graphical models - oxford statisticssteffen/teaching/grad/graphicalmodels.pdf · google gives 7 420...

50
Genesis and history Examples Markov theory Complex models References Graphical Models Steffen Lauritzen, University of Oxford Graduate Lectures Hilary Term 2011 January 27, 2011 Steffen Lauritzen, University of Oxford Graphical Models

Upload: others

Post on 20-Mar-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Graphical Models

Steffen Lauritzen, University of Oxford

Graduate Lectures Hilary Term 2011

January 27, 2011

Steffen Lauritzen, University of Oxford Graphical Models

Page 2: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

I Precursors originate mostly from Physics (Gibbs, 1902),Genetics (Wright, 1921, 1934), and Economics (Wold, 1954);

I Early graphical models in statistics include covarianceselection models (Dempster, 1972) and log-linear models(Haberman, 1974);

I Papers setting the scene include Darroch et al. (1980),Wermuth and Lauritzen (1983), and Lauritzen and Wermuth(1989).

I Subject took off after Pearl (1988) and Lauritzen andSpiegelhalter (1988), and in particular after Whittaker (1990)and Lauritzen (1996).

I Developments now prolific and it is largely impossible to keeptrack. Google gives 7 420 000 hits.

Steffen Lauritzen, University of Oxford Graphical Models

Page 3: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

I Precursors originate mostly from Physics (Gibbs, 1902),Genetics (Wright, 1921, 1934), and Economics (Wold, 1954);

I Early graphical models in statistics include covarianceselection models (Dempster, 1972) and log-linear models(Haberman, 1974);

I Papers setting the scene include Darroch et al. (1980),Wermuth and Lauritzen (1983), and Lauritzen and Wermuth(1989).

I Subject took off after Pearl (1988) and Lauritzen andSpiegelhalter (1988), and in particular after Whittaker (1990)and Lauritzen (1996).

I Developments now prolific and it is largely impossible to keeptrack. Google gives 7 420 000 hits.

Steffen Lauritzen, University of Oxford Graphical Models

Page 4: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

I Precursors originate mostly from Physics (Gibbs, 1902),Genetics (Wright, 1921, 1934), and Economics (Wold, 1954);

I Early graphical models in statistics include covarianceselection models (Dempster, 1972) and log-linear models(Haberman, 1974);

I Papers setting the scene include Darroch et al. (1980),Wermuth and Lauritzen (1983), and Lauritzen and Wermuth(1989).

I Subject took off after Pearl (1988) and Lauritzen andSpiegelhalter (1988), and in particular after Whittaker (1990)and Lauritzen (1996).

I Developments now prolific and it is largely impossible to keeptrack. Google gives 7 420 000 hits.

Steffen Lauritzen, University of Oxford Graphical Models

Page 5: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

I Precursors originate mostly from Physics (Gibbs, 1902),Genetics (Wright, 1921, 1934), and Economics (Wold, 1954);

I Early graphical models in statistics include covarianceselection models (Dempster, 1972) and log-linear models(Haberman, 1974);

I Papers setting the scene include Darroch et al. (1980),Wermuth and Lauritzen (1983), and Lauritzen and Wermuth(1989).

I Subject took off after Pearl (1988) and Lauritzen andSpiegelhalter (1988), and in particular after Whittaker (1990)and Lauritzen (1996).

I Developments now prolific and it is largely impossible to keeptrack. Google gives 7 420 000 hits.

Steffen Lauritzen, University of Oxford Graphical Models

Page 6: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

I Precursors originate mostly from Physics (Gibbs, 1902),Genetics (Wright, 1921, 1934), and Economics (Wold, 1954);

I Early graphical models in statistics include covarianceselection models (Dempster, 1972) and log-linear models(Haberman, 1974);

I Papers setting the scene include Darroch et al. (1980),Wermuth and Lauritzen (1983), and Lauritzen and Wermuth(1989).

I Subject took off after Pearl (1988) and Lauritzen andSpiegelhalter (1988), and in particular after Whittaker (1990)and Lauritzen (1996).

I Developments now prolific and it is largely impossible to keeptrack. Google gives 7 420 000 hits.

Steffen Lauritzen, University of Oxford Graphical Models

Page 7: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

A directed graphical model

Directed graphical model (Bayesian network) showing relationsbetween risk factors, diseases, and symptoms.

Steffen Lauritzen, University of Oxford Graphical Models

Page 8: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

A pedigree

Graphical model for a pedigree from study of Werner’s syndrome.Each node is itself a graphical model.

