat91] , Automorphisms and twisted forms of generalized Witt Lie algebras, Trans.Amer. Math. Soc. 327 (1991), no. 1, 185–200. MR 1038018 (91m:17025)

[Wil10] R. A. Wilson, On the compact real form of the Lie algebra g2, Math. Proc. Cam-bridge Philos. Soc. 148 (2010), no. 1, 87–91. MR 2575374 (2011a:17021)

[YA75] K. Yamaguti and H. Asano, On the Freudenthal’s construction of exceptional Liealgebras, Proc. Japan Acad. 51 (1975), no. 4, 253–258. MR 0374212 (51 #10412)

[Yu12] J. Yu, Maximal abelian subgroups of compact simple lie groups, 2012.[Zel84] E. I. Zel′manov, Lie algebras with finite gradation, Mat. Sb. (N.S.) 124(166) (1984),

no. 3, 353–392. MR MR752226 (86d:17016)

[Zmu71] E. M. Zmud′, Symplectic geometries on finite abelian groups, Mat. Sb. (N.S.)86(128) (1971), no. 1(9), 9–33. MR 0292962 (45 #2043)

[Zol97] A. A. Zolotykh, Commutation factors and varieties of associative algebras, Fundam.Prikl. Mat. 3 (1997), no. 2, 453–468. MR 1793455

[Zol02] , Classification of projective representations of finite abelian groups, Vestnik

Moskov. Univ. Ser. I Mat. Mekh. (2002), no. 3, 3–10, 70. MR 1934067 (2003i:20016)

Page 22: Gradings on Simple Lie Algebras · 2019-02-12 · [Bou98] N.Bourbaki,Lie groupsand Lie algebras.Chapters 1–3,ElementsofMathematics (Berlin), Springer-Verlag, Berlin, 1998,Translatedfromthe

BIBLIOGRAPHY 329

[ZSSS82] K. A. Zhevlakov, A. M. Slin′ko, I. P. Shestakov, and A. I. Shirshov, Rings thatare nearly associative, Pure and Applied Mathematics, vol. 104, Academic PressInc. [Harcourt Brace Jovanovich Publishers], New York, 1982, Translated from theRussian by Harry F. Smith. MR 668355 (83i:17001)

[ZZ10] A. A. Zolotykh and P. A. Zolotykh, Finite gradings of special linear Lie algebras,Fundam. Prikl. Mat. 16 (2010), no. 8, 163–187. MR 2869837 (2012k:17038)

Page 23: Gradings on Simple Lie Algebras · 2019-02-12 · [Bou98] N.Bourbaki,Lie groupsand Lie algebras.Chapters 1–3,ElementsofMathematics (Berlin), Springer-Verlag, Berlin, 1998,Translatedfromthe
Page 24: Gradings on Simple Lie Algebras · 2019-02-12 · [Bou98] N.Bourbaki,Lie groupsand Lie algebras.Chapters 1–3,ElementsofMathematics (Berlin), Springer-Verlag, Berlin, 1998,Translatedfromthe

Index of Notation

A(+), 3, 197

A(−), 2

Ad, 317

ad, 317

AlgF, 299

Aut(U), 301, 309

AutG(A), 14

Aut(Γ), 14

AutΞ(κ, γ), 46

AutΦ, 65

AutX(O), X ∈ {S,H,K}, 277

βσ, 35

CD(K, β, γ), 127

CD(Q, α), 126

Cη , 209

Cl(C, n), 167

Cs, 129

degΓ, 9

Der(A), 4

Diag(Γ), 14

Diag(Γ), 23

Dx,y, 225

dx,y, 140

EndgrR(V ), 28

F[G], 300

FσT , 34

G(A), 302

Ga, 300αΓ, 16

Γ1A(G, γ), 188

Γ1A, 170

Γ2A(G,H, γ), 188

Γ2A, 171

Γ3A(G,H, g), 188

Γ3A, 172

Γ4A(G,H, δ), 189

Γ4A, 173

Γ(I)A (G, T, β, κ, γ), 105

Γ(II)A (G,H, h, β, κ, γ, μ0, g0), 107

Γ(I)A (T, k), 109

Γ(II)A (T, q, s, τ), 110

ΓBF (G,κ, γ), 199

ΓBF (m, �), 199

ΓB(G, κ, γ), 117

Γ+B(G, κ, γ), 204

ΓB(q, s), 117

Γ+B(q, s), 204

Γ1C, Γ2

C, 136

Γ1C(G, γ), Γ2

C(G,H), 136

ΓC(G, T, β, κ, γ, g0), 118

Γ+C(G, T, β, κ, γ, g0), 205

ΓC(T, q, s, τ), 119

Γ+C(T, q, s, τ), 205

ΓD(G, T, β, κ, γ, g0), 120

Γ+D(G, T, β, κ, γ, g0), 204

ΓD(T, q, s, τ), 120

Γ+D(T, q, s, τ), 205

Γ1F4

,Γ2F4

,Γ3F4

,Γ4F4

, 196

Γ1F4

(G, γ), Γ2F4

(G,H, γ), Γ3F4

(G,H, g),

Γ4F4

(G,H, δ), 196

Γ1G2

, Γ2G2

, 146

Γ1G2

(G, γ), Γ2G2

(G,H), 146

Γ1H3(Q)

, 265

ΓK, 265

ΓK, 266

ΓM (D, k), ΓM (T, k), 44

ΓM (D, q, s, τ), 88

ΓM (G,D, κ, γ), ΓM (G, T, β, κ, γ), 40

Γ1M3(F)

, Γ2M3(F)

, 266

Γ(I)

M+(G, T, β, κ, γ), 202

Γ(II)

M+(G,H, h, β, κ, γ, μ0, g0), 203

ΓO, 266

ΓO(G,P, γ), 291

ΓO(s), 292

Γ1Q, Γ2

Q, 265

ΓS(G,P, γ, g0), 294

ΓS(s), 294

ΓW (G,P, γ), 292

ΓW (s), 292

331

Page 25: Gradings on Simple Lie Algebras · 2019-02-12 · [Bou98] N.Bourbaki,Lie groupsand Lie algebras.Chapters 1–3,ElementsofMathematics (Berlin), Springer-Verlag, Berlin, 1998,Translatedfromthe

332 INDEX OF NOTATION

Γ1X(D)

, 266

Γ2X(K)

, Γ2X(Q)

, 266

Γ3X(Q)

, 267

ΓX(D), 267GLn, 300

Gm, 300Gred, 313Grp, 300

g(S, S′), 230

H(A, ϕ), 3

H(A, ∗), 197H(m;n), 275

HomG(V,W ), 10Homgr(V,W ), 10

HomgrR(V,W ), 28

Int(L), 66

IDer(L), 4IDer(C), 225

IDer(J), 225

J(V, b), 197

K(A, ϕ), 3K(m;n), 276

Lie(G), 315L(J), 229L(J), 229

M(D, k), 41M(D, k)ab, 43

M(D, q, s, τ), ΓM (T, q, s, τ), 88M(G,D, κ, γ), 33M(G,D, κ, γ, δ, g0), 59

M(G,D, κ, γ, μ, g0), 57

M(G,D, κ, γ, μ0, g0), 87

ModG, 10

R ModG, ModGR , 28

μn, 306

ωS , ωH , ωK , 275

O(m;n), 273

Prim(A), 302

Set, 299sgn(ϕ), 58

sgn(Si), 56Σ(τ), 93σx,y, 191

S(m;n), 275Spin(C, n), 168Stab(Γ), 14

StabG, 308Supp Γ, 9

T(C, J), 225θη, 209

tJ, 225

T (ν), 214

U(Γ), 15(U(J), ι), 200

V, 319[g]V, V [g], 10V (G,D, κ, γ), 33

W (Γ), 15W (m;n), 274

X(G), 305Ξ(γ), 291Ξ(κ, γ), 39

Z(m;n), 273

Page 26: Gradings on Simple Lie Algebras · 2019-02-12 · [Bou98] N.Bourbaki,Lie groupsand Lie algebras.Chapters 1–3,ElementsofMathematics (Berlin), Springer-Verlag, Berlin, 1998,Translatedfromthe