Steffen Lauritzen, University of Oxford Graphical Models

Page 9: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

A large pedigree

p1379p1380 p1381 p1382 p1383p1384p1385p1386p1387

p1129p1128 p1133p1134p1135 p1136p1137

p1536p1535

p1131p1408p1407p1406p1405p1404

p1126

p1396 p1395p1394 p1393p1392 p1391p1390p1389p1388

p1127

p1426 p1425p1424p1423

p1130

p1565p1564p1530

p1132

p1073

p1457p1456p1455 p1454

p1078

p1349

p1079

p1226p1225 p1224p1223 p1222p1221p1220

p1076

p1242 p1241p1240p1239 p1238p1237

p1561

p1236

p1575

p1235

p1499

p1234

p1480p1511 p1534

p1233

p1219

p1074

p1376p1375 p1374 p1373p1372 p1371p1370 p1369p1368

p1077

p1232 p1231p1230 p1229p1228p1227

p1072

p1438p1437p1436 p1435 p1434 p1439

p1080

p1362p1361 p1360

p1190

p1449p1450p1451 p1452p1453

p1187

p1427 p1428p1429 p1430p1431 p1432p1433

p1184 p1189p1188p1186p1185

p1075

p927p928p929

p331

p544p543p542

p328

p1585 p657p659p660

p1556p1555 p1557

p767

p1514

p1568

p765

p875p876p877

p766

p661p662

p745

p842

p1367 p1366p1365 p1364p1363

p746p747

p658

p506

p744p742p743

p512

p712p709p711

p784 p783p782 p781p780p779p778

p704

p864p843

p706

p856p855

p710

p869 p868p870

p708

p1465p1443p1442

p707

p1422

p705

p511

p760p701p702

p1576

p773p879

p772 p774p775 p776p777

p1572 p1571

p840

p703

p507

p716

p509p510p508

p505

p1170

p1573

p1167

p1169p1168 p1166p1165p1163p1162 p1161

p1554p1553

p1164

p964

p1463p1464

p963

p965

p644p645

p504

p571 p572

p1488 p1487p1486

p1173

p1569

p1174 p1171p1175p1176p1177 p1172

p1099

p1183

p1096

p1110 p1109p1108 p1107

p1547p1533

p1296 p1295p1297 p1298p1299 p1300p1301p1302 p1303

p1105

p1350 p1351p1352

p1102p1106p1104 p1103

p1097 p1098p1100p1101

p930 p931

p1591

p1603 p1602p1601 p1600p1599 p1598p1597p1596p1595 p1594 p1604

p1590 p1589

p1586

p1592

p1587

p932p933

p503

p327

p541

p1460p1377

p1581p1580

p1461 p1378

p1081p1082

p1044p1045

p540p937 p621p622

p750 p749

p625

p624 p759

p1093 p1091p1090p1089

p1322p1321p1320p1319 p1318 p1317p1316p1315 p1314p1313p1323

p1092

p623p626

p1083

p934 p935p936 p606

p538

p576

p539

p329p330

p70p51

p34

p1070

p1459 p1094

p1462

p1095

p1071

p1119p1118

p1479

p1117 p1116p1115p1113 p1112

p1359p1358p1357p1356p1355 p1354p1353

p1114

p1532p1542

p1120

p1032

p1159p1158 p1157

p1475p1503p1502 p1501p1500

p1155

p1515 p1543p1485

p1154

p1513p1469

p1153

p1545p1546

p1156p1152 p1151p1160

p1033p1034

p901

p959 p958 p957p956p955

p1069

p1584

p1068

p1468

p1067

p1328

p1063p1066

p1440 p1441

p1065p1064 p1061p1060

p1348 p1347 p1346p1345 p1344 p1343p1342 p1341p1340 p1339

p1062

p954

p1562

p1247

p1484

p1245

p1560 p1559

p1246 p1248p1249p1250 p1251p1252p1253 p1254

p1087p1084 p1085

p1255p1256p1257 p1258 p1259p1260 p1261 p1262 p1263p1264

p1086 p1088

p949 p953 p952p951

p1327 p1324p1325p1326

p1001p1002 p999

p1286

p1507 p1531

p1287p1288p1289 p1290p1291p1292p1293p1294

p998 p997

p1312

p1548p1549

p1304

p1582

p1306p1311 p1310p1309p1308 p1307 p1305

p1000

p1409p1410p1411 p1412 p1413p1414p1415 p1416 p1467

p1148

p1150p1403 p1400 p1401p1402

p1149

p950

p902

p1040 p1031p1041

p903p904p906

p1039p1038 p1037p1036p1035

p905

p263

p198 p26

p440 p441

p647 p646

p442

p231

p228

p446

p730

p513

p1211p1212

p1570p1574

p1210 p1213 p1214 p1215p1216p1217

p519

p518 p517 p516p515p514

p445

p600

p599

p748

p601

p602

p444

p1042

p1147

p1397 p1398p1399

p1141p1142

p1498p1497 p1496p1466

p1143

p1506 p1524p1523p1522

p1144

p1541p1505p1504 p1478p1474

p1145

p1567p1544

p1146

p1043

p892

p443p447

p227

p269

p960

p1218

p961p962

p268p632

p751

p1420p1419 p1418 p1417p1421

p752

p633

p634

p264

p620

p1593

p757

p756

p796 p795p794

p753

p854p848

p754