Index

χ-Admissible data, 106δ-Admissible data, 59H-admissible grading, 289K-admissible grading, 289S-admissible grading, 289Affine algebraic group, 312

connected components of, 314Affine algebraic variety, 312Affine group scheme, 300

abelian, 300algebraic, 300characters of, 305diagonalizable, 309diagonalizable representations of, 309dimension of, 300distribution algebra of, 319finite, 300points of, 300representations of, 307smooth, 313tangent Lie algebra of, 315

AlgebraAlbert, 163alternative, 124associator, 125Cayley, 128

good basis, 129split, 129

central simple, 70

Clifford, 167composition, 124

para-Cayley, 167para-unit of, 150related triple, 167symmetric, 150triality Lie algebra, 190

G-graded, 1graded division, 29graded simple, 29Hurwitz, 124

Cayley–Dickson doubling process, 126isotropic, 128standard conjugation of, 124trace of, 125

Jordan, 163

degree of, 166

exceptional, 163

generic minimal polynomial of, 166

Lie multiplication algebra of, 229

normalized trace of, 225

of a bilinear form, 197

semisimple, 166

special, 163

unital special universal envelope of,200

Lie, 2

Malcev, 139

octonion, 128

Okubo, 150

para-Hurwitz, 150

Petersson, 150

quaternion, 128

reduced, 311

structurable, 266

Anti-automorphism of a graded algebra, 49

Antipode, 302

Augmentation ideal, 304

Automorphism group scheme, 301, 309

Bialgebra, 302

finite dual, 304

Bicharacter

alternating, 35

nondegenerate, 35

Biideal, 303

Cartan decomposition, 65, 69

Cartan subalgebra, 65

Cartier dual, 303

Chevalley basis, 67

Chevalley groups, 70

Closed imbedding, 305

Coaction, 308

Coalgebra, 301

cocommutative, 301

Coideal, 301

Comodule, 308

Comorphism, 305

333

Page 27: Gradings on Simple Lie Algebras · 2019-02-12 · [Bou98] N.Bourbaki,Lie groupsand Lie algebras.Chapters 1–3,ElementsofMathematics (Berlin), Springer-Verlag, Berlin, 1998,Translatedfromthe

334 INDEX

χ-Compatible pair, 81

Comultiplication, 301

Contact algebra (Cartan type), 276Counit, 301

Dempwolff decomposition, 244

Derivation, 4

inner, 140Dual

basis, 52

of a module, 52

Equivalent gradings, 14

Fine grading, 18First Tits Construction, 176

Freudenthal’s Magic Square, 228

Functorchange-of-group, 16

Lie, 315

representable, 299

Generalized Pauli matrices, 2Graded

algebra, by a (semi)group, 1

algebra, general, 11

bimodule, 28Density Theorem, 29

map, 10

module, 28

Schur’s Lemma, 29subspace, 10

vector space, 9

Gradingautomorphism group of, 14

coarsening of, 18

diagonal group of, 14

elementary, 38, 288fine, 18

induced by a homomorphism of groups,16

Jordan, 244

nontrivial, 9of Type I and Type II, 80

on a vector space, 9

adapted to a bilinear form, 198on an algebra, by a (semi)group, 1, 11

on an algebra, general, 11

on Hom(V,W ), 10

on tensor product, 11realization of, 11

refinement of, 18

shift of, 10

stabilizer of, 14support of, 9

toral, 21

type of, 14universal group of, 15

Weyl group of, 15

Gradings

anti-equivalence of, 81

anti-isomorphism of, 81equivalence of, 14

isomorphism of, 14

weak isomorphism of, 16

ϕ-Gradings, 79equivalence of, 79

isomorphism of, 79

weak equivalence of, 83Group grading, 11

Group-like element, 302

Groups of central type, 35

Hamiltonian algebra (Cartan type), 275Homogeneous

component, 9

element, 9map, 10

Homomorphism

of affine algebraic groups, 312

of bialgebras, 303of coalgebras, 301

of comodules, 308

of graded algebras, 14

of graded modules, 28of graded spaces, 10

of Hopf algebras, 303

Hopf algebra, 302Hopf ideal, 303

Hopf subalgebra, 303

Involution

of a graded algebra, 49orthogonal, 4

symplectic, 4

Isomorphic gradings, 14

Kaplansky’s trick, 127

Killing form, 65

Lie algebra, 2

abelian, 5derived algebra of, 5

metabelian, 5

nilpotent, 5

radical of, 6semisimple, 5

solvable, 5

adjoint representation of, 5Cartan type, 274

center of, 5

classical, 66, 70

split, 70direct sum (product), 4

inner automorphisms of, 66

inner derivations of, 4reductive, 218

representations of, 5

Page 28: Gradings on Simple Lie Algebras · 2019-02-12 · [Bou98] N.Bourbaki,Lie groupsand Lie algebras.Chapters 1–3,ElementsofMathematics (Berlin), Springer-Verlag, Berlin, 1998,Translatedfromthe

INDEX 335

restricted, 272

root graded, 259

coordinate algebra, 260

grading subalgebra, 259

semidirect sum (product), 4

symmetric pair, 248

MAD subgroups, 21

Module

graded, 28

graded irreducible, 29

graded simple, 29

over graded division algebra, 29

Morphism of affine group schemes

differential of, 316

Morphism of group schemes, 305

image of, 306

kernel of, 306

Multiplicative orthogonal decomposition,160

Multiset, 39

multiplicity of an element, 39

Natural map, 299

Primitive element, 302

Quadratic form, 124

multiplicative, 124

nonsingular, 124

polar form, 124

Quasitorus, 20

maximal, 21

saturated, 20

Quotient map, 305

Representable functor, 299

Representing object, 299

Restricted enveloping algebra, 273

Restricted Lie algebra, 272

toral rank of, 272

toral subalgebras, or tori, 272

Root lattice, 65

Root system, 65

automorphism group of, 65

base of, 65

Cartan matrix of, 66

diagram automorphisms of, 66

Dynkin diagram of, 66

irreducible, 66

Weyl group of, 65

Semigroup grading, 11

Sequence of divided powers, 319

Sesquilinear form, 53

balanced, 54

Special algebra (Cartan type), 275

Spin group, 168

natural and spin representations, 168

Standard realization of a division grading,39

Subbialgebra, 303

Subcoalgebra, 301

Subcomodule, 308

Subgroupscheme, 304

inverse image of, 306

normal, 307

Support, 9

Symplectic triple system, 251

Theorem

abelian gradings on matrix algebras

anti-automorphisms, 56, 57

fine gradings up to equivalence, 44

gradings up to isomorphism, 40

involutions, 59

Weyl groups of fine gradings, 47

automorphism group schemes of A, 77

automorphism group schemes of B, C,

and D, 75

classification of symmetric compositionalgebras, 153

density (graded version), 29

division gradings on matrix algebras, 37

fine gradings induce root gradings, 264

generalized Hurwitz, 127

graded division algebras, 34

graded simple associative algebras

anti-automorphisms, 53

isomorphisms, 32

structure, 30

gradings on A1

fine gradings up to equivalence, 109

up to isomorphism, 106

gradings on Ar, r ≥ 2

fine gradings up to equivalence, 84, 111

up to isomorphism, 81, 107

Weyl groups of fine gradings, Type I,113

Weyl groups of fine gradings, Type II,114

gradings on Br, r ≥ 2

fine gradings up to equivalence, 79, 117

up to isomorphism, 79, 117

Weyl groups of fine gradings, 117

gradings on Cr, r ≥ 2

fine gradings up to equivalence, 79, 119

up to isomorphism, 79, 118

Weyl groups of fine gradings, 119

gradings on D4

fine gradings up to equivalence, 224

gradings on Dr, r = 3 or r ≥ 5

fine gradings up to equivalence, 79, 121

up to isomorphism, 79, 120

Weyl groups of fine gradings, 121

gradings on E6

Page 29: Gradings on Simple Lie Algebras · 2019-02-12 · [Bou98] N.Bourbaki,Lie groupsand Lie algebras.Chapters 1–3,ElementsofMathematics (Berlin), Springer-Verlag, Berlin, 1998,Translatedfromthe