p755

p619p618

p267 p266

p582

p265

p226

p966p968

p1284p1283 p1282p1281p1280p1279 p1278p1277p1276p1275 p1274 p1273p1285

p969

p970 p971

p972

p973

p1209 p1208p1207 p1206p1205p1204p1203

p1566

p1202

p1470p1471p1472

p1200p1198

p1540 p1539p1538p1537

p1199

p1516p1517 p1518p1519

p1201

p967

p888

p229

p230

p5p6

p907 p908p909p910p911 p912

p560 p562

p570p569

p561p563

p106 p340

p181

p439

p438

p1550 p1551 p1552

p736

p731

p732 p846 p803p802 p801 p800 p799p798p797

p733p734p735p737

p536p594

p847

p652

p651

p650

p648 p649

p810 p809p808p807p806 p805p804

p653

p593

p1003

p764p763p762

p861p862

p761

p729

p595 p596p597p598

p437

p881 p880

p436

p526

p434

p1028

p1448p1447 p1446p1445p1444

p1029p1030

p476

p700p699 p698p697

p849

p696

p818p819p820 p821p822p823 p824 p825

p695

p865p872p878

p694 p693p689 p690 p692

p811p812 p813p814 p815p816p817

p691

p683 p1022p1024 p1025

p1528p1527p1526p1525 p1529

p1179

p1583 p1563

p1180p1181

p1178

p1023

p1243 p1244

p1473

p1140 p1138

p1489p1476

p1139

p1026p1027

p919p921 p920p887 p886

p435

p284

p581p580p579p578

p341 p342

p49 p183p182

p73 p346

p52 p185

p283

p259

p564

p260

p395

p399

p677

p758

p676

p397

p720 p722p721p719 p718 p717

p398

p396

p549

p257

p258

p394

p845

p672p667 p668 p671

p669 p670p866p857

p673 p674

p675

p391

p389p1111

p390p393p392

p261

p262

p27p28

p252

p474

p640 p643

p826p827p828 p829p830 p831 p832p839

p642p641 p639

p256

p410

p400

p412

p401

p414p413 p411

p402p403p404 p405 p406p407p408 p409

p387p386 p385

p489p490

p383 p384

p1059p1057 p1058

p388

p251 p254 p255

p863

p841p792 p791p790p789p788p787 p786p785

p738

p853p852 p851 p850

p739

p873 p874p867

p740

p502

p1579

p1056p1050

p1048 p1049 p1051

p1495

p1052p1053p1054

p1578 p1577

p1055

p501

p678

p793

p682

p681

p680p679

p500

p498p499

p253

p241

p475

p242

p943 p974p975p976p977 p978p979

p890

p1182p980p981p982 p983p984 p985

p889 p473

p1007p1008 p1009 p1010 p1011 p1012

p915p917 p918

p1021

p916

p461

p1013

p891

p243

p15 p16

p535

p306

p532

p713

p556p714

p715

p531p530p529p528p527

p304

p728p726

p1477p1490

p1193

p1491p1492 p1493p1494

p1192

p1191 p741p1194

p727

p555

p305

p36 p37

p148

p525

p3

p431

p885p884

p429

p883p882

p430

p638

p1046 p1047

p637 p635p636

p428

p1020 p1018p1016

p1512

p1458 p1197

p1017

p1019

p432

p433

p274p275

p84p85

p497

p858p844

p836

p496

p838

p688 p687 p686 p685p684

p491

p723

p494p495 p493 p492

p272

p419p416 p418p417

p420

p273

p8

p1014 p1015

p893

p995 p994

p1483p1482 p1481

p1196p1195

p996

p894

p895 p896

p232 p449

p603 p605

p604

p448

p382

p768 p769p770p771

p381

p380

p379

p378 p630p629p628 p627

p376

p617 p612p614

p1329 p1330p1331p1332 p1333 p1334p1335p1336p1337 p1338

p613

p871

p616

p615

p611

p377

p233

p450

p2

p270p271

p427

p860 p859

p837

p725 p724

p533 p534

p426

p554p553

p415

p278

p41

p577 p458p456 p454p455p453 p460p459 p457

p336p337

p42p56

p551p550 p552

p50p314

p315

p98p99

p900 p899 p897p898

p573

p942

p574 p575

p566

p941

p944

p939p940

p565p567 p568

p296p297

p92 p93

p343

p352p351 p350

p344

p104 p105

p76

p246 p349 p472p471p470p469

p468

p466

p609

p610

p607p608

p467 p465

p244

p425 p421

p423 p424 p422

p245p247

p17 p18

p1

p520

p656 p655

p664

p663

p665

p835p834 p833

p666

p654

p521

p631p922p923

p546p548 p547 p545 p926 p925p924

p522

p279

p79 p80

p299

p39p40

p477p478

p479

p480

p287

p312

p353

p311

p332 p333p523 p524

p310

p288

p89 p90

p43

p187 p55 p67

p174

p69

p1004

p1005

p1006

p913

p1125

p1124 p1123p1122

p1121

p914

p145 p463

p464

p462

p236 p234p235

p237

p61 p62

p11 p7

p83

p298

p33p178

p206

p250

p22p249p248

p19 p20

p286

p176 p285

p483 p482p481

p291 p307

p308

p309

p29 p97

p150

p159

p127

p177

p25

p301p300

p94p95

p316

p317 p318

p100

p488p487 p486p485

p484

p335p334

p292 p293p294p295

p68 p91

p31

p320p345 p451

p452

p10p282

p59 p60

p96

p125

p363

p141 p155p24

p23

p146

p120p110 p132p130

p4p12

p47

p240

p339p290 p289

p238p239

p13p14

p180p38p321

p48 p175

p144

p211 p375

p374

p369 p588

p1520p1521

p586

p1508p1509 p1510

p584

p1558

p945

p585

p368

p151 p152

p195

p372

p592

p591p589

p590

p373

p170p171

p168p364

p142

p172 p202

p131p163

p169

p118

p107 p122p119

p989

p1272p1271 p1270p1269 p1268p1267 p1266 p1265

p986 p987

p990

p991p992p993

p1614p1613 p1612p1611 p1610p1609p1608p1607p1606 p1605

p988

p938

p143 p537

p46p280 p281

p87 p88

p276

p277

p86 p72

p203

p116 p123p109

p138

p164

p200

p225

p192

p947 p1588

p946p948

p139p587

p193 p365

p367

p366

p153p154

p194

p189

p147

p124p219

p191

p126p128 p583

p362

p190p137

p188

p165 p157

p173

p114 p160

p149 p207 p112 p224

p319

p35

p9

p121

p204 p201

p216 p166

p133

p208

p220p217 p371

p370

p134 p135

p108

p117

p162

p111

p221

p115

p158

p205

p167

p215p213

p196

p197

p223

p214p209

p179

p113p212 p222p129 p210p161

p184

p103

p156

p218

p557p558 p559

p313

p44 p199

p53

p140

p82

p303 p302

p21 p30

p45 p136

p322p323p324

p63 p64

p347

p325p326

p101 p102

p74p338

p65p66

p348

p75p186

p359p360p361

p354p355 p356p357p358

p77p78

p81

Family relationship of 1641 members of Greenland Eskimopopulation.

Steffen Lauritzen, University of Oxford Graphical Models

Page 10: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Conditional IndependenceUndirected graphsDirected acyclic graphsMoralization

Random variables X and Y are conditionally independent given therandom variable Z if

L(X |Y ,Z ) = L(X |Z ).

We then write X ⊥⊥Y |Z (or X ⊥⊥P Y |Z )Intuitively:Knowing Z renders Y irrelevant for predicting X .Factorisation of densities:

X ⊥⊥Y |Z ⇐⇒ f (x , y , z)f (z) = f (x , z)f (y , z)

⇐⇒ ∃a, b : f (x , y , z) = a(x , z)b(y , z).

Steffen Lauritzen, University of Oxford Graphical Models

Page 11: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Conditional IndependenceUndirected graphsDirected acyclic graphsMoralization

Fundamental properties

For random variables X , Y , Z , and W it holds

(C1) If X ⊥⊥Y |Z then Y ⊥⊥X |Z ;

(C2) If X ⊥⊥Y |Z and U = g(Y ), then X ⊥⊥U |Z ;

(C3) If X ⊥⊥Y |Z and U = g(Y ), then X ⊥⊥Y | (Z ,U);

(C4) If X ⊥⊥Y |Z and X ⊥⊥W | (Y ,Z ), thenX ⊥⊥ (Y ,W ) |Z ;

If density w.r.t. product measure f (x , y , z ,w) > 0 also

(C5) If X ⊥⊥Y | (Z ,W ) and X ⊥⊥Z | (Y ,W ) thenX ⊥⊥ (Y ,Z ) |W .

Steffen Lauritzen, University of Oxford Graphical Models

Page 12: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Conditional IndependenceUndirected graphsDirected acyclic graphsMoralization

A distribution P is said to factorize w.r.t. and undirected graph ifits joint density f can be written as

f (x) = Z−1∏A∈A

φA(xA), (1)

where A are complete subsets of the graph.

Here x = (xv , v ∈ V ), xA = (xv , v ∈ A) so φA only depends theA-coordinates of x .

The factorization is matched by a global Markov property, ie thatA⊥⊥B | S if S separates A from B in G, written as A⊥G B | S(Hammersley and Clifford, 1971).

Steffen Lauritzen, University of Oxford Graphical Models

Page 13: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Conditional IndependenceUndirected graphsDirected acyclic graphsMoralization

Factorization example

3 6

1 5 7

2 4

u uu u u

u u@@@

���

@@@

@@@

@@@

���

���

The graph above corresponds to a factorization as

f (x) = ψ12(x1, x2)ψ13(x1, x3)ψ24(x2, x4)ψ25(x2, x5)

× ψ356(x3, x5, x6)ψ47(x4, x7)ψ567(x5, x6, x7).