336 INDEX

fine gradings of inner type, up toequivalence, 248

fine gradings of outer type, up toequivalence, 259

gradings on F4, 196

gradings on G2, 146

gradings on Albert algebra

fine gradings up to equivalence, 184

up to isomorphism, 189

Weyl groups of fine gradings, 179,181–183

gradings on Cartan type Lie algebras,289

by groups without p-torsion, 288

fine gradings on S(m; 1)(2) up toequivalence, 296

fine gradings on W (m; 1) up toequivalence, 293

gradings on S(m; 1)(2) up toisomorphism, 294

gradings on W (m; 1) up to

isomorphism, 293

gradings on Cayley algebras, 131

up to equivalence, 133

up to isomorphism, 136

Weyl groups of fine gradings, 135

gradings on Jordan algebras

Mn(F)(+), 203

fine gradings on H(Mn(F), t), n even,up to equivalence, 205

fine gradings on H(Mn(F), t), n odd,up to equivalence, 204

fine gradings on H(Mn(F), ts), up toequivalence, 206

gradings on H(Mn(F), t), n even, up toisomorphism, 205

gradings on H(Mn(F), t), n odd, up to

isomorphism, 204

gradings on H(Mn(F), ts), up toisomorphism, 205

of bilinear forms, 198

gradings on O(m; 1), 291

gradings on Okubo algebras, 159

Poincare–Birkhoff–Witt, 2, 273

transfer of gradings, 24

Tits construction, 224

Tits–Kantor–Koecher Lie algebra, 229

Twisted group algebra, 34, 177

Universal enveloping algebra, 273

Universal group of a grading, 15

Verschiebung operator, 319

Weakly isomorphic gradings, 16

Weyl group of a grading, 15

Weyl group of a root system, 65

Witt algebra (Cartan type), 274

Yoneda’s Lemma, 299

Zariski topology, 311

Page 30: Gradings on Simple Lie Algebras · 2019-02-12 · [Bou98] N.Bourbaki,Lie groupsand Lie algebras.Chapters 1–3,ElementsofMathematics (Berlin), Springer-Verlag, Berlin, 1998,Translatedfromthe

Selected Published Titles in This Series

189 Alberto Elduque and Mikhail Kochetov, Gradings on Simple Lie Algebras, 2013

188 David Lannes, The Water Waves Problem, 2013

187 Nassif Ghoussoub and Amir Moradifam, Functional Inequalities: New Perspectivesand New Applications, 2013

186 Gregory Berkolaiko and Peter Kuchment, Introduction to Quantum Graphs, 2013

185 Patrick Iglesias-Zemmour, Diffeology, 2013

184 Frederick W. Gehring and Kari Hag, The Ubiquitous Quasidisk, 2012

183 Gershon Kresin and Vladimir Maz’ya, Maximum Principles and Sharp Constants forSolutions of Elliptic and Parabolic Systems, 2012

182 Neil A. Watson, Introduction to Heat Potential Theory, 2012

181 Graham J. Leuschke and Roger Wiegand, Cohen-Macaulay Representations, 2012

180 Martin W. Liebeck and Gary M. Seitz, Unipotent and Nilpotent Classes in SimpleAlgebraic Groups and Lie Algebras, 2012

179 Stephen D. Smith, Subgroup complexes, 2011

178 Helmut Brass and Knut Petras, Quadrature Theory, 2011

177 Alexei Myasnikov, Vladimir Shpilrain, and Alexander Ushakov,Non-commutative Cryptography and Complexity of Group-theoretic Problems, 2011