Steffen Lauritzen, University of Oxford Graphical Models

Page 14: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Conditional IndependenceUndirected graphsDirected acyclic graphsMoralization

Global Markov property

3 6

1 5 7

2 4

u uu u u

u u@@@

���

@@@

@@@

@@@

���

���

To find conditional independence relations, one should look forseparating sets, such as {2, 3}, {4, 5, 6}, or {2, 5, 6}For example, it follows that 1⊥⊥ 7 | {2, 5, 6} and 2⊥⊥ 6 | {3, 4, 5}.

Steffen Lauritzen, University of Oxford Graphical Models

Page 15: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Conditional IndependenceUndirected graphsDirected acyclic graphsMoralization

Pairwise and local Markov properties

G = (V ,E ) simple undirected graph; A distribution P satisfies

(P) the pairwise Markov property if

α 6∼ β ⇒ α⊥⊥P β |V \ {α, β};

(L) the local Markov property if

∀α ∈ V : α⊥⊥P V \ cl(α) | bd(α);

Steffen Lauritzen, University of Oxford Graphical Models

Page 16: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Conditional IndependenceUndirected graphsDirected acyclic graphsMoralization

Pairwise Markov property

3 6

1 5 7

2 4

u uu u u

u u@@@

���

@@@

@@@

@@@

���

���

Any non-adjacent pair of random variables are conditionallyindependent given the remaning.For example, 1⊥⊥ 5 | {2, 3, 4, 6, 7} and 4⊥⊥ 6 | {1, 2, 3, 5, 7}.

Steffen Lauritzen, University of Oxford Graphical Models

Page 17: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Conditional IndependenceUndirected graphsDirected acyclic graphsMoralization

Local Markov property

3 6

1 5 7

2 4

u uu u u

u u@@@

���

@@@

@@@

@@@

���

���

Every variable is conditionally independent of the remaining, givenits neighbours.For example, 5⊥⊥{1, 4} | {2, 3, 6, 7} and 7⊥⊥{1, 2, 3} | {4, 5, 6}.

Steffen Lauritzen, University of Oxford Graphical Models

Page 18: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Conditional IndependenceUndirected graphsDirected acyclic graphsMoralization

Let (F) denote the property that f factorizes w.r.t. G and let (G),(L) and (P) denote the Markov properties as defined. Then itholds that

(F)⇒ (G)⇒ (L)⇒ (P).

All reverse implications are false in general.

If f (x) > 0 for all x it further holds that

(P)⇒ (F)

so then(F) ⇐⇒ (G) ⇐⇒ (L) ⇐⇒ (P)

(Lauritzen, 1996, Chap. 3).

Steffen Lauritzen, University of Oxford Graphical Models

Page 19: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Conditional IndependenceUndirected graphsDirected acyclic graphsMoralization

A probability distribution P over X = XV factorizes over a DAG Dif its density or probability mass function f has the form

f (x) =∏v∈V

fv (xv | xpa(v)).

A well-known example is a Markov chain:

X1 X2 X3 X4 X5

s s ss s- - - - - sXn

with Xi+1⊥⊥ (X1, . . . ,Xi−1) |Xi for i = 3, . . . , n.

Steffen Lauritzen, University of Oxford Graphical Models

Page 20: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Conditional IndependenceUndirected graphsDirected acyclic graphsMoralization

Example of DAG factorization

3 6

1 5 7

2 4

u uu u u

u u

-

@@@R

����

@@@R

-

@@@R

@@@R

����

����

-

The above graph corresponds to the factorization

f (x) = f (x1)f (x2 | x1)f (x3 | x1)f (x4 | x2)

× f (x5 | x2, x3)f (x6 | x3, x5)f (x7 | x4, x5, x6).

Steffen Lauritzen, University of Oxford Graphical Models

Page 21: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Conditional IndependenceUndirected graphsDirected acyclic graphsMoralization

Local directed Markov property

A distribution P satisfies the local Markov property (L) w.r.t. adirected acyclic graph D if

∀α ∈ V : α⊥⊥P {nd(α) \ pa(α)} | pa(α).

Here nd(α) are the non-descendants of α.

Steffen Lauritzen, University of Oxford Graphical Models

Page 22: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Conditional IndependenceUndirected graphsDirected acyclic graphsMoralization

Local directed Markov property

3 6

1 5 7

2 4

u uu u u

u u

-

@@@R

����

@@@R

-

@@@R

@@@R

����

����

-

For example, the local Markov property says4⊥⊥{1, 3, 5, 6} | 2,5⊥⊥{1, 4} | {2, 3}3⊥⊥{2, 4} | 1.

Steffen Lauritzen, University of Oxford Graphical Models

Page 23: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Conditional IndependenceUndirected graphsDirected acyclic graphsMoralization

A distribution satisfies the global Markov property w.r.t. D if

A⊥D B |S ⇒ A⊥⊥B |S .

Here ⊥D is d-separation, which is somewhat subtle.

It is always true for a DAG that

(F) ⇐⇒ (G) ⇐⇒ (L)

(Pearl, 1986; Geiger and Pearl, 1990; Lauritzen et al., 1990).

Steffen Lauritzen, University of Oxford Graphical Models

Page 24: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Conditional IndependenceUndirected graphsDirected acyclic graphsMoralization

Separation in DAGs

A trail τ from vertex α to vertex β in a DAG D is blocked by S ifit contains a vertex γ ∈ τ such that

I either γ ∈ S and edges of τ do not meet head-to-head at γ, or

I γ and all its descendants are not in S , and edges of τ meethead-to-head at γ.

A trail that is not blocked is active. Two subsets A and B ofvertices are d-separated by S if all trails from A to B are blockedby S . We write A⊥D B | S .

Steffen Lauritzen, University of Oxford Graphical Models

Page 25: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Conditional IndependenceUndirected graphsDirected acyclic graphsMoralization

Separation by example

3 6

1 5 7

2 4

u uu u u

u u

-

@@@R

����

@@@R

-

@@@R

@@@R

����

����

-

3 6

1 5 7

2 4

u uu u u

u u

-

@@@R

����

@@@R

-

@@@R

@@@R

����

����

-

For S = {5}, the trail (4, 2, 5, 3, 6) is active, whereas the trails(4, 2, 5, 6) and (4, 7, 6) are blocked.For S = {3, 5}, they are all blocked.

Steffen Lauritzen, University of Oxford Graphical Models

Page 26: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Conditional IndependenceUndirected graphsDirected acyclic graphsMoralization

Returning to example

3 6

1 5 7

2 4

u uu u u

u u

-

@@@R

����

@@@R

-

@@@R

@@@R

����

����

-

Hence 4⊥D 6 | 3, 5, but it is not true that 4⊥D 6 | 5 nor that4⊥D 6.

Steffen Lauritzen, University of Oxford Graphical Models

Page 27: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Conditional IndependenceUndirected graphsDirected acyclic graphsMoralization

The moral graph Dm of a DAG D is obtained by adding undirectededges between unmarried parents and subsequently droppingdirections, as in the example below:

3 6

1 5 7

2 4

s ss s ss s-

@@R

���

@@R

-@@R

@@R

���

���

-

3 6

1 5 7

2 4

s ss s ss s-

@@R

���

@@R

-@@R�

�@@R

���

���

-

3 6

1 5 7

2 4

s ss s ss s@@

��

@@

@@

��

��

��@@

Steffen Lauritzen, University of Oxford Graphical Models

Page 28: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Conditional IndependenceUndirected graphsDirected acyclic graphsMoralization

Undirected factorizations

If P factorizes w.r.t. D, it factorizes w.r.t. the moralised graph Dm.

This is seen directly from the factorization:

f (x) =∏v∈V

f (xv | xpa(v)) =∏v∈V

ψ{v}∪pa(v)(x),

since {v} ∪ pa(v) are all complete in Dm.

Hence if P satisfies any of the directed Markov properties w.r.t. D,it satisfies all Markov properties for Dm.

Steffen Lauritzen, University of Oxford Graphical Models

Page 29: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Conditional IndependenceUndirected graphsDirected acyclic graphsMoralization

Alternative equivalent separation

To resolve query involving three sets A, B, S :

1. Reduce to subgraph induced by ancestral set DAn(A∪B∪S) ofA ∪ B ∪ S ;

2. Moralize to form (DAn(A∪B∪S))m ;

It then holds that A⊥D B | S if and only if S separates A from Bin this undirected graph.

Proof in Lauritzen (1996) needs to allow self-intersecting paths tobe correct.

Steffen Lauritzen, University of Oxford Graphical Models

Page 30: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Conditional IndependenceUndirected graphsDirected acyclic graphsMoralization

Forming ancestral set

3 6

1 5

2 4

u uu u

u u

-

@@@R

����

@@@R

@@@R

����

-

The subgraph induced by all ancestors of nodes involved in thequery 4⊥D 6 | 3, 5?

Steffen Lauritzen, University of Oxford Graphical Models

Page 31: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Conditional IndependenceUndirected graphsDirected acyclic graphsMoralization

Adding links between unmarried parents

3 6

1 5

2 4

u uu u

u u

-

@@@R

����

@@@R

@@@R

����

-

Adding an undirected edge between 2 and 3 with common child 5in the subgraph induced by all ancestors of nodes involved in thequery 4⊥D 6 | 3, 5?

Steffen Lauritzen, University of Oxford Graphical Models

Page 32: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Conditional IndependenceUndirected graphsDirected acyclic graphsMoralization

Dropping directions

3 6

1 5

2 4

u uu u

u u@@@

���

@@@

@@@

���

Since {3, 5} separates 4 from 6 in this graph, we can conclude that4⊥D 6 | 3, 5

Steffen Lauritzen, University of Oxford Graphical Models

Page 33: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Bayesian inference using Gibbs sampling

A particular successful development is associated with BUGS,(Gilks et al., 1994) (WinBUGS, OpenBUGS).

I enables a Bayesian analyst to focus on substantive modellingwhereas the technical model specification and computationalside is taken care of automatically,

I exploiting modularity, factorization, and MCMC methodology,including the Gibbs and Metropolis–Hastings sampler.