176 Peter E. Kloeden and Martin Rasmussen, Nonautonomous Dynamical Systems, 2011

175 Warwick de Launey and Dane Flannery, Algebraic Design Theory, 2011

174 Lawrence S. Levy and J. Chris Robson, Hereditary Noetherian Prime Rings andIdealizers, 2011

173 Sariel Har-Peled, Geometric Approximation Algorithms, 2011

172 Michael Aschbacher, Richard Lyons, Stephen D. Smith, and Ronald Solomon,The Classification of Finite Simple Groups, 2011

171 Leonid Pastur and Mariya Shcherbina, Eigenvalue Distribution of Large RandomMatrices, 2011

170 Kevin Costello, Renormalization and Effective Field Theory, 2011

169 Robert R. Bruner and J. P. C. Greenlees, Connective Real K-Theory of FiniteGroups, 2010

168 Michiel Hazewinkel, Nadiya Gubareni, and V. V. Kirichenko, Algebras, Ringsand Modules, 2010

167 Michael Gekhtman, Michael Shapiro, and Alek Vainshtein, Cluster Algebras andPoisson Geometry, 2010

166 Kyung Bai Lee and Frank Raymond, Seifert Fiberings, 2010

165 Fuensanta Andreu-Vaillo, Jose M. Mazon, Julio D. Rossi, and J. JulianToledo-Melero, Nonlocal Diffusion Problems, 2010

164 Vladimir I. Bogachev, Differentiable Measures and the Malliavin Calculus, 2010

163 Bennett Chow, Sun-Chin Chu, David Glickenstein, Christine Guenther, JamesIsenberg, Tom Ivey, Dan Knopf, Peng Lu, Feng Luo, and Lei Ni, The Ricci Flow:Techniques and Applications: Part III: Geometric-Analytic Aspects, 2010

162 Vladimir Maz′ya and Jurgen Rossmann, Elliptic Equations in Polyhedral Domains,2010

161 Kanishka Perera, Ravi P. Agarwal, and Donal O’Regan, Morse Theoretic Aspectsof p-Laplacian Type Operators, 2010

160 Alexander S. Kechris, Global Aspects of Ergodic Group Actions, 2010

159 Matthew Baker and Robert Rumely, Potential Theory and Dynamics on theBerkovich Projective Line, 2010

For a complete list of titles in this series, visit theAMS Bookstore at www.ams.org/bookstore/survseries/.

Page 31: Gradings on Simple Lie Algebras · 2019-02-12 · [Bou98] N.Bourbaki,Lie groupsand Lie algebras.Chapters 1–3,ElementsofMathematics (Berlin), Springer-Verlag, Berlin, 1998,Translatedfromthe
Page 32: Gradings on Simple Lie Algebras · 2019-02-12 · [Bou98] N.Bourbaki,Lie groupsand Lie algebras.Chapters 1–3,ElementsofMathematics (Berlin), Springer-Verlag, Berlin, 1998,Translatedfromthe

SURV/189

For additional informationand updates on this book, visit

www.ams.org/bookpages/surv-189

Gradings are ubiquitous in the theory of Lie algebras, from the root space decomposition of a complex semisimple Lie algebra rela-tive to a Cartan subalgebra to the beautiful Dempwolff decomposition of E8 as a direct sum of thirty-one Cartan subalgebras. This monograph is a self-contained exposition of the classification of gradings by arbitrary groups on classical simple Lie algebras over algebraically closed fields of characteristic not equal to 2 as well as on some nonclas-sical simple Lie algebras in positive characteristic. Other important algebras also enter the stage: matrix algebras, the octonions, and the Albert algebra. Most of the presented results are recent and have not yet appeared in book form. This work can be used as a textbook for graduate students or as a reference for researchers in Lie theory and neighboring areas.

American Mathematical Society www.ams.org

Atlantic Association for Researchin the Mathematical Sciences www.aarms.math.ca

Phot

ogra

ph c

ourt

esy

of E

va E

lduq

ue

Phot

ogra

ph c

ourt

esy

of E

va E

lduq

ue