I Conforming with Bayesian paradigm, parameters andobservations are explicitly represented in model as nodes ingraph, all being observables;

Steffen Lauritzen, University of Oxford Graphical Models

Page 34: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Bayesian inference using Gibbs sampling

A particular successful development is associated with BUGS,(Gilks et al., 1994) (WinBUGS, OpenBUGS).

I enables a Bayesian analyst to focus on substantive modellingwhereas the technical model specification and computationalside is taken care of automatically,

I exploiting modularity, factorization, and MCMC methodology,including the Gibbs and Metropolis–Hastings sampler.

I Conforming with Bayesian paradigm, parameters andobservations are explicitly represented in model as nodes ingraph, all being observables;

Steffen Lauritzen, University of Oxford Graphical Models

Page 35: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Bayesian inference using Gibbs sampling

A particular successful development is associated with BUGS,(Gilks et al., 1994) (WinBUGS, OpenBUGS).

I enables a Bayesian analyst to focus on substantive modellingwhereas the technical model specification and computationalside is taken care of automatically,

I exploiting modularity, factorization, and MCMC methodology,including the Gibbs and Metropolis–Hastings sampler.

I Conforming with Bayesian paradigm, parameters andobservations are explicitly represented in model as nodes ingraph, all being observables;

Steffen Lauritzen, University of Oxford Graphical Models

Page 36: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Bayesian inference using Gibbs sampling

Linear regression

for(i IN 1 : N)

sigma

taubetaalpha

mu[i]

Y[i]

Linear regression as a full Bayesian graphical model.

Steffen Lauritzen, University of Oxford Graphical Models

Page 37: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Bayesian inference using Gibbs sampling

Linear regression

model

{

for( i in 1 : N ) {

Y[i] ~ dnorm(mu[i],tau)

mu[i] <- alpha + beta * (x[i] - xbar)

}

tau ~ dgamma(0.001,0.001) sigma <- 1 / sqrt(tau)

alpha ~ dnorm(0.0,1.0E-6)

beta ~ dnorm(0.0,1.0E-6)

}

Steffen Lauritzen, University of Oxford Graphical Models

Page 38: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Bayesian inference using Gibbs sampling

Data and BUGS model for pumps

The number of failures Xi is assumed to follow a Poissondistribution with parameter θi ti , i = 1, . . . , 10where θi is the failure rate for pump i and ti is the length ofoperation time of the pump (in 1000s of hours). The data areshown below.

Pump 1 2 3 4 5 6 7 8 9 10ti 94.5 15.7 62.9 126 5.24 31.4 1.05 1.05 2.01 10.5xi 5 1 5 14 3 19 1 1 4 22

A gamma prior distribution is adopted for the failure rates:θi ∼ Γ(α, β), i = 1, . . . , 10

Steffen Lauritzen, University of Oxford Graphical Models

Page 39: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Bayesian inference using Gibbs sampling

Gamma model for pumpdata

for(i IN 1 : N)

betaalpha

t[i]theta[i]

lambda[i]

x[i]

Failure of 10 power plant pumps.

Steffen Lauritzen, University of Oxford Graphical Models

Page 40: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Bayesian inference using Gibbs sampling

BUGS program for pumps

With suitable priors the program becomes

model

{

for (i in 1 : N) {

theta[i] ~ dgamma(alpha, beta)

lambda[i] <- theta[i] * t[i]

x[i] ~ dpois(lambda[i])

}

alpha ~ dexp(1)

beta ~ dgamma(0.1, 1.0)

}

Steffen Lauritzen, University of Oxford Graphical Models

Page 41: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Bayesian inference using Gibbs sampling

Growth of rats

for(j IN 1 : T)for(i IN 1 : N)

sigma

tau.cx[j]

Y[i, j]

mu[i, j]

beta[i]alpha[i]

beta.taubeta.calpha0alpha.calpha.tau

Growth of 30 young rats.

Steffen Lauritzen, University of Oxford Graphical Models

Page 42: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Bayesian inference using Gibbs sampling

Finding full conditionals for Gibbs sampler

Inference in Bayesian complex graphical models as above uses theGibbs sampler.

For a DAG the densities of full conditional distributions are:

f (xi | xV \i ) ∝∏v∈V

f (xv | xpa(v))

∝ f (xi | xpa(i))∏

v∈ch(i)

f (xv | xpa(v))

= f (xi | xbl(i)),

x where bl(i) is the Markov blanket of node i :

bl(i) = pa(i) ∪ ch(i) ∪{∪v∈ch(i) pa(v) \ {i}

}.

Steffen Lauritzen, University of Oxford Graphical Models

Page 43: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Bayesian inference using Gibbs sampling

Markov blanket

3 6

1 5 7

2 4

u uu u u

u u

-

@@@R

����

@@@R

-

@@@R

@@@R

����

����

-

Markov blanket of 6 is bl(6) = {3, 5, 7, 4}.

Steffen Lauritzen, University of Oxford Graphical Models

Page 44: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Bayesian inference using Gibbs sampling

3 6

1 5 7

2 4

u uu u u

u u

-

@@@R

����

@@@R

-

@@@R

@@@R

����

����

-

3 6

1 5 7

2 4

u uu u u

u u@@@

���

@@@

@@@

���

���

��� @

@@

The Markov blanket is just the neighbours of in the moral graph:

bl(v) = nem(v) so bl(6) = {3, 5, 7, 4} and bl(3) = {1, 5, 6, 2}.The DAG is used for modular specification of the model, and themoral graph for local computation.

Steffen Lauritzen, University of Oxford Graphical Models

Page 45: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Bayesian inference using Gibbs sampling

I Is a huge conceptual extension of so-called Bayesianhierarchical models;

I distinction prior/likelihood and parameter/random variableless well defined;

I If founder nodes in network are considered fixed and unknown,no reason not to consider models in Fisherian paradigm.

Steffen Lauritzen, University of Oxford Graphical Models

Page 46: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Bayesian inference using Gibbs sampling

I Is a huge conceptual extension of so-called Bayesianhierarchical models;

I distinction prior/likelihood and parameter/random variableless well defined;

I If founder nodes in network are considered fixed and unknown,no reason not to consider models in Fisherian paradigm.

Steffen Lauritzen, University of Oxford Graphical Models

Page 47: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Bayesian inference using Gibbs sampling

I Is a huge conceptual extension of so-called Bayesianhierarchical models;

I distinction prior/likelihood and parameter/random variableless well defined;

I If founder nodes in network are considered fixed and unknown,no reason not to consider models in Fisherian paradigm.

Steffen Lauritzen, University of Oxford Graphical Models

Page 48: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Darroch, J. N., S. L. Lauritzen, and T. P. Speed (1980). Markovfields and log-linear interaction models for contingency tables.The Annals of Statistics 8, 522–539.

Dempster, A. P. (1972). Covariance selection. Biometrics 28,157–175.

Geiger, D. and J. Pearl (1990). On the logic of causal models. InR. D. Shachter, T. S. Levitt, L. N. Kanal, and J. F. Lemmer(Eds.), Uncertainty in Artificial Intelligence 4, pp. 3–14.Amsterdam, The Netherlands: North-Holland.

Gibbs, W. (1902). Elementary Principles of Statistical Mechanics.NewHaven, Connecticut: Yale University Press.

Gilks, W. R., A. Thomas, and D. J. Spiegelhalter (1994). BUGS: alanguage and program for complex Bayesian modelling. TheStatistician 43, 169–178.

Haberman, S. J. (1974). The Analysis of Frequency Data.Chicago, Illinois: University of Chicago Press.

Steffen Lauritzen, University of Oxford Graphical Models

Page 49: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Hammersley, J. M. and P. E. Clifford (1971). Markov fields onfinite graphs and lattices. Unpublished manuscript.

Lauritzen, S. L. (1996). Graphical Models. Oxford, UnitedKingdom: Clarendon Press.

Lauritzen, S. L., A. P. Dawid, B. N. Larsen, and H.-G. Leimer(1990). Independence properties of directed Markov fields.Networks 20, 491–505.

Lauritzen, S. L. and D. J. Spiegelhalter (1988). Localcomputations with probabilities on graphical structures and theirapplication to expert systems (with discussion). Journal of theRoyal Statistical Society, Series B 50, 157–224.

Lauritzen, S. L. and N. Wermuth (1989). Graphical models forassociations between variables, some of which are qualitativeand some quantitative. The Annals of Statistics 17, 31–57.

Pearl, J. (1986). A constraint–propagation approach toprobabilistic reasoning. In L. N. Kanal and J. F. Lemmer (Eds.),

Steffen Lauritzen, University of Oxford Graphical Models

Page 50: Graphical Models - Oxford Statisticssteffen/teaching/grad/graphicalmodels.pdf · Google gives 7 420 000 hits. Ste en Lauritzen, University of Oxford Graphical Models. Genesis and

Genesis and historyExamples

Markov theoryComplex models

References

Uncertainty in Artificial Intelligence, Amsterdam, TheNetherlands, pp. 357–370. North-Holland.

Pearl, J. (1988). Probabilistic Inference in Intelligent Systems. SanMateo, CA: Morgan Kaufmann Publishers.

Wermuth, N. and S. L. Lauritzen (1983). Graphical and recursivemodels for contingency tables. Biometrika 70, 537–552.

Whittaker, J. (1990). Graphical Models in Applied MultivariateStatistics. Chichester, United Kingdom: John Wiley and Sons.

Wold, H. O. A. (1954). Causality and econometrics.Econometrica 22, 162–177.

Wright, S. (1921). Correlation and causation. Journal ofAgricultural Research 20, 557–585.

Wright, S. (1934). The method of path coefficients. The Annals ofMathematical Statistics 5, 161–215.

Steffen Lauritzen, University of Oxford Graphical Models